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The human nose: anatomy and functions

Function of the nose:

• Thermal exchange

• Humidification

• Filtering

• Olfaction and taste
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Why studying it?

• Large incidence: 1/3 of adult world population 1

• Huge societal cost ($22b for cronic rhinosinusits alone in USA)2

• Large failure rate of surgical corrections3(up tp 50%!)

1Canonica, et al. A survey of the burden of allergic rhinitis in Europe. Allergy. 2007

2Smith, et al. Cost of adult chronic rhinosinusitis: A systematic review. The Laryngoscope. 2015

3Illum Septoplasty and compensatory inferior turbinate hypertrophy: long-term results after randomized turbinoplasty. Eur. Arch. Otorhinolaryngol.

1997
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What’s a surgeon from an engineer’s perspective

• Given a patient to two different surgeons, they can have different ideas on how to

proceed, even whether to perform a surgery

• Surgeons are mainly driven by intuition and experience
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Looking at the doctor’s workflow

The typical doctor wants to know whether and where to operate

• Sino-Nasal Outcome Tests:

subjective

• Rhinomanometry, R =
∆pl,r
Ql,r

:

too macroscopic

• CT-Scan: full spatial

information
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Is a CT-scan the best we can do?
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Let’s try to perform a fluid simulation!
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The CFD setup

• Meshes of around 13 Millions cells without sinuses

• LES simulations, WALE turbulence model

• Constant flow rate 266.66 ml/s

• 0.6 s simulated (excluding transient)
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CFD can be tricky
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So is CFD the solution?

• Accuracy and cost proportional to

domain discretization

• Flow simulation returns detailed

information (order of GB)

• Highlights functional properties of the

system...

• ...But still no clear indication on

whether and where to operate

Two approaches possible: adjoint optimization or data-driven
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First approach: adjoint method

• Suggests which surgery to perform

• Easy to read for the surgeons

• Requires a cost function f (flow rate

imbalance, dissipation)

• Two flow simulations: direct (u, p)

and adjoint (v, q)

• Not all surgeries are possible
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Second approach: data-driven

• Clear input X : the CFD solution

• Clear output Y : diagnosis

f : X → Y

We need a dataset!
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...But a good one

1. Avoid ambiguity of labels

→ convert a patient into clear label

2. Balanced classes

→ many patients with the exact same pathology
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First approach: isn’t geometry enough?

Objective: predict the parameters q1, q2, q3 using both geometrical and flow features

Problem: How to compare features on different domains? 17



Mapping domains - Functional maps

• Computational geometry tool

• Generalization of Fourier basis on surfaces

• Basis: eigenfunction (ϕ) of the

Laplace-Beltrami operator

• Compare real valued function on surfaces

TF ≈ ϕN A ϕ+
M

Ovsjanikov M., et al. Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics 2012
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Computing the functional map A

Given a pair of shapes M,N :

• We associate to them the positive semi-definite Laplacian matrices LM and LN .

So that LM = D−1
MWM , where D−1

M is the diagonal matrix of lumped area

elements and WM is the cotangent weight matrix

• Compute a basis consisting of the first kM eigenfunctions of the Laplacian matrix:

ϕkM
M

• Given a point-to-point map TF , its matrix representation is Π, such that

Π(i , j) = 1 if TF (i) = j and zero otherwise

• The corresponding functional map is: A = ϕ+
MΠϕN

19



Zoom-out: better method for shape correspondence

Starting from a small map A0, the objective is to extend it to a new map A1 of size

(kM + 1)× (kN + 1):

1. Compute a point-to-point map TF , and encode it as a matrix Π

2. Set A1 = (ϕkM
M )TDMΠϕkN

N

Tf (p) = argminq||A(ϕN (q))T − (ϕM(p))T ||2,∀p ∈ M

Where ϕM(p) denotes the pth row of the matrix of eigenvectors ϕM

20



The Laplace-Beltrami operator

The ordered eigenvalues provide a natural scale.
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Comparing flow features on different domains
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Estimation of the pathological parameters
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First approach: results
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Real case with clear labels: The deformation tree

Nose Healthy

Pathological Hypertrophy Inferior Tail

Body

Head

Middle Tail

Body

Head

Septal Deviation Posterior Inferior

Middle

Superior

Anterior Inferior

Middle

Superior

E2

E1

• Few patients with

these pathologies

• Perform inverse

surgeries on healthy

patients

25



Real case with clear labels: The deformation tree

Nose Healthy

Pathological Hypertrophy Inferior Tail

Body

Head

Middle Tail

Body

Head

Septal Deviation Posterior Inferior

Middle

Superior

Anterior Inferior

Middle

Superior

E2

E1 • Few patients with

these pathologies

• Perform inverse

surgeries on healthy

patients 25



The cost of (virtual surgery)−1

The operation is extremely time consuming: ∼ 10 hours

Can we make it automatic?
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Automatic and consistent process - Functional maps
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Automatic and consistent process - Workflow

At the end of the process 277 Geometries
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The classification problem

The task:
Classify 28 pathologies from 277 LES into 2 classes.

Challenges:

• Each flow simulation carries around 2 GB of information

• Need for feature engineering!
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Feature engineering example: Streamlines’ statistics

• Compute the integral of flow quantities along the streamlines

• Extract statistic out of the integrated quantities
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The classifier

• Input layer 12 nodes

• Hidden layer: 30, 20, 10

• Loss function: Cross-entropy

• Backpropagation:

Levenberg-Marquardt

• Output layer: 2 node (binary), 4 nodes

(multiclass)
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How to test the dataset
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Binary classification results: E1

k-fold LOO

accuracy accuracy

|U| 0.97 0.85

Ω2 0.95 0.74

|∇P| 0.96 0.76

Pin − P 0.91 0.76

P1 − P 0.91 0.76

P − Pout 0.89 0.68

P − P6 0.92 0.74

νt 0.87 0.67

R 0.85 0.64
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Multiclass classification results: E2

Observations with ambiguous labels are pruned: the dataset shrinks to 154 observations

Results with the best feature |U|:

Class accuracy

Anterior septal deviation 0.91

Posterior septal deviation 0.90

Middle turbinate hypertrophy 0.67

Inferior turbinate hypertrophy 0.71
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Final remarks

• Successful use of CFD data as input of ML to obtain a medical label

• 2GB of information converted into a handful of significant numbers

• Geometry parameterization is a crucial step

• Need for clinical testing

• The developed workflow is flexible: works on a airfoil dataset

• (Very) interdisciplinary project
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First results using explainability methods
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How to measure the mapping error?
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The Laplace-Beltrami operator

Eigenfunctions of Laplace-Beltrami operator:

∆ϕi = λiϕi ∆(f ) = −div∆(f )

The ordered eigenvalues provide a natural scale.
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Iterations with ENT surgeons

40



Laplace-Beltrami on the nose
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Functional map - The pipeline

Given a pair of shapes M,N :

• Compute the first ∼ 100 eigenfunctions of Laplace-Beltrami operator: ϕM and ϕN

• Compute descriptor functions (e.g. landmarks, Wave kernel signature) on M and

N . Express them as columns X , Y

• Solve Aopt = argminA||CX − Y ||2 + ||A∆M −∆NA||2. With ∆M and ∆N

diagonal matrices of eigenvalues of LB operator.

• Convert the functional map Aopt to a point-to-point map Π
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