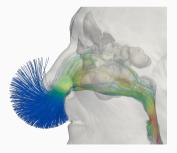
Classifying nasal pathologies with Computational Fluid Dynamics and Machine Learning

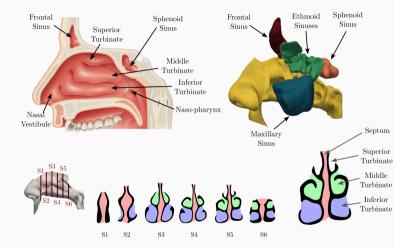
Maurizio Quadrio DAER

Andrea Schillaci

Giacomo Boracchi DEIB



The human nose: anatomy and functions



Function of the nose:

- Thermal exchange
- Humidification
- Filtering
- Olfaction and taste

- Large incidence: 1/3 of adult world population ¹
- Huge societal cost (\$22b for cronic rhinosinusits alone in USA)²
- Large failure rate of surgical corrections³(up tp 50%!)

¹Canonica, et al. A survey of the burden of allergic rhinitis in Europe. Allergy. 2007

²Smith, et al. Cost of adult chronic rhinosinusitis: A systematic review. The Laryngoscope. 2015

³Illum Septoplasty and compensatory inferior turbinate hypertrophy: long-term results after randomized turbinoplasty. *Eur. Arch. Otorhinolaryngol.* 1997

- Given a patient to two different surgeons, they can have different ideas on how to proceed, even **whether** to perform a surgery
- Surgeons are mainly driven by intuition and experience

The typical doctor wants to know whether and where to operate

• Sino-Nasal Outcome Tests: subjective

Need to blow the nose	0	1	2	3	4	5
Sneezing	0	1	2	3	4	5
Dizziness	0	1	2	3	4	5
Ear pain	0	1	2	3	4	5
Facial pain	0	1	2	3	4	5
Difficulty falling asleep	0	1	2	3	4	5
Waking up at night	0	1	2	3	4	5
TOTAL SCORE						

Looking at the doctor's workflow

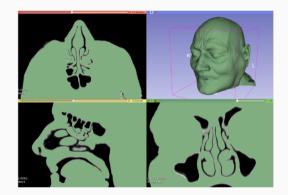
The typical doctor wants to know whether and where to operate

- Sino-Nasal Outcome Tests: subjective
- Rhinomanometry,
 - $R = \frac{\Delta p_{l,r}}{Q_{l,r}}$: too macroscopic

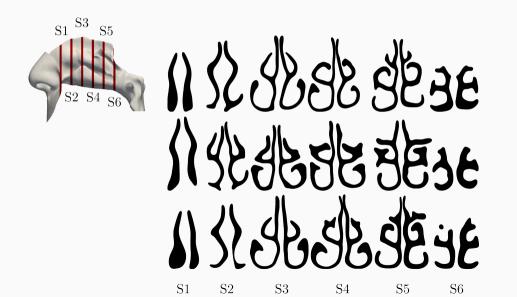
Looking at the doctor's workflow

The typical doctor wants to know whether and where to operate

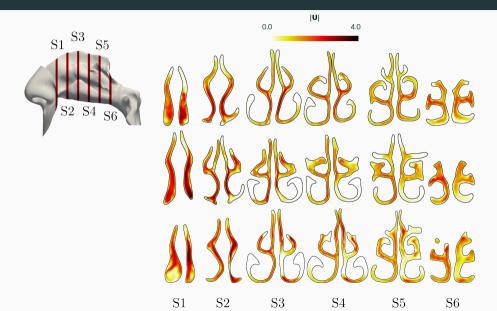
- Sino-Nasal Outcome Tests: subjective
- Rhinomanometry, $R = \frac{\Delta p_{l,r}}{Q_{l,r}}$: too macroscopic
- CT-Scan: full spatial information



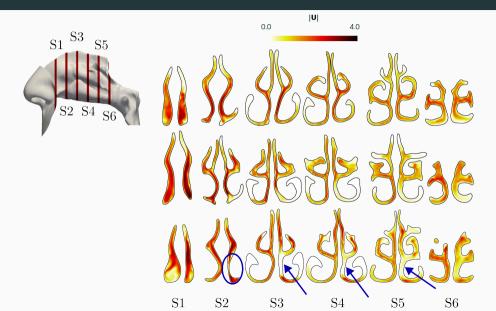
Is a CT-scan the best we can do?



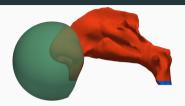
Let's try to perform a fluid simulation!

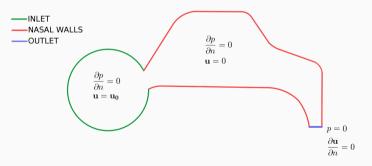


Let's try to perform a fluid simulation!

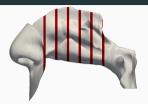


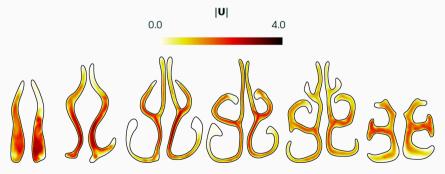
- Meshes of around 13 Millions cells without sinuses
- LES simulations, WALE turbulence model
- Constant flow rate 266.66 ml/s
- 0.6 *s* simulated (excluding transient)



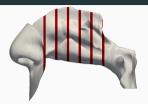


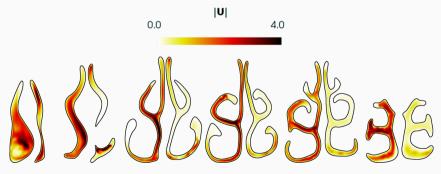
- Meshes of around 13 Millions cells without sinuses
- LES simulations, WALE turbulence model
- Constant flow rate 266.66 ml/s
- 0.6 *s* simulated (excluding transient)



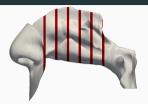


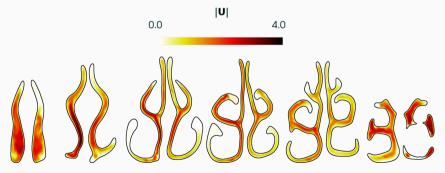
- Meshes of around 13 Millions cells without sinuses
- LES simulations, WALE turbulence model
- Constant flow rate 266.66 ml/s
- 0.6 *s* simulated (excluding transient)



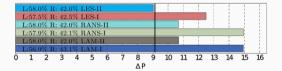


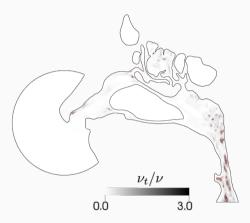
- Meshes of around 13 Millions cells without sinuses
- LES simulations, WALE turbulence model
- Constant flow rate 266.66 ml/s
- 0.6 *s* simulated (excluding transient)





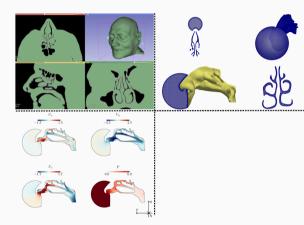
CFD can be tricky





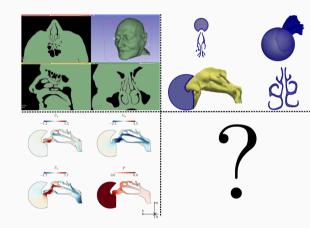
So is CFD the solution?

- Accuracy and cost proportional to domain discretization
- Flow simulation returns detailed information (order of GB)
- Highlights functional properties of the system...



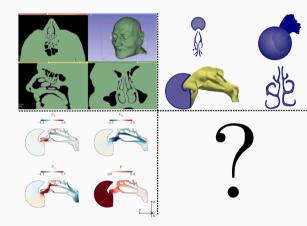
So is CFD the solution?

- Accuracy and cost proportional to domain discretization
- Flow simulation returns detailed information (order of GB)
- Highlights functional properties of the system...
- ...But still no clear indication on whether and where to operate



So is CFD the solution?

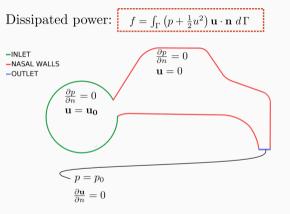
- Accuracy and cost proportional to domain discretization
- Flow simulation returns detailed information (order of GB)
- Highlights functional properties of the system...
- ...But still no clear indication on whether and where to operate



Two approaches possible: adjoint optimization or data-driven

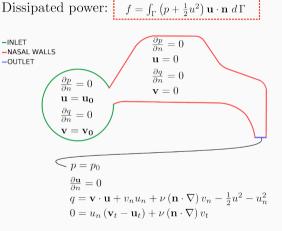
First approach: adjoint method

- Suggests which surgery to perform
- Easy to read for the surgeons
- Requires a **cost function** *f* (flow rate imbalance, dissipation)
- Two flow simulations: direct (u, p) and adjoint (v, q)
- Not all surgeries are possible



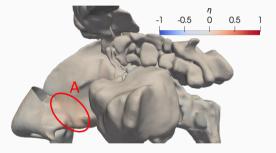
First approach: adjoint method

- Suggests which surgery to perform
- Easy to read for the surgeons
- Requires a **cost function** *f* (flow rate imbalance, dissipation)
- Two flow simulations: direct (u, p) and adjoint (v, q)
- Not all surgeries are possible



First approach: adjoint method

- Suggests which surgery to perform
- Easy to read for the surgeons
- Requires a **cost function** *f* (flow rate imbalance, dissipation)
- Two flow simulations: direct (u, p) and adjoint (v, q)
- Not all surgeries are possible



- Clear input X: the CFD solution
- Clear output Y: diagnosis

 $f:X \to Y$

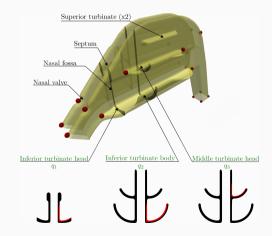
We need a dataset!

- 1. Avoid ambiguity of labels
- 2. Balanced classes

- 1. Avoid ambiguity of labels \rightarrow convert a patient into clear label
- 2. Balanced classes \rightarrow many patients with the exact **same** pathology

First approach: isn't geometry enough?

Objective: predict the parameters q_1, q_2, q_3 using both geometrical and flow features



Problem: How to compare features on different domains?

Mapping domains - Functional maps

- Computational geometry tool
- Generalization of Fourier basis on surfaces
- Basis: eigenfunction (φ) of the Laplace-Beltrami operator
- Compare real valued function on surfaces

$$T_F \approx \phi_{\mathcal{N}} A \phi_{\mathcal{M}}^+$$

Ovsjanikov M., et al. Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics 2012

Computing the functional map A

Given a pair of shapes \mathcal{M}, \mathcal{N} :

- We associate to them the positive semi-definite Laplacian matrices $L_{\mathcal{M}}$ and $L_{\mathcal{N}}$. So that $L_{\mathcal{M}} = D_{\mathcal{M}}^{-1} W_{\mathcal{M}}$, where $D_{\mathcal{M}}^{-1}$ is the diagonal matrix of lumped area elements and $W_{\mathcal{M}}$ is the cotangent weight matrix
- Compute a basis consisting of the first k_M eigenfunctions of the Laplacian matrix: $\phi_M^{k_M}$
- Given a point-to-point map T_F , its matrix representation is Π , such that $\Pi(i,j) = 1$ if $T_F(i) = j$ and zero otherwise
- The corresponding functional map is: $A = \phi_{\mathcal{M}}^{+} \Pi \phi_{\mathcal{N}}$

Starting from a *small* map A_0 , the objective is to extend it to a new map A_1 of size $(k_M + 1) \times (k_N + 1)$:

1. Compute a point-to-point map T_F , and encode it as a matrix Π

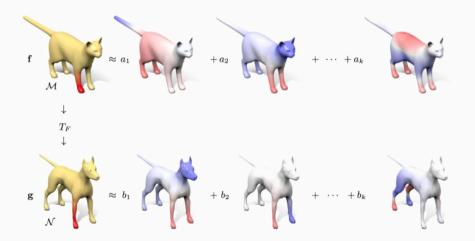
2. Set
$$A_1 = (\phi_{\mathcal{M}}^{k_{\mathcal{M}}})^T D_{\mathcal{M}} \Pi \phi_{\mathcal{N}}^{k_{\mathcal{N}}}$$

$$T_f(p) = \operatorname{argmin}_q ||A(\phi_\mathcal{N}(q))^{\mathcal{T}} - (\phi_\mathcal{M}(p))^{\mathcal{T}}||_2, orall p \in \mathcal{M}$$

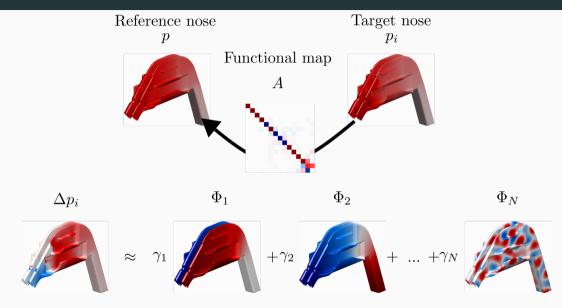
Where $\phi_{\mathcal{M}}(p)$ denotes the p^{th} row of the matrix of eigenvectors $\phi_{\mathcal{M}}$

The Laplace-Beltrami operator

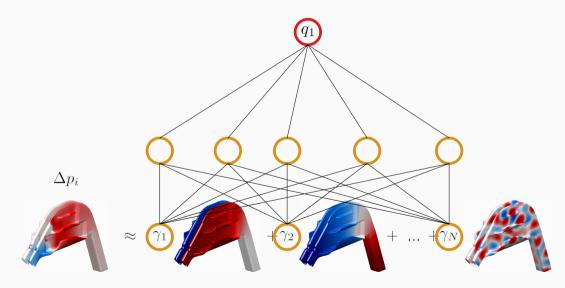
The ordered eigenvalues provide a natural scale.



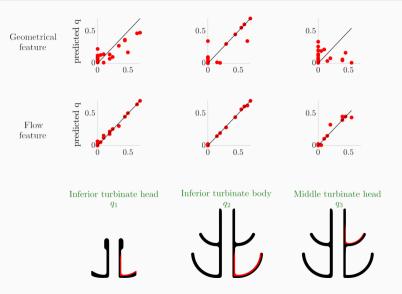
Comparing flow features on different domains



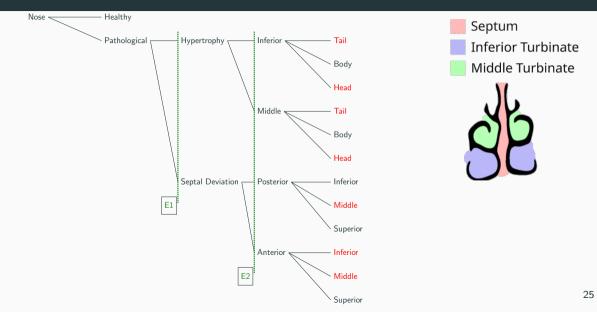
Estimation of the pathological parameters



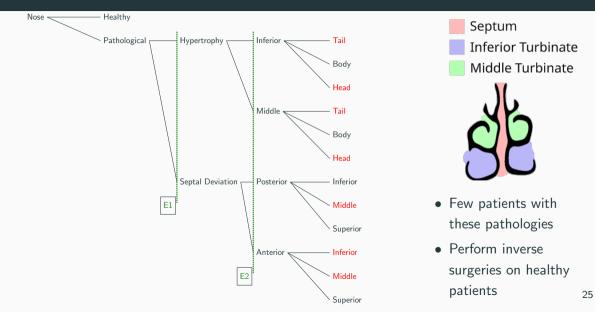
First approach: results



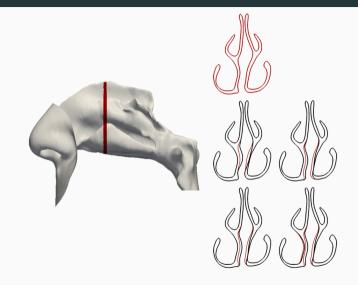
Real case with clear labels: The deformation tree



Real case with clear labels: The deformation tree

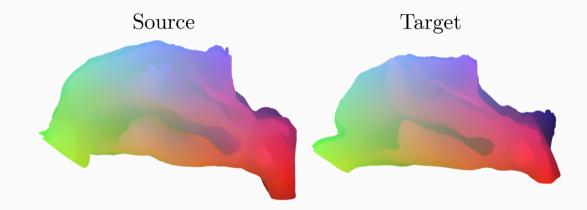


The cost of $(virtual surgery)^{-1}$

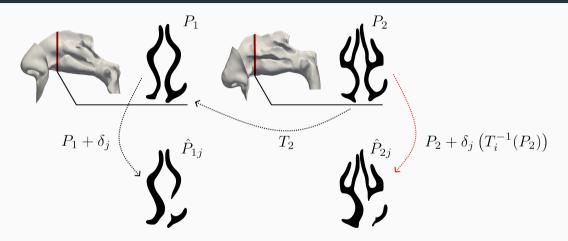


The operation is extremely time consuming: \sim 10 hours

Automatic and consistent process - Functional maps



Automatic and consistent process - Workflow



At the end of the process 277 Geometries

The task:

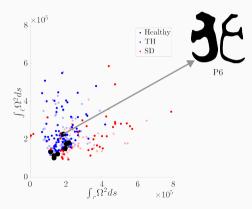
Classify 28 pathologies from 277 LES into 2 classes.

Challenges:

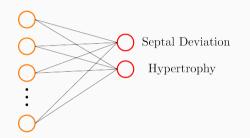
- Each flow simulation carries around 2 GB of information
- Need for feature engineering!

Feature engineering example: Streamlines' statistics

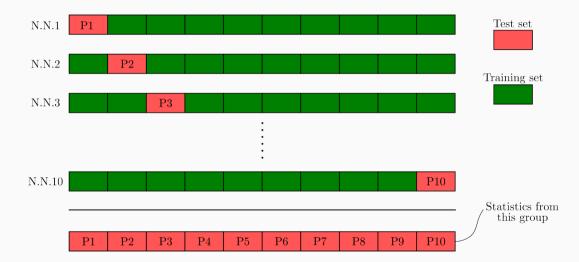
- Compute the integral of flow quantities along the streamlines
- Extract statistic out of the integrated quantities



- Input layer 12 nodes
- Hidden layer: 30, 20, 10
- Loss function: Cross-entropy
- Backpropagation: Levenberg-Marquardt
- Output layer: 2 node (binary), 4 nodes (multiclass)



How to test the dataset



Binary classification results: E1

	<i>k</i> -fold	LOO
	accuracy	accuracy
U	0.97	0.85
Ω^2	0.95	0.74
$ \mathbf{\nabla}P $	0.96	0.76
$P_{in} - P$	0.91	0.76
$P_1 - P$	0.91	0.76
$P - P_{out}$	0.89	0.68
$P - P_6$	0.92	0.74
$ u_t $	0.87	0.67
R	0.85	0.64

Binary classification results: E1

	<i>k</i> -fold	LOO
	accuracy	accuracy
U	0.97	0.85
Ω^2	0.95	0.74
$ \nabla P $	0.96	0.76
$P_{in} - P$	0.91	0.76
$P_1 - P$	0.91	0.76
$P - P_{out}$	0.89	0.68
$P - P_6$	0.92	0.74
ν_t	0.87	0.67
R	0.85	0.64

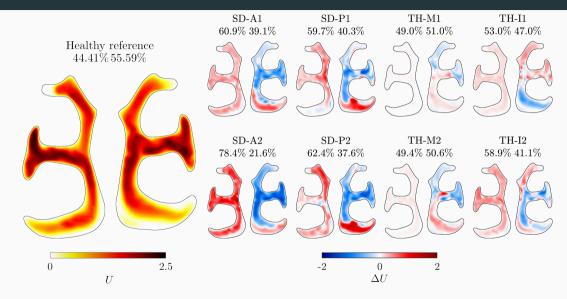
Observations with ambiguous labels are pruned: the dataset shrinks to 154 observations

Results with the best feature |U|:

Class	accuracy
Anterior septal deviation	0.91
Posterior septal deviation	0.90
Middle turbinate hypertrophy	0.67
Inferior turbinate hypertrophy	0.71

- Successful use of CFD data as input of ML to obtain a medical label
- 2GB of information converted into a handful of significant numbers
- Geometry parameterization is a crucial step
- Need for clinical testing
- The developed workflow is flexible: works on a airfoil dataset
- (Very) interdisciplinary project

First results using explainability methods



How to measure the mapping error?

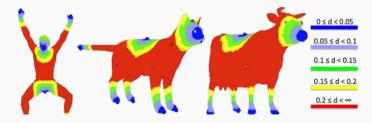
Given:

$$f: \mathcal{M} \to \mathcal{N}$$
 and $f_{True}: \mathcal{M} \to \mathcal{N}$

Geodesic error defined as:

$$Err(f, f_{True}) = \sum_{p \in M} d_{\mathcal{N}}(f(p), f(p_{True}))$$

Where $d_{\mathcal{N}}(f(p), f(p_{True}))$ is normalized by $\sqrt{Area_{\mathcal{N}}}$

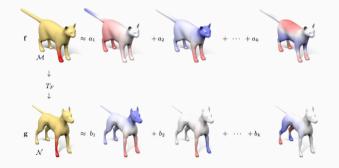


The Laplace-Beltrami operator

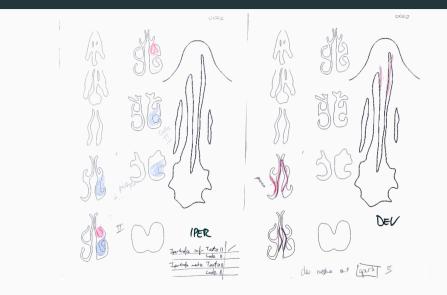
Eigenfunctions of Laplace-Beltrami operator:

$$\Delta \phi_i = \lambda_i \phi_i$$
 $\Delta(f) = -div\Delta(f)$

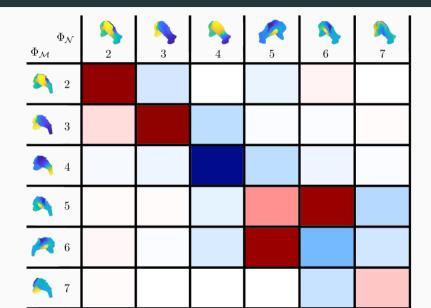
The ordered eigenvalues provide a natural scale.



Iterations with ENT surgeons



Laplace-Beltrami on the nose



41

Given a pair of shapes \mathcal{M}, \mathcal{N} :

- Compute the first \sim 100 eigenfunctions of Laplace-Beltrami operator: $\phi_{\mathcal{M}}$ and $\phi_{\mathcal{N}}$
- Compute descriptor functions (e.g. landmarks, Wave kernel signature) on *M* and *N*. Express them as columns *X*, *Y*
- Solve $A_{opt} = argmin_A ||CX Y||^2 + ||A\Delta_M \Delta_N A||^2$. With Δ_M and Δ_N diagonal matrices of eigenvalues of LB operator.
- Convert the functional map A_{opt} to a point-to-point map Π