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Preface

The present thesis addresses the problem of feedback control of wall turbulence,
to the aim of reducing friction. This is a fairly recent and very active research field;
its multidisciplinary nature is likely to bring substantial developments in the under-
standing of turbulence dynamics as well as in control system design. The present
work develops and uses an original approach to control and estimation of wall tur-
bulence which is quite different from the strategies presented in the recent litera-
ture. The cornerstone is a frequency-domain formulation of the optimal filter and
compensator design problems. Nowadays, frequency-domain approaches are often
considered “old fashioned”, as they are inherently limited to linear time-invariant
systems, while state-space approaches can be extended to the time-varying case or
the nonlinear case. However, if the design of a linear time-invariant controller is
the goal, then the frequency-domain approach becomes particularly attractive when
dealing with very high-dimensional systems with a small number of actuators and
sensors. This is exactly the case of turbulent flows; therefore, the purpose of this
work is to discuss the feasibility of such approaches when designing control systems
for turbulent skin friction drag reduction.

The thesis is organized as follows. Chap. 1 presents a general overview of
the flow control research field, with particular emphasis on the recently developed
feedback control strategies. Furthermore, this chapter provides a succinct review of
basic concepts in linear systems, to be used throughout the work in order to make it
more self-contained.

The “standard” model-based approach to channel flow control is presented in
Chap. 2. In particular, issues regarding the state-space modeling of the channel
flow system, as well as the control design procedure, will be discussed; example
state-of-the-art results will be presented. Advantages and shortcomings of these
approaches will be highlighted, emphasizing issues that will be addressed in the
subsequent chapters.

Chap. 3 is devoted to the formulation of the Wiener filtering problem and its
application to the state estimation of turbulent channel flow, based on wall-measured
quantities. The first computation of the full space-time structure of the noise on the
linearized governing equations is presented, and results are briefly discussed. Along
with a linearized model of the flow system, these noise data are used in the design of
optimal Wiener filters, whose performances are compared to previously proposed
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Kalman-based estimation techniques.
Chap. 4 formulates the optimal control problem in the frequency domain, so

easing the design of compensators for the channel flow system. This formulation
is dual with respect to standard state-space-based techniques, but provides a sub-
stantial reduction of the computational burden at the compensator design stage. An
alternative linear model of the turbulent channel flow is also presented, which is
particularly well-suited in the the frequency-domain framework. Compensators de-
signed within this framework are tested using Direct Numerical Simulations, in or-
der to assess the most efficient combination of parameters and possible Re effects.

Finally, Chapter 5 summarizes and critically discusses the main achievements
of the present work and outlines possible future developments.

The reader familiar with control and estimation topics as applied to fluid flow
systems may skip the introduction, but is advised to read its last section as well as
Chap. 2, where the notation used throughout the thesis is established. Moreover,
the reader just interested in the control part may skip Chap. 3, but for the section
reviewing Wiener-Hopf equations and related solution techniques, where notation
and a few numerical details are presented.

Appendices A and B are devoted to the presentation of “side issues” addressed
during the development of the Ph.D. work. In particular, Appendix A considers a
study of Re-effects on LQR-controlled turbulence, while Appendix B is focused on
fundamental performance limitations in transition control of plane Poiseuille flow
when using wall actuation.

The development of this work would not have been possible without the con-
tinuous suggestions and encouragement from my advisor, Prof. M. Quadrio, and
from my co-advisor, Prof. P. Luchini, to whom I am profoundly indebted. Prof.
Luchini is also gratefully acknowledged for having provided the availability of his
supercomputing system at the University of Salerno. I would like to acknowledge
the warm hospitality and advice of Prof. T. R. Bewley at UC San Diego, where part
of the present work was completed. I also wish to thank Prof. P. J. Schmid, Dr.
F. Giannetti and Dr. J. O. Pralits for many invaluable discussions concerning this
work. Prof. J. F. Whidborne and Dr. J. McKernan are gratefully acknowledged for
the collaboration in the research related to Appendix B of this thesis.

During my doctoral work, I had a chance to meet many clever Ph.D. students
from different countries. Among them, I wish to thank S. Bagheri, C. Mack, A.
Monokrousos, V. De Felice, J. Schulze, J. Cessna, C. Colburn, D. Zhang, K. Kang,
M. Mattaboni and F. Cavadini for the many suggestions and discussions; to them
I wish the very best for their career. I wish to thank my office mates, Gabriella
Gaias, Andrea Brambilla and Alessandro Fumagalli, for creating a nice working
environment. Finally, special thanks go to my family and friends, for their patience
and support during this adventure.
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Chapter 1

Introduction

This chapter presents the state of the art in the field of control of wall turbulence.
A review of the recent scientific literature is given, covering both numerical and ex-
perimental attempts towards devising effective control strategies. Active feedback
control techniques are particularly emphasized; accordingly, a brief review of the
fundamental background concepts and tools in system theory is given.

1.1 Control of aerodynamic flows
Control of fluid flows is relevant in a variety of engineering applications, most

notably air and naval transportation, combustion, bioengineering and chemical in-
dustry [40]. In particular, modern aerospace industry is interested in improving
the aerodynamic efficiency of aircrafts. Potential benefits are both environmental
(reduced pollution from air transportation) and economic (fuel saving).

Up to present, most of the research regarding aerodynamic efficiency has fo-
cused on shape optimization, which can be considered as a passive control tech-
nique. LFC airfoils, designed to mantain a laminar boundary layer over most of
the wing, constitute one well-known example; winglets, typically aimed at reduc-
ing induced drag for a given lift in steady conditions [23; 133], are a more recently
developed passive control device. Passive techniques are generally developed to
improve efficiency in cruise flight.

In take-off and landing configurations, flaps and slats provide the necessary ex-
cess lift to sustain the vehicle. Several active control techniques have been em-
ployed in the past, to improve the efficiency of flap/slat configurations. Most of
these active devices are based on steady blowing or suction of the turbulent bound-
ary layer over the airfoil; a typical example is the combination of a standard flap on
the trailing edge with boundary layer control at the leading edge of the airfoil [119].
It is important to notice that such techniques are inherently feedforward, namely,
they are designed on the basis of a certain model of the flow system, which is sup-
posed to remain unchanged during the operations performed by the control devices.
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10 Chapter 1: Introduction

As a consequence, performance of these active techniques is likely to severely de-
grade when operating off the design point.

Aeroservoelastic control can be regarded as an active feedback manipulation of
the flow over the flexible aircraft. Despite aeroservoelastic systems are traditionally
considered as structural control systems – since the control design is focused on the
redistribution of aerodynamic loads on the aircraft structure – they actually perform
an active modification of the flow over the vehicle. Typically, aim of aeroservoe-
lastic control is the active damping of unsteady aerodynamic loads, two notable
examples being the alleviation of gust loads and the control of transonic buffeting
[111; 129; 8]; these control objectives are obtained by appropriate design of feed-
back control laws for the fully coupled aeroelastic system. Aeroservoelastic control
systems act on a relatively large spatial scale, comparable with that of the wings
(≈ O(1m)), and operate at relatively low frequency (≈ O(10Hz)÷O(100Hz)).

The fairly recent development of micro-electro-mechanical-system (MEMS)
technology [42; 48; 39; 40; 41; 126] led to new ideas aimed at controlling aero-
dynamic flows on much smaller time and space scales. MEMS devices operate on
spatial scales of the order of 10µm and at frequencies up to 10 kHz, thus introduc-
ing a new world of possibilities where engineering solutions may be applied. For ex-
ample, arrays of MEMS actuators and sensors, providing the necessary space/time
resolution to act on the fine scale structure of the turbulent boundary layer, could be
deployed on wings or other wetted surfaces of the airplane, and controlled by feed-
back with the aim of reducing drag, preventing transition or controlling separation
(see fig. 1.1). Particularly active groups in the research on MEMS devices for a
variety of applications, including the aerospace ones, are Ho’s group at the UCLA
Micro Systems Lab [73; 138; 47] and Kasagi’s group at Tokyo University[63].

Leading aerospace industries recognized the potential prospective MEMS tech-
nologies that may be applied on civil airplanes in the next 20 years. An example
of such feasibility study was given by the Airbus company in 2006, in the KAT-Net
framework [124]: this study shows that viscous drag constitutes the most relevant
part of the total drag of a civil airplane, and it is also the most likely to be reduced in
the near future, by employing turbulence and separation control technologies (see
fig. 1.2). Moreover, it has recently been highlighted by the U.S. Committee on
Theoretical and Applied Mechanics [44] that the fundamental understanding of the
turbulence problem as well as the development of flow control technology are two
out of the five research areas expected to be most influential to the enhancement of
industry in the future. As an example, it has been estimated that reduction of skin
friction drag by 10% could result in 10 billion dollars saving per year for shipping
industry. This confirms the scientific and industrial relevance of the turbulence and
flow control problems, and the aeronautical industry is leading the global research
efforts in this direction.

Design of feedback controllers for turbulent fluid flows is on the very edge of
engineering research and it’s challenging under many respects. The turbulent flow
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(a)

(b)

Figure 1.1: (a) MEMS actuator for boundary layer control; this is a cantilever beam having size 3 × 1mm and 50µm
thickness. (b) An example application of MEMS actuators in vortex shedding control on a delta wing. From [47].
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Figure 1.2: Drag breakdown for a civil airliner, and reduction potential in the foreseeable future, on the basis of available
flow control technologies. From [124].

over a wall is a distributed parameter system governed by nonlinear partial dif-
ferential equations. System analysis must be performed with the help of efficient
numerical techniques, and Direct Numerical Simulation (DNS) of turbulent wall
flows – where the full nonlinear equations are numerically integrated resolving all
the scales of the turbulent motions without subgrid-scale modeling – is a key in-
gredient. Furthermore, control theory has been mostly developed for low-order,
linear, lumped-parameter systems such as the electromechanical ones; therefore,
most available theoretical and numerical techniques turn out not to be well-suited
for the controller synthesis in high-dimensional problems. These features make the
control of turbulence interesting both for the fluid dynamicist and the control de-
signer: challenges may well lead to substantial developments in both fields. The
multidisciplinary blend of fluid dynamics, control theory and numerical mathemat-
ics is a fairly recent subject which is growing quickly, and becoming increasingly
known as flow control [10].

1.2 Turbulent drag reduction
Turbulent drag reduction by means of passive devices has been employed with

some success in the past. A notable example is the application of “riblets” (wall
grooves on the wetted surfaces) aligned with the mean flow direction [135; 27; 5;
25; 6]. Such devices have the capability of weakening the turbulent wall cycle,
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leading to drag reduction up to 10% when optimal size is used. In aeronautical
application, the typical optimal dimension at Re ≈ 106 is h ≈ 30µm. Despite the
initial research and industrial interest in the 80’s and 90’s, such devices have been
abandoned because they are fragile and particularly sensitive to dust, and they are
particularly expensive to produce due to the micromachining procedure required.
However, a recent renewed interest in riblets led to the design of a second generation
of sinusoidal riblets [103].

A second important example of drag reduction technique is polymer injection in
turbulent boundary layers [134; 82; 83; 33], mostly employed in internal flows such
as in oil ducts. Polymer additives change the physical properties of the flow; more
specifically, long-chain macromolecule polymers interact with the flow by damping
fluctuations in the buffer layer, where turbulent production is maximum. Polymer
injection can lead to drag reduction up to 80%, but clearly it is not applicable in the
aerospace industry.

A final, noteworthy example of passive drag-reducing devices are compliant
coatings; these are viscoelastic surfaces capable of favourably interacting with the
flow when deformations due to skin friction and pressure occur. The initial, posi-
tive results of Kramer [68] in 1957 – where drag reduction up to 50% in a turbulent
boundary layer was obtained – were not confirmed by following investigators [19].
These conflicting results led to important theoretical developments, especially fo-
cused on the stability of the fully coupled hydro-viscoelastic problem [21; 22]. The
application of compliant coatings in turbulent boundary layers has been recently
revisited [29] and shown to provide up to 7% in water flows.

Turbulent drag may be reduced by employing active feedforward techniques;
see [40] for a comprehensive review. A noteworthy drag reduction strategy is the use
of spanwise wall oscillations to partially suppress the turbulent wall cycle [61; 28].
It has been shown that turbulent channel flows are particularly sensitive to such wall
movements, and that there exist optimal oscillation amplitude and frequency that
provide a maximum drag reduction; moreover, optimal amplitude and frequency
have been found that provide the maximum net power saving [107; 104; 114; 113;
115]. A recent and interesting extension of this technique is the use of streamwise-
traveling waves of spanwise velocity at the channel wall [101; 105].

1.3 Turbulent drag reduction by feedback
Most of the recent attempts in the control of wall turbulence have considered

either incompressible turbulent boundary layer or channel flow as model problems.
These flows are amenable to efficient DNS, and possess all the relevant features
of generic wall flows, such as those over wing surfaces. Most of the available
results have been obtained numerically - at the relatively low to moderate Reynolds
numbers attainable by DNS - with the purpose of establishing the feasibility of
feedback drag reduction strategies.
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While theoretical understanding of turbulent flow control is still at an early
stage, its experimental implementation – that additionally requires significant ad-
vances in MEMS technology – is perhaps even more on its infancy. A very first
attempt in feedback control of wall turbulence has been performed via numerical
simulations by Choi et al. [26; 45]. They considered a turbulent channel flow, and
introduced the concept of “opposition control”: they applied, at each time instant, a
boundary wall-normal velocity opposite to the one measured in some wall-parallel
plane in the near-wall region. This simple control law, based on a physical intu-
ition about the dynamics of the self-sustaining cycle of wall turbulence [59; 95],
led to drag reduction up to 25%, with a net energy saving. After this first success,
several developments in the control of wall turbulence followed. First, the funda-
mental theory of flow control [1; 13; 65; 16]. Secondly, on the more practical side,
effective strategies to control turbulence have been actively investigated. Among
the approaches relying on wall-based actuation, the work of Bewley & coworkers
[89; 12; 11; 50] and Kim & coworkers [60; 72; 74; 64; 31; 76] led to significant
results. These groups introduced control techniques based on modern optimal con-
trol theory, which constitutes a rigorous mathematical framework for linear time-
invariant (LTI) systems described in state-space form. These efforts stimulated fun-
damental research in the field of reduced-order modeling for very high-dimensional
systems, as well as the interesting quest for sustained sublaminar drag in channel
flow [88; 11; 54; 78; 10; 14], which is still an open issue. Flow control techniques
based on modern optimal control theory are nowadays well established and can be
referred to as “the standard approach”.

Alternative approaches, based on the use of system identification techniques,
have been used in the past, notably by employing neural networks for the dynamic
inversion of the system under control [35; 71]. These approaches are particularly
appealing since they can provide nonlinear control laws accounting for the nonlin-
earity of the process; moreover, they rely on design techniques that do not require
an accurate physical modeling, since the input-output relation of the system is iden-
tified and accounted for in real-time. Different actuation techniques have also been
explored, in particular employing actuations with body forces, generally created by
means of electric or magnetic fields [9; 18; 94]. Despite the potential of such ac-
tuators, usually an electrically conducting working fluid is required, thus excluding
aeronautical applications. A notable exception is the use of plasma actuators to
modify the flowfield over airfoils at high angle of attack, in order to prevent separa-
tion [100].

The actual use of optimal controllers requires filters capable of real-time pro-
viding a reliable state-estimate. The problem of real-time reconstruction of the flow
state using wall-based measurements is of utmost importance, and however not well
understood yet. Starting from the seminal attempts in [26], a state estimation frame-
work has been developed for transitional [51] and turbulent [24] flows by the KTH
group; this group developed advanced estimation and control strategies for bound-
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ary layer flows [117]. However, up to present it is still unclear whether or not linear
estimation provides a sufficiently accurate estimate of the flow near a wall – on the
basis of wall measurements only – with respect to nonlinear estimation strategies.

A very first experimental attempt in the use of MEMS actuators to control a
turbulent boundary layer was presented by Tsao et al. [132]. MEMS sensors for
wall pressure measurements (typically in the form of small flexible membranes) and
shear stress measurements (floating elements, hot films and piezoelectric sensors)
have been developed at the end of the 80’s and the beginning of the 90’s [46; 92; 2].
In the same period, a variety of actuation strategies have been proposed and tested,
most notably the use of small cavities from which the fluid is pumped out by means
of a micro cantilever beam [69; 56], by using either electrostatic forces or acoustic
speakers [17; 87], or forcing with synthetic jets [108].

1.4 Review of fundamental notions
Most of the well-established design and synthesis techniques used in flow-control

applications require the availability of a linear model of the system to be controlled.
The model is usually obtained from the mathematical description of the physical
system under consideration; in the present case of incompressible channel flow, this
leads to nonlinear partial differential equations with constant coefficients. These
equations can be linearized about a reference solution, and upon spatial discretiza-
tion a constant-coefficients system of ordinary differential equations in time can be
obtained.

The state-space form of the governing equations of a LTI system may be written
as

ẋ = Ax+Bu+ n

y = Cx+ d
(1.1)

where x ∈ Cn is the state vector, u ∈ Cm is the input vector, and y ∈ Cp is the
output vector. The system matrix A ∈ Cn×n describes the dynamics of the un-
forced system; matrix B ∈ Cn×m accounts for the effect of the inputs on the state
equation, while matrix C ∈ Cp×n defines the measuring capability of sensors. The
vector n ∈ Cn represents a noise on the state equations, that may be used to par-
tially reintroduce the effect of the unmodeled dynamics into the system; finally, the
vector d ∈ Cp represents a measurement disturbance, that accounts for the (always
present) disturbances in measurement systems. Note that, in standard textbooks on
control theory, there is no need to let the entries in (1.1) be complex-valued, since
physical systems are real; this extension is employed here since, in Chap. 2, a par-
ticular mathematical model will be introduced that require a complex representation
of the system dynamics.

A block diagram of the system defined by (1.1) is reported in fig. 1.3. We refer
to the impulse response function of the system in (1.1) as the function given by the
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Figure 1.3: Block diagram of the state-space model defined in (1.1).

matrix exponential1

h(t) =

{
eAt, t ≥ 0

0, t < 0
(1.2)

Note that the definition in (1.2) is that of a causal function; this mathematical state-
ment accounts for the property of physical systems not to depend on their future
dynamics, inputs, or disturbances. Taking the bilateral Laplace’s transform of (1.2)
one obtains the system’s transfer function matrix:

H(s) =

∫ +∞

−∞
h(t)e−st dt, s = σ + j2πf. (1.3)

It is important to notice [62] that the transfer function H(s) of an asymptotically
stable causal system is regular in the closed right half of the complex plane. In fact,
asymptotic stability implies that the generic element (m,n) of the impulse response
matrix will be bounded by:

|hm,n(t)| ≤ κe−ct, κ, c ∈ R+, t > 0, ∀m,n.

In turn, this translates into a condition on the corresponding element of the transfer
function matrix (note that the lower bound in the integral sign has been changed to
0 because of the causality constraint):

|Hm,n(s)| ≤
∫ +∞

0

e−(σ+c)t dt ∀m,n

and then there exists a constant c such that H(s) is regular for σ > −c. The restric-
tion of the transfer function H(s) on the imaginary axis corresponds to the Fourier

1Usually, the impulse response of a system is referred to an input-output relation; in this work,
when considering response functions different from that defined in this chapter, the respective inputs
and outputs will be made clear by the context.



Chapter 1: Introduction 17

transform of h(t), and is referred to as the frequency response function H(f):

H(f) =

∫ +∞

−∞
h(t)e−j2πft dt. (1.4)

It is customary to refer to complex functions – defined on the imaginary axis – that
are restriction of complex functions regular in the closed right half plane, as plus
functions. Accordingly, the frequency response in (1.4) may be denoted by H+(f).
Likewise, complex functions that are restriction of functions regular in the closed
left half plane will be referred to as minus functions, and denoted by a − subscript
accordingly.

Once a linear model of the system is available (note that this includes the knowl-
edge of matrices B and C - corresponding to actuators and sensors - whose defini-
tion is normally up to the control designer), a control objective must be stated before
moving to the control design. Among the various possibilities, we shall be restricted
to the design of LTI compensators that minimize a certain objective functional; this
approach is typical of optimal control theory, and it is pursued herein. Typically,
objective functionals to be minimized are expressed in terms of statistics of some
quadratic form of the state and the input vectors. Therefore, in the following a brief
review of fundamental results in statistics that are relevant to the present context is
provided; a thorough treatment of these notions can be found in [7] or [96].

A most relevant quantity that will be used throughout this work is the autocorre-
lation functionKxx(t, τ) of a complex-valued, zero-mean vector process x, a matrix
defined as

Kxx(t, τ) = E{x(t+ τ)xH(t)}
where E{·} denotes the expectation operator and the superscript H denotes conju-
gate transpose. When the process x is statistically weakly stationary, the autocorre-
lation function does not depend explicitly on t and its definition reduces to

Kxx(τ) = E{x(t+ τ)xH(t)}.

If the ergodicity assumption holds, the following time-averaging operator can be
defined (the “Mean Integral operator”):

M

∫
· dt = lim

T→+∞

1

T

∫ T/2

−T/2
· dt,

and used to express the autocorrelation as:

Kxx(τ) = M

∫
x(t+ τ)xH(t) dt (1.5)

The spectral density function φxx(f) of a weakly stationary, complex valued,
zero-mean vector process x is defined as the Fourier transform of its autocorrelation
function:

φxx(f) =

∫ +∞

−∞
Kxx(τ)e−j2πfτ dτ. (1.6)
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The spectral density function plays a central role in the analysis of LTI systems in
presence of stationary noises. In particular, given a multiple-input, multiple-output
system having impulse response matrix g(t), input u(t) and output y(t), the spectral
density function of the output is expressed as a function of the input spectral density
as:

φyy(f) = G(f)φuu(f)GH(f). (1.7)

Expressions in (1.5) and (1.6) are straightforwardly extended to define the cross-
correlation function and the cross-spectral density function.



Chapter 2

Standard approach to flow control

After a brief presentation of the model problem considered in this work, this
chapter addresses the “standard approach” to turbulent flow control. The basic the-
ory of optimal control and filtering is briefly reviewed; furthermore, control and
estimation kernels - similar to those reported in the recent literature - are presented.
The interested reader is referred to the recent review of Kim & Bewley [65] for a
more detailed presentation, as well as a description of the adjoint-based approach to
control design, which is omitted here. The chapter closes with a discussion of the
fundamental results obtained with the standard approach; moreover advantages and
drawbacks of this formulation are critically discussed, emphasizing open issues to
be addressed in subsequent chapters.

2.1 A model problem: turbulent channel flow

We consider the incompressible turbulent flow between two plane parallel walls.
This flow is amenable to very efficient Direct Numerical Simulation (DNS) at mod-
erate Reynolds numbers, and shows all the features of more complex wall flows.
The computational domain Ω is depicted in fig. 2.1. A Cartesian coordinate sys-
tem is introduced, where x, y, z, denote the streamwise, wall-normal and spanwise
directions, respectively; the dimensions of the finite computational domain are Lx,
2δ and Lz, respectively. The velocity field is denoted by V(x, y, z), and its compo-
nents in the coordinate directions are U , V ,W , whereas the pressure field is denoted
by P (x, y, z); velocity and pressure perturbations fields are denoted by lowercase
letters. The governing Navier–Stokes equations for an incompressible fluid flow:

∇ ·V = 0

∂V

∂t
+ (V · ∇)V = −∇P +

1

Re
∆V

+ initial and boundary conditions,

(2.1)
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Figure 2.1: Computational domain Ω of the problem.

express conservation of mass and momentum; they are made nondimensional with
the bulk velocity and the channel half width, so that Re = Ubδ

ν
is the corresponding

Reynolds number, where ν is the fluid kinematic viscosity.
In the conventional approach to channel flow control (see, for instance, Cheva-

lier et al. [24]), the system (2.1) of governing equations is rewritten in terms of
nonlinear perturbations about a reference streamwise velocity profile u(y) (for in-
stance, the mean turbulent profile), defined as:

u(y) =
1

LxLz

∫ Lx

0

∫ Lz

0

M

∫
U(x, y, z, t) dtdzdx. (2.2)

In such a case, the wall-normal velocity - wall-normal vorticity (v− η) formulation
can be exploited [67]:

∂∆v

∂t
+ u

∂

∂x
∆v − u′′ ∂v

∂x
− 1

Re
∆∆v = hv

∂η

∂t
+ u′

∂v

∂z
+ u

∂η

∂x
− 1

Re
∆η = hη

(2.3)

where η = ∂u/∂z − ∂w/∂x. The nonlinear terms hv and hη are:

hv =
∂

∂y

{ ∂

∂x

[∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

]
+

∂

∂y

[∂(vu)

∂x
+
∂(vv)

∂y
+
∂(vw)

∂z

]
+ . . .

. . .+
∂

∂z

[∂(wu)

∂x
+
∂(wv)

∂y
+
∂(ww)

∂z

]}
−∆

[∂(vu)

∂x
+
∂(vv)

∂y
+
∂(vw)

∂z

]
,

hη =
∂

∂x

[∂(wu)

∂x
+
∂(wv)

∂y
+
∂(ww)

∂z

]
− ∂

∂z

[∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

]
.
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The use of the v − η formulation implicitly enforces the continuity constraint, by
projecting the velocity field on a divergence-free manifold. This formulation high-
lights the two degrees of freedom of the mathematical problem, and provides the
minimal set of state variables required; therefore, this set of variables is a natu-
ral choice in the control design framework, and will be used throughout the entire
thesis.

It is useful to exploit the spatial invariance of the problem with respect to trans-
lations in x and z by introducing a Fourier series expansion in these directions; for
instance, for the v perturbation velocity component:

v(x, y, z, t) =
Nx∑

nx=−Nx

Nz∑
nz=−Nz

v̂(nx, y, nz, t)e
j 2πnxx

Lx ej
2πnzz
Lz ,

where the Fourier coefficients (denoted by hats) satisfy:

v̂(nx, y, nz, t) =
1

LxLz

∫ Lx

0

∫ Lz

0

v(x, y, z, t)e−j
2πnxx
Lx e−j

2πnzz
Lz dzdx.

Defining the streamwise and spanwise wavenumbers α = 2πnx
Lx

and β = 2πnz
Lz

, and
defining αm = 2πNx

Lx
and βm = 2πNz

Lz
, the Fourier series expansion can be rewritten

more compactly as

v(x, y, z, t) =
αm∑

α=−αm

βm∑
β=−βm

v̂(α, y, β, t)ej(αx+βz).

After Fourier transform, equations (2.3) become:
∂

∂t
∆̂v̂ + jαu∆̂v̂ − jαu′′v̂ − 1

Re
∆̂∆̂v̂ = ĥv

∂

∂t
η̂ + jβu′v̂ + jαuη̂ − 1

Re
∆̂η̂ = ĥη

(2.4)

so that the system (2.3) can be rewritten in matrix form, for each wavenumber pair,
as in [24]:

d

dt
Mq̂ + Lq̂ = ĥ ∀α, β (2.5)

where

q̂ =

(
v̂
η̂

)
M =

(
∆̂ 0
0 I

)
L =

(
L 0
C S

)
ĥ =

(
ĥv
ĥη

)
and

L = jαu∆̂− jαu′′ − ∆̂∆̂/Re

C = jβu′

S = jαu− ∆̂/Re.



22 Chapter 2: Standard approach to flow control

2.2 Linearized model
Equations (2.5) inherit the nonlinearity of the governing equations (2.1); in fact,

evolution equations for each wavenumber pair are coupled with each other by the
nonlinear term ĥ on the right hand side, accounting for nonlinear triadic interactions.

In order to obtain a linear model of the flow from (2.5), an ad hoc procedure
has been proposed in [24]. Nonlinear terms on the right hand side in (2.5) are
neglected and replaced with a noise r̂ with the same first and second order statistics
of ĥ. In this way, the equations become linear, but the effect of nonlinearity is
partially accounted for as the effect of a noise on the state (i.e. a modeling error).
Specifically, E{r̂} = E{ĥ} = 0, and the autocorrelation function of r̂ is given by

Rr̂r̂(y1, y2, τ ;α, β) = E{ĥ(y1, t+ τ ;α, β)ĥH(y2, t;α, β)}.

Note that, since ĥ = ĥ(y, t) (for each wavenumber pair) and y is a non homoge-
neous direction, the autocorrelation function explicitly depends on the two wall-
normal positions. The final form of the governing equations reads

d

dt
Mq̂ + Lq̂ = r̂, ∀α, β. (2.6)

Once this procedure is performed, eq. (2.6) provides a linear model of the system
at hand, represented by a parametric family of partial differential equations in y and
t, parametrized by the wavenumber couple (α, β).

2.2.1 Wall actuation
Accounting for wall blowing/suction velocity in the v− η form of the equations

is rather tricky, since time-dependent boundary conditions on v̂ affect both v̂ and ˙̂v
in (2.6). After a few initial incorrect attempts [15; 76], it has been recognized that
the appropriate way to account for the nonhomogeneous wall forcing was to use a
lifting procedure [49; 85]. For example, if actuation is performed on the wall at
y = −1, boundary conditions for (2.6) are:

v̂(α,−1, β, t) = v̂w(α, β, t)

∂v̂

∂y
(α,−1, β, t) = 0

η̂(α,−1, β, t) = 0

where v̂w(α, β, t) represents, for each wavenumber pair, the wall blowing-suction
intensity to be used in feedback control. The homogeneous problem with inhomo-
geneous boundary conditions is transformed into a nonhomogeneous problem with
homogeneous boundary conditions. To this aim, the following splitting is intro-
duced:

q̂ = q̂h + q̂p
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where q̂p is chosen to account for inhomogeneous boundary conditions on v̂, and
satisfies the diffetential problem Lq̂p = 0. It is convenient to choose the particular
solution q̂p as a separable function:

q̂p(y, t) = ĝ(y)v̂w(t).

Solution of the two-point boundary value problem with homogeneous Dirichlet
boundary conditions for ˙̂vh leads to

d

dt
q̂h = −M−1Lq̂h −M−1(Mĝ) ˙̂vw +M−1r̂

It is convenient to introduce the auxiliary state v̂w, obtaining the state-space form of
the equations as in (1.1):

d

dt

(
q̂h
v̂w

)
︸ ︷︷ ︸

ẋ

=

(
−M−1L 0

0 0

)
︸ ︷︷ ︸

A

(
q̂h
v̂w

)
︸ ︷︷ ︸

x

+

(
−M−1(Mĝ)

I

)
︸ ︷︷ ︸

B

˙̂vw︸︷︷︸
u

+

(
M−1r̂

0

)
︸ ︷︷ ︸

n

(2.7)

Note that a natural outcome of this procedure is the fact that actuation is dictated
by the rate of change of wall-normal velocity at the walls, instead of wall-normal
velocity itself.

2.2.2 Output equations
Output relations are obtained by recalling that the wall-normal velocity and vor-

ticity fields can be written as:(
v̂
η̂

)
=

(
v̂h
η̂h

)
+

(
gv
gη

)
v̂w.

Introducing appropriate differentiation operatorsD1,D2 andD3, wall shear stresses
and wall pressure may be written as:

τ̂xw =
j

Re k2
[αD2 − βD1]

(
v̂
η̂

) ∣∣∣
y=±1

τ̂zw =
j

Re k2
[βD2 αD1]

(
v̂
η̂

) ∣∣∣
y=±1

p̂w =
1

Re k2
[D3 0]

(
v̂
η̂

) ∣∣∣
y=±1

.

These equations, written in terms of the state vector x, lead to the output relation

y = Cx+ d (2.8)

where the term d has been added to account for possible measurement disturbances,
always present in any practical setting.
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2.3 Norms of the state
In the system analysis and control design, it is important to measure the “magni-

tude” of the state in a physically relevant fashion. To this aim, we introduce here two
possible norms, namely, kinetic energy norm and rate of dissipation norm. The for-
mer has been thoroughly used in previous works on turbulence control [12], while
the latter is used in the flow control setting first in the present thesis.

2.3.1 Energy norm
The kinetic energy of the flow per unit mass is defined as

E =
1

2Ω

∫
Ω

(U2 + V 2 +W 2) dΩ

and may be rewritten in terms of v̂ and η̂ by applying the continuity equation, the
definition of η, and Parseval’s identity:

E =
∑
α,β

1

4

∫ 1

−1

(|Û |2 + |V̂ |2 + |Ŵ |2) dy =

∑
(α,β)6=(0,0)

E(α, β) +
1

4

∫ 1

−1

(|Û(0,0)|2 + |Ŵ(0,0)|2) dy

(2.9)

where

E(α, β) =
1

4k2

∫ 1

−1

(
k2|v̂|2 + |∂v̂

∂y
|2 + |η̂|2

)
dy

Owing to the orthogonality of Fourier modes, the contributions to the total energy
from each wavenumber pair are decoupled.

Given the state variables of the system at hand, as in (2.7), it is straightforward
to rewrite E(α, β) as a quadratic function of the state vector x, as follows:

E(α, β) = xHQEx = ‖x‖E (2.10)

where QE is an hermitian, positive definite matrix.

2.3.2 Dissipation norm
Another physically grounded norm of the state may be derived by noticing that,

in statistically stationary conditions, the average skin friction drag in a turbulent
channel flow equals the average rate of dissipation of turbulent kinetic energy. In
fact, let us consider the governing Navier-Stokes equations written using indicial
notation and implying summation convention:

∂Ui
∂t

+
∂

∂xj
(UiUj) = −∂P

∂xi
+

1

Re

∂2Ui
∂xk∂xk

− P xδ1i
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Here, P x is the mean longitudinal pressure gradient driving the flow against viscous
shear stresses. The above equation, after scalar multiplication by Ui, application of
the continuity equation and integration on the domain Ω, may be rewritten as

d

dt

∫
Ω

UiUi
2

dΩ +

∫
Ω

∂

∂xj
(Uj

UiUi
2

) dΩ +

∫
Ω

∂(PUi)

∂xi
dΩ =

=
1

Re

∫
Ω

∂

∂xk
(Ui

∂Ui
∂xk

) dΩ− 1

Re

∫
Ω

∂Ui
∂xk

∂Ui
∂xk

dΩ−
∫

Ω

P xUiδ1i dΩ

Applying periodic boundary conditions in homogeneous directions and homoge-
neous boundary conditions at the channel walls, and applying the divergence theo-
rem, one obtains:

d

dt

∫
Ω

UiUi
2

dΩ +
1

Re

∫
Ω

∂Ui
∂xk

∂Ui
∂xk

dΩ = −
∫

Ω

P xU1 dΩ

Ensemble averaging of the above equations, and considering statistically stationary
conditions, yields:

P x =
1

Re

d〈U〉
dy

∣∣∣
w

= − 1

UBΩRe

〈∫
Ω

∂Ui
∂xk

∂Ui
∂xk

dΩ
〉

Fourier expansion in homogeneous directions leads to:

d〈U〉
dy

∣∣∣
w

= − 1

UB

〈 ∑
(α,β) 6=(0,0)

D(α, β) +
1

2

∫ 1

−1

(∂Û
∂y

)
(0,0)

(∂Û
∂y

)∗
(0,0)

dy︸ ︷︷ ︸
Dmean

〉

where

D(α, β) =
1

2

∫ 1

−1

[
η̂∗η̂+ 2

∂v̂∗

∂y

∂v̂

∂y
+ k2v̂∗v̂+

1

k2

∂η̂∗

∂y

∂η̂

∂y
+

1

k2

∂2v̂∗

∂y2

∂2v̂

∂y2

]
dy (2.11)

is the contribution - at a given wavenumber pair - to the total dissipation pertaining
to turbulent fluctuations, and Dmean is the contribution due to the mean flow.

Given the state variables of the system at hand, as in (2.7), it is straightforward
to rewrite D(α, β) as a quadratic function of the state vector x, as follows:

D(α, β) = xHQDx = ‖x‖D (2.12)

where QD is an hermitian, positive definite matrix.

2.4 Optimal compensator design
The control system design problem for a LTI system given in the form (1.1):

ẋ = Ax+Bu+ n

y = Cx+ d,
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where the noise n and the disturbance d are weakly stationary, white Gaussian pro-
cesses having known statistics, is a fundamental problem in control theory.

In general, control of wall turbulence is aimed at reducing certain norms of the
flow state, namely, turbulent kinetic energy or dissipation rate. In such cases, the
control objective is expressed in the form of a quadratic functional of the state; in-
troducing an additional regularization weight, to account for limited control effort
in order to avoid saturation of the actuators, leads to the following objective func-
tional:

J = E{xHQx+ uHRu}. (2.13)

The problem of minimizing J in (2.13) under the constraint of the state-space equa-
tion (1.1) has a well-known solution [36] based on an important separation theorem.

It is important to emphasize the difference between the well-known separation
principle and the specialized separation theorem. The former states that it is pos-
sible to design the controller gains as if all states were available, and to design the
state observer regardless of the input, thus obtaining a compensator that guaran-
tees closed loop asymptotic stability; however, this statement does not ensures the
optimality (in the sense of minimizing the functional in (2.13)) of such solution
to the control problem. The latter theorem states that, in order to design a feed-
back compensator minimizing (2.13), given the statistical information on the state
and measurement noise, it suffices to separately design the optimal deterministic
controller (ignoring the noise) and the Kalman filter to provide the necessary state
estimate. Proof of this fundamental theorem is not reported here; the interested
reader is referred to the important monograph by Anderson and Moore [3].

The feedback compensator can, therefore, designed via a first step where the
feedback control gains are determined; hence, a dynamical system - the state es-
timator - is designed separately, and it is ensured by the separation theorem that
feedback signal computed from the estimated state is optimal in the sense of min-
imizing the functional in (2.13). The following subsections briefly review these
two steps of optimal controller and estimator design; the full procedure is usually
referred to as LQG (Linear Quadratic Gaussian) design.

2.4.1 Infinite-horizon optimal control
Consider a LTI system described by the state-space equation

ẋ = Ax+Bu. (2.14)

It is assumed that the couple (A,B) is stabilizable. The infinite-horizon optimal
control problem is stated as the search of an optimal control law for the input u,
such that the following quadratic functional is minimized:

J =

∫ +∞

0

(xHQx+ uHRu) dt. (2.15)
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Q is a positive semidefinite hermitian matrix, weighting the departure of the state
from the origin of the state space; R is a positive definite hermitian matrix, cor-
responding to the weight on the control effort. It is also assumed that the couple
(A,Q1/2) is detectable.

Introducing a state-proportional control law in the form u = Kx, K being a
complex gain matrix, the closed-loop system and functional read:

ẋ = (A+BK)x, J =

∫ +∞

0

xH(Q+KHRK)x dt

Given an initial condition x0, the solution of the closed-loop state-space equation
reads

x(t) = e(A+BK)tx0

and, substituting in the functional J :

J = xH0

(∫ +∞

0

e(A+BK)H t(Q+KHRK)e(A+BK)t dt
)
x0 = xH0 P (K)x0.

The functional can be rewritten using the properties of the trace operator:

J = Tr[PX0]

where the hermitian, positive definite matrixX0 = x0x
H
0 is a design parameter char-

acterizing the possible combinations of worst-case initial conditions for the system.
Since the closed loop system is asymptotically stable, the matrix P (K) satisfies the
following Lyapunov equation:

(A+BK)HP + P (A+BK) +Q+KHRK = 0 (2.16)

The functional J , constrained with the Lyapunov equation (2.16) by means of an
appropriate Lagrange multiplier matrix Λ, reads:

J = Tr{PX0 + Λ[(A+BK)HP + P (A+BK) +Q+KHRK]}.

Computing the gradient of the constrained functional with respect to P , Λ and K
and setting it to zero one obtains

∂J

∂P
= (A+BK)Λ + Λ(A+BK)H +X0 = 0

∂J

∂Λ
= (A+BK)HP + P (A+BK) +Q+KHRK = 0

∂J

∂K
= (ΛPB)H + (ΛKHR)H = 0

Note, from the first equation above, that Λ > 0 since it satisfies a Lyapunov equation
where X0 > 0. Hence, from the third equation, one obtains:

K = −R−1BHP (2.17)
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The matrix P is the so-called stabilizing solution to the following algebraic Riccati
equation:

PA+ AHP − PBR−1BHP +Q = 0

which is obtained by substituting eq. (2.17) in eq. (2.16).

2.4.2 Basic Kalman filtering theory
The state estimation problem for a LTI system given in the form (1.1):

ẋ = Ax+Bu+ n

y = Cx+ d,

where the noise n and disturbance d are uncorrelated white Gaussian noise pro-
cesses with known covariance matrices Wnn and Wdd, is a dual optimal control
problem. The observer system is defined as

ȯ = Ao+Bu+ L(y − yo)
yo = Co

and the observer gain matrix L is to be designed optimally (in a sense to be defined
later). The dynamics of the state estimation error e = x− o is given by

ė = (A− LC)e+ n− Ld.

The observer is asymptotically stable; consequently, the variance of the state esti-
mation error, denoted by σ2

ee, is given by the following Lyapunov equation:

(A− LC)σ2
ee + σ2

ee(A
H − CHLH) +Wnn + LWddL

H = 0 (2.18)

The optimal gain matrix L is found by minimizing the variance of the state estima-
tion error, constrained to the Lyapunov equation (2.18).The constrained functional
reads:

J = Tr{σ2
ee + Λ[(A− LC)σ2

ee + σ2
ee(A

H − CHLH) +Wnn + LWddL
H ]},

where Λ is a Lagrange multiplier matrix. Computing the gradient of J with respect
to Λ, L and σ2

ee, and setting it to zero, one obtains:

∂f

∂Λ
= (A− LC)σ2

ee + σ2
ee(A

H − CHLH) +Wnn + LWddL
H = 0

∂f

∂σ2
ee

= I + Λ(A− LC) + (AH − CHLH)Λ = 0

∂f

∂L
= −Cσ2

eeΛ +WddL
HΛ = 0
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Note that Λ > 0 since it satisfies the second Lyapunov equation. From the last
equation one directly obtains:

L = σ2
eeC

HW−1
dd . (2.19)

The variance of the state estimation error is found from the following Riccati equa-
tion:

Aσ2
ee + σ2

eeA
H − σ2

eeC
HW−1

dd Cσ
2
ee +Wnn = 0

which is obtained by substituting (2.19) in (2.18).
By analogy with the optimal control problem, it may be noted that the steady

Kalman filter, minimizing the variance of the state estimation error, can be obtained
from the solution of the optimal control problem on the dual system

ż = AHz + CHv

with a cost function
J =

∫ ∞
0

zHWnnz + vHWddv dt

and the weight matrices have the meaning of the covariance of the (white) noises
on the state and measurement equations.

2.5 Control and estimation kernels
Optimal control and Kalman filtering theory can be applied to the system (2.6) -

(2.8) for an array of wavenumber pairs (α, β), thus obtaining a parametric family of
control and estimator gains; upon inverse Fourier transformation to physical space,
these gains take the form of convolution kernels [49].

Examples of control convolution kernels have been computed and are reported
in fig. 2.2; figure (a) shows the kernel for the wall-normal velocity v, while figure
(b) shows the one for the wall normal vorticity η. These kernels are similar to those
reported in [49]. The kernel for the velocity is symmetric with respect to the x− y
plane, while the kernel for the vorticity is anti-symmetric.

Examples of estimation kernels have been computed and are reported in fig. 2.3;
figure (a) shows the kernel for the wall-normal velocity v, while figure (b) shows
the one for the wall normal vorticity η. These kernels are computed assuming that
the wall distribution of spanwise skin friction is available; hence, the kernel for the
velocity is anti-symmetric and the one for the vorticity is symmetric with respect to
the x− y plane.

2.6 Critical discussion
The fundamental results from the application of LQG compensators to turbulent

flows for drag reduction were obtained mainly by the groups of Bewley & coworkers
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(a)

(b)

Figure 2.2: (a) Control convolution kernel for the wall-normal velocity v; negative (black) and positive (light gray) isosurfaces
at±0.5% of the maximum. (b) Control convolution kernel for the wall-normal vorticity η: negative (black) and positive (light
gray) isosurfaces at±3% of the maximum. These kernels relate the instantaneous flow state, in terms of wall-normal velocity
and wall-normal vorticity, to the instantaneous control action at the wall.
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(a)

(b)

Figure 2.3: (a) Estimation kernel for the wall-normal velocity v; negative (black) and positive (light gray) isosurfaces at
±20% of the maximum. (b) Estimation kernel for the wall-normal vorticity η: negative (black) and positive (light gray)
isosurfaces at±5% of the maximum. These kernels relate the wall measurements to the feedback forcing term in the Kalman
filter equations, acting on both the equation for the wall-normal velocity and wall-normal vorticity estimates.
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and Kim & coworkers [65]. Lim [76] reported a maximum drag reduction of≈ 20%
in a Reτ = 1001 turbulent channel flow; Lee et al. [72] obtained a reduction up to
≈ 10% using a LQG-Loop Transfer Recovery formulation. In both approaches, the
choice of the cost functional to be minimized was crucial; they used a weighting
matrixQ in (2.13) derived from the output equation. In the present work, the choice
of the cost function is also addressed, with the purpose of testing a new objective
function derived from the dissipation norm presented in previous sections. Note
that those results were obtained by measuring skin friction components at the wall;
a notable exception is the work by Lee et al. [72], where a suboptimal optimization
procedure was applied to aReτ = 110 turbulent channel flow using either one of the
available wall measurements, including pressure fluctuation. A further aim of the
present work is the investigation in the same direction of the effectiveness of either
one available wall measurement in determining effective feedback compensators.

At this point, a few considerations concerning the choice of LTI models and
compensators for the problem at hand are in order. Linear control theory, and in
particular optimal control theory, are well established and provide a rigorous frame-
work for the design of compensators for linear systems, as well as rather efficient
numerical techniques. Therefore, it is natural to use such framework in transition
control [49; 51; 86; 85]. The use of the same framework in the context of a turbulent
flow is much less obvious. However, recent evidence exists [66; 79; 81; 65; 123; 70]
that linear mechanisms play a fundamental role in the dynamics of wall turbulence,
and may be addressed effectively by means of linear control systems designed on
appropriate linear models. As shown in the previous sections, the linear feedback
compensator is designed on the basis of a linearized model of the flow system at
hand; however, the true flow is nonlinear and there is no guarantee about the per-
formance of the compensator when applied to the real system. On the other hand,
the linear framework allows the use of well-established and powerful control de-
sign techniques, capable of accounting for (at least approximately) modeling errors
such as the ones arising from linearization. As a matter of fact, it is reasonable
to consider linear optimal control and estimation theory as a good starting point to
test control algorithms designed with a mathematically rigorous technique. This
philosophy encouraged all recent attempts [65] and will be embraced here.

A further problem is the definition of an appropriate linear model embodying
the largest possible amount of information about the physical system. Linearization
approaches such as the one outlined in the present chapter may be substituted by
measurement or identification of the average input-to-state response function, as
recently proposed [81]. Such response-based models, however, would require a

1In the present thesis,Reτ denotes the Reynolds number defined with the friction velocity uτ and
the channel half-width; by definition, uτ =

√
τw/ρ, where τw is the average streamwise skin friction

and ρ is the fluid density. According to the usual conventions in the turbulence literature, variables
having the + superscript are made non-dimensional with the friction velocity and the viscosity. The
length and time scales associated to these two physical quantities will be referred to as wall units.
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transformation to the state-space form for Riccati-based techniques to be applied;
this transformation would be impractical and ill-conditioned for the present high-
dimensional setting. The approach presented in this thesis overcomes such difficulty
by employing a frequency domain formulation of the optimal compensator design
problem. It will be shown that the frequency-domain approach is computationally
very efficient when the input and output dimensions are relatively small if compared
to the dimension of the state vector, in particular in the single-input/single-output
case. This is a key advantage with respect to previously reported approaches, where
the massive solution of Riccati equations transformed the compensator design phase
in a supercomputing task.

A final issue, not entirely unrelated to the others, is the methodology to account
for modeling errors. The approach presented in this chapter introduces a noise on
the state equation, having known statistics that can be measured from DNS; such a
measurement can be performed and used, at least in principle, in the design of an
appropriate Kalman filter accounting for the full space-time structure of the noise
on the state. However, up to present a single attempt [24] was made where state
estimators were designed on the basis of an approximate noise statistics, derived
from DNS measurements. This approximation was in fact a truncation of the time
structure of the noise on the state, considered as white. In turbulent flows, the state
noise has a well-defined temporal structure that may yield important informations
for the estimator design; the appropriate way to consider the full time-space struc-
ture of the state noise at the filter design stage is still an open issue. The solution,
obtained within a computationally effective framework based on Wiener filtering
theory, will be outlined in the present thesis.
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Chapter 3

Optimal estimation: a Wiener
filtering approach

The issue of linear state estimation in turbulent channel flows, based on real-time
wall measurements of skin friction or pressure, is addressed in this chapter. Few
state-space approaches for the solution of the state estimation problem in presence
of colored noise are briefly described, and shown not to be suitable for the present,
very high-dimensional setting. Wiener filtering theory is then proposed as a viable
tool for the effective solution of the problem. The basic theory is outlined, and
original results are presented and discussed. Prior to discussing the Wiener filter
design technique, a brief note on the Wiener-Hopf equation presents the history, the
fundamental idea and solution techniques which are relevant to the present context.

3.1 Linear estimation of wall turbulence
The state estimation problem in wall turbulence is the problem of accurately re-

constructing, on the basis of limited wall measurements and in presence of measure-
ment disturbances and state noise, the near-wall flow field. In the present setting,
the actual system is nonlinear, hence the selected models for the state noise must
be representative of the unmodeled dynamics due to linearization of the governing
equations.

The first attempts in linear state estimation of wall-bounded flows on the basis
of wall measurements have been performed by Högberg et al. [49] and Lee et
al. [74]; these authors proposed the use of state estimators in the form of Kalman
filters (see Chap. 2), designed on a linearized model of the system obtained from
discretization of the Orr-Sommerfeld-Squire equations. An important feature of
their approach was the use of identity matrices - scaled by scalar parameters, and
chosen by trial and error - as models of noise covariances. This choice neglects the
spatial structure of the noise on the state, since it implies that noise acting on a given
wall-normal location is uncorrelated to noise acting in different locations; moreover,

35
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it neglects the temporal structure of the noise on the state, as a consequence of the
white noise assumption. An improvement has been recently made by Chevalier et
al. [24]; they measured via DNS of a turbulent channel flow the spatial structure
of the noise covariance, but assumed whiteness of the noise in time. This approach
led to spatially localized estimation kernels, that converged upon grid refinement;
such estimators were shown to provide a relatively good estimate of the state in the
viscous sublayer only. In the present chapter, we effectively move one step further,
by accounting for the full space-time structure of the noise acting on the linear
equations. The white noise assumption is relaxed and, therefore, the full statistical
information as obtained by a DNS is used in the estimator design procedure.

Taking appropriately into account the time structure of the noise requires, in the
Kalman filter setting, the design of noise-shaping filters. This approach is briefly
detailed in the following, and leads to numerical formulations having intractably
huge dimensions. Lastly, the estimation problem is solved by means of Wiener fil-
tering theory. This solution greatly reduces the computational burden of the filter
design procedure, if compared to the standard Kalman filter solution. In fact, it will
be shown that, in the Wiener filter design procedure, the frequency dependence of
the spectral density of the state noise is automatically accounted for in the coeffi-
cients of a certain Wiener-Hopf equation, without the need to resort to noise-shaping
filters.

3.2 Accounting for the time structure of the state noise

The white noise assumption plays a central role in the derivation of the Kalman
filter equations, allowing for the determination of the variance of the state estima-
tion error by means of the Lyapunov equation (2.18). Although the measurement
disturbance may be regarded as spectrally white in practical applications, the same
assumption on the state noise may be very crude. In order to design an optimal
filter in presence of colored zero-mean noise n with known autocorrelation func-
tion Rnn(τ), it is necessary to design an appropriate pre-filtering system known as
noise-shaping filter. The noise-shaping filter for a noise n is a dynamical system
that can be written in state-space form as

ẋf = Afxf +Bfw

n = Cfxf
(3.1)

where w is a zero-mean stationary white Gaussian noise. Matrices Af , Bf and Cf
are determined in such a way that the autocorrelation of the output of this system
provides a sufficiently good approximation to Rnn(τ). Once the shaping filter ma-
trices are known, the state-space equations (3.1) may be incorporated in (1.1) to
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give the augmented system:(
ẋ
ẋf

)
=

(
A Cf
0 Af

)(
x
xf

)
+

(
B
0

)
u+

(
0
Bf

)
w

y =
(
C 0

)( x
xf

)
+ d

(3.2)

To this system, standard Kalman filtering theory can be applied to obtain an optimal
state estimator.

Usually, the state space realization (3.1) of the noise-shaping filter is not known
in advance, whereas the autocorrelation function Rnn(τ) (or, equivalently, the spec-
tral density function φnn(jω)) is the only available information. This problem can
be overcome by performing the so-called spectral factorization of the spectral den-
sity function φnn(jω); the reader is referred to [118] for an updated review of avail-
able spectral factorization methods. Note, indeed, that the problem of the design
of a noise-shaping filter can be restated introducing the filter’s impulse response
function f(t), such that

n(t) =

∫ +∞

−∞
f(t− τ)w(τ) dτ ; (3.3)

note that the filter is an asymptotically stable system. The autocorrelation on n(t)
is defined as

Rnn(τ) = E{n(t+ τ)nH(t)} (3.4)

and hence, substituting (3.3):

Rnn(τ) =

∫ +∞

−∞

∫ +∞

−∞
f(v)Rww(τ + r − v)fH(r) dv dr (3.5)

Introducing the bilateral Laplace transform of Rnn(τ):

φnn(s) =

∫ +∞

−∞
Rnn(τ)e−sτ dτ

leads to
φnn(s) = F (s)φww(s)FH(−s∗)

where F (s) is the filter transfer function. In particular, when the noise w is white
(i.e. delta-correlated) with unit intensity then Rww(τ + r − v) = δ(r − (v − τ))
leading to

Rnn(τ) =

∫ ∞
−∞

f(v)fH(v − τ)dv (3.6)

and hence
φnn(s) = F (s)FH(−s∗)
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Note the symmetry with respect to the imaginary axis of the singularities of φnn(s);
in the case of a real-valued filter response function f(t), a lower-upper symmetry
is present such that the function φnn(s) has a special quadrantal symmetry with
respect to the origin. Specializing the equation above on the imaginary axis, one
obtains:

φnn(jω) = F (jω)FH(jω) (3.7)

Eq. (3.7) shows that, in order to obtain the dynamical equations of the noise shap-
ing filter, it suffices to solve a factorization problem for φnn(jω). This problem is
trivial for scalar rational spectra φnn(jω), a case in which it may be performed by
inspection. In the non-rational case or in the matrix case, this factorization is sub-
stantially harder. The difficulty arises from the fact that the above factorization is
clearly non unique, and the solution of the problem can be found by requiring that
the filter F (jω) is minimum phase.

In the following, two different techniques for the design of noise-shaping filter
matrices Af , Bf and Cf are presented. It will be highlighted that a fundamental
issue in such approaches is the need to obtain a state-space realization of certain
systems, given the statistical information on the noise. Such kind of realizations
are impractical and ill-conditioned for the present problem, where the typical di-
mension of the state vector is ≈ O(100). Furthermore, even if it were possible
to perform such procedure, the resulting augmented system (3.2) will have dimen-
sions ≈ O(100) × O(Npoles + 1), where Npoles ≈ 10 is an estimate of the number
of poles per variable required to approximate the noise statistics. This dimension
is intractably large for the standard Riccati solvers to be applied; hence, the two
techniques outlined below are restricted to relatively low-dimensional problems.

3.2.1 Bauer’s method
Rewriting eq. (3.6) in discrete time and introducing a sampling time ∆twe have

Rnn(p∆t) = ∆t
+∞∑
r=−∞

f(r∆t)fH((r − p)∆t)

or, more compactly:

Rnnp = ∆t
+∞∑
q=−∞

fp+qf
H
q .

Now, let us introduce the following hermitian block Toeplitz matrix, built from the
terms of the discretized correlation

T =


Rnn0 Rnn−1 Rnn−2 . . .
Rnn1 Rnn0 Rnn−1 . . .
Rnn2 Rnn1 Rnn0 . . .

...
...

... . . .

 .
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Since, by assumption, the noise process is not rank deficient, we can introduce the
(unique) block Cholesky decomposition

T = LLH

where L is a block Cholesky (lower triangular) factor:

L =


L00 0 0 . . .
L10 L11 0 . . .
L20 L21 L22 . . .

...
...

... . . .

 .

Then, it can be shown (see, e.g., [116]) that

lim
i→∞

Lij =
√

∆tfi−j ∀j, (3.8)

obtaining the discretized impulse response function of the noise-shaping filter.
It should be noted that, since the matrix to be factorized is a hermitian Toeplitz

matrix, it is possible to use particularly efficient algorithms that exploit the Toeplitz
structure (see, for instance, [43]). Once the discretized impulse response of the
noise-shaping filter is known, it is necessary to apply a state-space realization pro-
cedure to extract matrices Af , Bf and Cf to be used into the augmented system
(3.2).

3.2.2 Approach based on a Riccati equation
This approach is based on the state-space formulation of the spectral factoriza-

tion theorem, presented e.g. in [141].
Let G(s) = C(sI−A)−1B+D be the transfer function associated to a stabiliz-

able, detectable state-space realization such that φnn(s) = G(s)GH(−s∗); further-
more, let φnn(jω) > 0, ∀ω.

The realization of the canonical spectral factor, i.e. the unique minimum-phase
LTI system associated to φnn(jω) has a transfer function given by:

F (s) = C(sI − A)−1(BD
H

+ Y C
H

)(DD
H

)−1/2 + (DD
H

)1/2. (3.9)

This is the transfer function of the noise shaping filter given in (3.1), from which
filter matrices are identified by inspection. It can be shown that the matrix Y in
(3.9) is the stabilizing solution to the algebraic Riccati equation:

(A−BDH
(DD

H
)−1C)Y + Y (A−BDH

(DD
H

)−1C)H + . . .

. . .− Y CH
(DD

H
)−1CY +B(I −DH

(DD
H

)−1D)B
H

= 0

This approach provides a state-space representation of the noise-shaping filter
once a tentative filter is already known in state-space form. Therefore, it requires
a preliminary state-space realization procedure using the statistical information on
the noise, and for this reason is not practical for the present problem.
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3.3 Interlude: N. Wiener, E. Hopf and the Wiener-
Hopf integral equation

3.3.1 Biographical sketches

Norbert Wiener (1894-1964) (see fig. 3.1 (a)) was an American child prodigy
whose father, a famous Polish-Jewish language professor, rigidly supervised most
of his early education. The young Norbert grew up into his father’s intellectually
active environment, where he encountered many scientists and philosophers to be
influential in his later work. He graduated from Tufts College at the age of 14, and
performed his graduate studies at Harvard, Cornell, and Cambridge; at the age of
18, he obtained a Ph.D. from Harvard with a thesis on mathematical logic. After
the war, in 1919, he obtained a position at MIT, where he remained until retirement
in 1960. In those 41 years of mathematical work at MIT he proved to be one of the
most profound and influential mathematicians in his century. His early work con-
cerned the mathematical statement of the Brownian motion, and the definition of
the now well-known Wiener measure, a concept to be fundamental in later develop-
ments of the theory of stochastic processes by Kolmogorov, Levy and himself [58].
He established a new framework for potential theory, worked on the development
of the foundations of distribution theory, and devised with E. Hopf an important
method for the solution of certain integral equations of semi-convolutional type,
now widely known as the Wiener-Hopf technique. Furthermore, Wiener provided
a fundamental generalization of harmonic analysis to stochastic processes, a key
ingredient to its work on feedback filters during World War II. During the war,
he worked on the design of automatic anti-aircraft guns; this technological prob-
lem eventually led him to a profound analysis of the concept of feedback. The
recognition that feedback systems naturally exist in biological systems and human
interactions brought him to the definition of cybernetics, a concept to be revolution-
ary to many scientific fields such as sociology, biophysics, cognitive sciences and
psychology.

Eberhard Hopf (1902-1983) (see fig. 3.1 (b)) was an Austrian mathematician
and astronomer. At the age of 24 he received his Ph.D. in Mathematics from the
University of Berlin, and since then his academic career was divided between Ger-
many and the Unites States. He has been one of the pioneers of ergodic theory,
whose work in this field culminated in 1937 with his book Ergodentheorie. He also
worked on bifurcation theory, and gave significant contributions to the theory of
partial differential equations, integral equations, and differential geometry. A par-
ticularly fruitful period in his activity was between 1930 and 1936, where he worked
at Harvard, MIT and Cambridge. During those years he developed (in collaboration
with N. Wiener) the famous Wiener-Hopf technique. In 1936 he moved to Leipzig
University as mathematics professor, and then moved to Munich University in 1944.
In 1949 he became a US citizen and moved to Indiana University at Bloomington
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as Research Professor in mathematics, a position he held until his death.
The Wiener-Hopf problem, and the associated solution technique, has many

applications in a variety of scientific fields, such as scattering of electromagnetic
waves in domains with discontinuous geometries, fracture mechanics and crack
propagation, mathematical finance, radiation problems, feedback control and filter-
ing. The Wiener-Hopf equations encountered in this work arise from problems in
optimal linear estimation and control, and are similar to those tackled by N. Wiener
when working to the design of feedback filters to be applied to anti-aircraft guns.

(a) (b)

Figure 3.1: (a): Norbert Wiener. (b): Eberhard Hopf.

3.3.2 Wiener-Hopf equations

The Wiener-Hopf problem and the essentials of analytical and numerical solu-
tion techniques are presented in this section. The discussion reported here gives
particular emphasis to the form of the equations arising in the compensator de-
sign framework, although the technique can be applied to more general situations.
Specifically, the approach presented here follows the one reported in [128] or [93,
Chap. IV], where a connection between the so-called Hilbert’s problem to the
Wiener-Hopf problem is described. The interested reader is referred to [128; 34; 93]
for a general and rigorous treatment of this subject.
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Hilbert problem

Let C be a closed, smooth contour in C. Let f(τ), τ ∈ C be a scalar function
satisfying the Lipschitz condition on C. Find the function φ+(s), regular inside C
and continuous up to C, and the function φ−(s), regular outside C, vanishing at
infinity and continuous up to C, such that:

φ+(τ)− φ−(τ) = f(τ) τ ∈ C. (3.10)

This problem is one of the Hilbert problems and its solution is a fundamental build-
ing block to the solution of the Wiener-Hopf problems encountered in this work.
The definition of an analytic function via a Cauchy integral provides the solution to
the Hilbert problem:

φ(s) =
1

2πj

∫
C

f(τ)

τ − s
dτ.

In fact, this relation defines two different functions, one analytic outside C and one
analytic inside. Letting s → τ from both sides of C yields the so-called Plemelji
formulae:

φ+(τ) =
1

2
f(τ) +

1

2πj
C

∫
C

f(ξ)

ξ − τ
dξ

φ−(τ) = −1

2
f(τ) +

1

2πj
C

∫
C

f(ξ)

ξ − τ
dξ

(3.11)

and by subtraction it is easily seen that (3.10) is satisfied; note that in these relations
the integral is taken in Cauchy principal value. By letting the contour C appropri-
ately go to infinity, when f(τ) goes sufficiently fast to zero at infinity, it is possible
to extend the present solution to the case when C is the imaginary axis.

The Wiener-Hopf problem

Given the Lipschitz-continuous scalar functions A(τ), B(τ), find the functions
K+(τ) and Λ−(τ) such that

A(τ)K+(τ) + Λ−(τ) = B(τ) τ = j2πf (3.12)

on the imaginary axis. This problem is a generalization of the Hilbert problem on
the imaginary axis, in that it considers a general linear combination of plus and
minus functions. Wiener-Hopf problems appearing in the present work belong to a
more restricted class, characterized by the following key features:

• A(τ) ∈ R

• limτ→±∞A(τ) = κ± > 0
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The first feature, along with the Lipschitz continuity of B(τ), guarantees existence
and uniqueness of the solution to the problem [128], as well as the existence of a
unique homogeneous solution to the homogeneous problem. The second feature is
related to a condition on the non-singularity of the optimal control and estimation
problems, meaning that the weight on the control effort is always positive definite,
and the measurement noise is always present; this condition is always satisfied in
the present work.

The Wiener-Hopf problem (3.12) may be solved in two steps. In a first step, the
multiplicative factor A(τ) is factorized as

A(τ) =
A+(τ)

A−(τ)
.

When A(τ) is a scalar, rational function, the factorization can be usually performed
by inspection. In the general case, factorization can be performed by taking the
natural logarithm of A(τ)

logA+(τ)− logA−(τ) = logA(τ),

thus obtaining an Hilbert problem for logA. Once the factors are known, the prob-
lem (3.12) can be recast as

A+(τ)K+(τ) + A−(τ)Λ−(τ) = B(τ)A−(τ),

thus obtaining a second Hilbert problem, which may be solved by using the Plemelji
formulae.

Analytical example

Let us consider the following Wiener-Hopf problem on the imaginary axis:

(ω2 + 2)2

(ω2 + 1)2
K+ + Λ− = − 1

−jω + 1

1

ω2 + 1
(3.13)

where ω = 2πf has been introduced to simplify the notation. The above equation
is in the form

A(jω)K+(jω) + Λ−(jω) = B(jω).

The factorization of the coefficient A(jω) is straightforward and can be performed
by inspection:

A+(jω) =
(jω +

√
2)2

(jω + 1)2
, A−(jω) =

(−jω + 1)2

(−jω +
√

2)2
.

Multiplication of both sides of (3.13) by A−(jω) yields the Hilbert problem:

A+(jω)K+(jω)︸ ︷︷ ︸
φ+(jω)

+A−(jω)Λ−(jω)︸ ︷︷ ︸
−φ−(jω)

= B(jω)A−(jω)︸ ︷︷ ︸
g(jω)
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Applying the Plemelj formula one obtains:

φ+(jω) =
1

2
g(jω) +

1

2πj
C

∫
C

g(ξ)

ξ − jω
dξ.

The integral is taken in Cauchy principal value, and the contourC corresponds to the
imaginary axis. Integration can be performed with the aid of the residue theorem,
by noting that (see fig. 3.2):

1

2πj
C

∫
C

g(ξ)

ξ − jω
dξ =

1

2πj

∫
Γ

g(ξ)

ξ − jω
dξ − 1

2πj

∫
γ

g(ξ)

ξ − jω
dξ

as γ shrinks to zero, and observing that the contribution of the integration on 3
vanishes as the radius of the circumference goes to infinity. The solution to the

.jω

γ

C

3

Γ = C ∪ γ∪ 3

Figure 3.2: Contour integration path used in the example (3.13).

problem then reads:

K+(jω) =
φ+(jω)

A+(jω)
= − (jω + 1)

(
√

2 + 1)2(jω +
√

2)2
(3.14)
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Numerical solution to the Wiener-Hopf equation

The scalar Wiener-Hopf problem (3.12) may be solved numerically either in
frequency domain or in time domain.

The frequency domain approach follows closely the analytical procedure, in
that the Wiener-Hopf problem is reduced to a sequence of two Hilbert problems.
In turn, each Hilbert problem is solved numerically by employing discrete Fourier
transforms. Specifically, it can be noted that the sum of a plus and a minus function
as

A(jω) = A+(jω) + A−(jω)

can be inverse Fourier transformed to give

a(t) = a+(t) + a−(t)

where a+(t) is a causal function (identically zero for t < 0) and a−(t) is an an-
ticausal function (identically zero for t > 0). Therefore, a numerical procedure
to solve the Hilbert problem can be performed by inverse Fourier transform of the
function A(jω), forcing to zero a(t) for t < 0 to obtain a+(t) and then Fourier
transforming to obtain A+(jω); the other factor A−(jω) can be readily obtained by
subtraction.

The time domain approach is based on a direct discretization of the integral
equation corresponding to the original Wiener-Hopf problem. Upon inverse Fourier
transform of (3.12), the following integral equations are obtained:∫ +∞

0

a(t− τ)k+(τ) dτ = b(t) t ≥ 0∫ +∞

0

a(t− τ)k+(τ) dτ + λ−(t) = b(t) t < 0.

(3.15)

The full solution can be obtained with two steps, namely, recovering k+(t) from the
first equation and, upon substitution, λ−(t) from the second equation. Discretizing
the first equation one obtains:

∆t
N∑
p=0

ai−pkp = bi i = 0, . . . , N

which may be rewritten in matrix form as

∆t


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
...

...
... . . .



k0

k1

k2
...

 =


b0

b1

b2
...

 .
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Therefore, discretization of the linear integral problem (3.15) leads to a linear sys-
tem of equations; in turn, solution of this system requires the factorization of a
positive definite Toeplitz matrix. It is noteworthy that the time-domain solution
may be extended to Wiener-Hopf problems with matrix coefficients; in this case, a
block-Toeplitz system results from the discretization of the corresponding integral
equation.

3.4 The Wiener filter
Consider the linear time-invariant system (1.1):

ẋ = Ax+Bu+ n

y = Cx+ d

where the state noise n and the measurement disturbance d are uncorrelated, and
have known spectral density functions φnn(f) and φdd(f), respectively. Introducing
the frequency response function H(f) of the system – defined in Chap. 1, eq. (1.4)
– the filtering problem may be represented with the schematic block diagram in
fig. 3.3. The goal is the design of a linear time-invariant optimal filter, having

B

n

u

u

++

d

C HW
x̃ y x

Figure 3.3: Block diagram of the Wiener filtering problem.

frequency response W (f), such that the trace of the variance σ2
ee of the estimation

error e = x̃− x is minimized. From the Wiener-Khintchine relations one obtains

Tr[σ2
ee] =

∫ +∞

−∞
Tr[φee(f)] df.

where φee(f) is the spectral density of the estimation error. It is noteworthy that the
filter W (f) has two inputs, namely, u and y. Hence, it can be represented in matrix
form as

W (f) =
(
Wu(f) Wy(f)

)
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Block diagram relations from fig. 3.3 show that:

x = Hn+HBu

x̃ = Wuu+Wyy = Wuu+Wy(d+ CHn+ CHBu)

e = Wyd+ (WyC − I)Hn+ (Wu +WyCHB −HB)u

(3.16)

The state estimation error should not depend on the input u, hence

Wu +WyCHB −HB = 0,

and Wu is then obtained as a function of Wy as

Wu = (I −WyC)HB. (3.17)

The state estimation error can now be written as the output of a system driven by n
and d as

e =
(
Wy (WyC − I)H

)(d
n

)
.

The relation above applies for deterministic signals, having well-defined Fourier
transforms. When d and n are stochastic signals, it is possible to apply relation
(1.7) to obtain the spectral density of the error:

φee(f) =WyφddW
H
y +WyCHφnnH

HCHWH
y +HφnnH

H + . . .

. . .−HφnnHHCHWH
y −WyCHφnnH

H .

Hence, the functional to be minimized in the filter design problem is:

J =

∫ +∞

−∞
Tr[WyφddW

H
y +WyCHφnnH

HCHWH
y +HφnnH

H + . . .

. . .−HφnnHHCHWH
y −WyCHφnnH

H ] df.

Minimizing this functional leads to an optimal filter which is noncausal; this is
the best possible LTI filter for the present problem, and its causality notwithstand-
ing may be effectively used in post-processing of statistical data. However, in the
present control setting, the filter must be applied runtime, hence causality must be
enforced. In terms of frequency domain representation, the causality requirement
is expressed by imposing that the filter frequency response is a plus function; this
can be performed by introducing, under the integral operator, an appropriate La-
grange multiplier function Λ−(f) and modifying the integral (by means of Parseval
theorem) as

J =

∫ +∞

−∞
Tr[Wy,+φddW

H
y,+ +Wy,+CHφnnH

HCHWH
y,+ +HφnnH

H + . . .

. . .−HφnnHHCHWH
y,+ −Wy,+CHφnnH

H ] + Tr[Λ−W
H
y,+] df.

(3.18)
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Setting to zero the gradient of J with respect to WH
y,+ yields:

Wy,+(CHφnnH
HCH + φdd) + Λ− = HφnnH

HCH (3.19)

which is a matrix Wiener-Hopf equation; note that the filter frequency response has
dimensions n×p. It is noteworthy that the multiplicative coefficient of the filter has
dimensions p×p, where p is the dimension of the output vector. If p = 1, the vector
equation (3.19) is in fact a set of independent scalar equations. Factorization of the
multiplicative term may be performed once at the beginning of the numerical solu-
tion to the Wiener-Hopf problem, and then additive factorization can be performed
for each component of the vector equation. If the state vector has dimension n, the
solution of the filtering problem is reduced to the solution of n + 1 independent
scalar Hilbert problems; this is computationally more effective than the solution of
the n × n algebraic Riccati equation required in the Kalman filtering procedure.
Note also that the spectral density of state noise and measurement disturbance ap-
pear in functional form in the coefficients of the Wiener-Hopf equation (3.19), so
that accounting for colored noise in the design procedure becomes straightforward,
provided that φdd(f) > 0, ∀f .

3.5 Model of the system
The design procedure of the Wiener filter requires a model of the system at

hand in the form of frequency response function. Such frequency response H(f),
obtained from the discretization of the Orr-Sommerfeld-Squire equations, is com-
puted directly from the state-space form of the discretized equations. However,
prior to compute the frequency response as Fourier transform of the impulse re-
sponse function, as defined in Chap. 1, the system of equations is diagonalized and,
as suggested in [110] or by Lim [76], the modes corresponding to poorly resolved
and highly damped eigenvalues of the discrete Orr-Sommerfeld-Squire spectrum
have been discarded. In addition to reducing the size of the problem by truncating
spurious dynamics, working in modal variables is beneficial because the frequency
response of a diagonal system can be computed analytically, thus easing the design
procedure. In the present work, it has been chosen to remove half of the modes, as
suggested in [127], for each wavenumber pair; the truncated model was thoroughly
tested verifying that it reproduces properly the transient energy growth [110; 121]
for all the wavenumber pairs considered.

3.6 State noise measurements by DNS
The Wiener filter design procedure requires, furthermore, the knowledge of the

state noise autocorrelation function, defined - for each wavenumber pair - as in
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Chap. 2:

Rr̂r̂(y1, y2, τ ;α, β) = E{ĥ(y1, t+ τ ;α, β)ĥH(y2, t;α, β)}.

Note that this is a function of the two locations in the (non-homogeneous) wall-
normal direction, and the time separation; therefore, this quantity is a function of
5 independent variables. In the following, the dependence on the wavenumber pair
will be understood. The procedure to compute this function is conceptually straight-
forward. Nonlinear terms ĥ are computed runtime while performing a DNS of a
turbulent channel flow, and stored to disk every ∆t; integration is performed on
a sufficiently long time window having length T for second-order statistics to be
converged. The database thus obtained is then post-processed wavenumber-wise, in
order to compute the function Rr̂r̂(y1, y2, τ). In turn, this information is used in the
Wiener filter design procedure, for each wavenumber pair; in fact, the correlation
of the state noise in (2.7) is readily recovered from

Rnn(y1, y2, τ) = M−1Rr̂r̂(y1, y2, τ)M−H

and then the spectral density φnn(y1, y2, f) follows immediately from Fourier trans-
form of Rnn(y1, y2, τ).

The procedure outlined above has been performed for a turbulent channel flow
at Reτ = 100, based on the friction velocity and the channel half-width. Param-
eters of the simulation and the database collection procedure are reported in table
3.1. The very long averaging time T+ = 10000 has been chosen ten and two times
larger than the ones used in [57] and [102], respectively, in order to provide well
converged second-order statistics. Although DNS of turbulent channel flows are
customary at Reynolds number as low as Reτ = 100 on modern supercomput-
ers, the present simulation proved to be particularly challenging from the point of
view of data storage and handling; in fact, even using the minimum set of variables
(v̂, η̂), it was necessary to limit the wavenumber range of stored data to |α| ≤ α
and |β| ≤ β to keep the dimensions of the database to the relatively small size of
≈ 200GB. Furthermore, the post-processing procedure to compute Rr̂r̂(y1, y2, τ)
requires careful data handling, since the typical size of this discretized function is
≈ 300MB for each wavenumber pair.

Numerical simulations are performed using the computer code and computing
system developed by Luchini and Quadrio and described in [80]. The code is a par-
allel solver of the Navier-Stokes equations for the incompressible flow in a plane
channel. Time advancement employs the usual semi-implicit approach, where non-
linear terms are advanced explicitly with a low-storage Runge-Kutta scheme, and
viscous terms are advanced implicitly. The mixed spatial discretization employs
Fourier expansions in wall-parallel directions, and fourth-order accurate compact
finite difference schemes discretize the wall-normal direction. The locality of finite
difference operators in physical space allows to exploit a simple partitioning of the
data among different computing machines, with excellent parallel performance. The
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Reτ Lx Lz Nx Nz Ny ∆t+sim ∆t+ T+ α β
100 4π 2π 64 64 64 0.125 0.5 10000 10 20

Table 3.1: Parameters used in the construction of the database for the state noise correlations; ∆tsim is the time step size
used in the simulations, and Ny is the number of discretization points in wall-normal direction.

amount of communication is reduced by a carefully designed parallel algorithm, so
that the code can run on a computing system assembled without expensive net-
working hardware. This parallel algorithm proved to be well-suited for the database
construction procedure; in fact, it was possible to store data pertaining to certain
wall-normal regions in each machine’s local hard disk, without the need to overload
the network during the simulation with data to be stored in a single database. The
construction of the full database required ≈ 15 days on a cluster of 10 dual-core
Intel Xeon machines.

Note that the correlation function Rr̂r̂(y1, y2, τ) may be expanded as

Rr̂r̂(y1, y2, τ) =

(
E{ĥv(y1, t+ τ)ĥHv (y2, t)} E{ĥv(y1, t+ τ)ĥHη (y2, t)}
E{ĥη(y1, t+ τ)ĥHv (y2, t)} E{ĥη(y1, t+ τ)ĥHη (y2, t)}

)
;

(3.20)
therefore, for each wavenumber pair and each couple of positions in y direction,
each entry of this matrix corresponds to the auto- or cross-correlation of the nonlin-
ear terms acting on the v̂ or η̂ equations in (2.5). Note also that, by definition, the
following symmetry property holds:

Rr̂r̂(y1, y2, τ) = RH
r̂r̂(y2, y1,−τ).

The fact that the spatial structure of the noise on the state in (2.5) is nontrivial
has been discussed in recent work [24] and will not be investigated in detail here.
In this work, the temporal structure of the state noise is particularly emphasized,
and is briefly discussed below by considering the correlation function pertaining
to the wavenumber pair (α = 1, β = 2) - representative of all the wavenumbers
considered - and at a fixed reference wall-normal position y+

1,ref = 10.
Fig. 3.4 shows the diagonal components of the autocorrelation matrix function

E{ĥv(y1,ref , t + τ)ĥHv (y2, t)} and E{ĥη(y1,ref , t + τ)ĥHη (y2, t)}. The maximum
autocorrelation is located, as expected, at y+

2 = y+
1,ref , τ+ = 0. Considering, for

instance, a correlation reference value of 50% of the maximum, it is shown that, at
this wavenumber, the nonlinear terms ĥv are self-correlated on a typical length scale
of 10 wall units - at the given reference wall normal position y1,ref - and on a typical
time scale of 10 viscous time units. Nonlinear terms ĥη appear to be self-correlated
on a typical length scale of about 12 wall units, and on a typical time scale of
about 27 viscous time units. Representation of these functions in the τ, y2 plane at
a given location y1,ref do not exploit the symmetry of the correlation; this property
is exemplified in fig. 3.6 (a), corresponding to a cut of fig. 3.4 at y+

2 = y+
1,ref = 10.
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It is shown indeed that the computed result is symmetric with respect to the axis
τ = 0, where the maximum correlation also occurs.

Fig. 3.5 shows the off-diagonal correlation matrix components E{ĥv(y1,ref , t+

τ)ĥHη (y2, t)} and E{ĥη(y1,ref , t+ τ)ĥHv (y2, t)}. Off-diagonal components need not
have the maximum correlation at y+

2 = y+
1,ref , τ+ = 0. Considering again a corre-

lation reference value of 50% of the maximum, it is shown that the nonlinear terms
are cross-correlated on a typical length scale of about 10 viscous lengths, and on a
typical time scale of 25 to 35 viscous time units. Fig. 3.6 (b), corresponding to a
cut of fig. 3.5 at y+

2 = y+
1,ref = 10, highlights the antisymmetry of the off-diagonal

components with respect to the axis τ = 0, and shows that the maximum correlation
occurs at this wall-normal position at a given non-zero τ+.

These results show that, additionally to the correlation in space, the correlation
of the state noise acting on the linearized equations (2.5) has a nontrivial temporal
structure, and confirm the unphysical nature of the white noise assumption. The
question of how crude is this assumption in terms of preventing a linear estimator
to be effective in turbulent wall flows is addressed in the next section.

3.7 Wiener filter: performance evaluation
The Wiener filter has been designed for an array of wavenumber pairs |α| ≤ α

and |β| ≤ β. Measurement noise is assumed to be white, and tests have been per-
formed for two values of the noise intensity, namely, φdd = 10−3 and φdd = 10−5.
It is assumed that measurement of either one of the two wall skin friction compo-
nents or pressure fluctuation is available; in this way, as noted in this chapter, the
Wiener-Hopf problem arising in the design of the optimal filter has a scalar mul-
tiplicative coefficient, and its numerical solution is particularly efficient. Similar
Wiener filters, designed with the same parameters but using a state noise with arti-
ficially truncated time structure (in order to actually design a Kalman filter similar
to those designed in [24]), are used for comparison purposes, and will be denoted
hereinafter as “Kalman filters”.

Filtering simulations are performed using a modified turbulent channel flow
solver, where equations of the filter are integrated together with the nonlinear flow
equations. Instead of resorting to a state-space realization of the filter, we choose to
directly compute the estimated state by using the discretized form of the following
convolutional relation:

ˆ̃x(α, β, t) =

∫ t

0

Ŵ (α, β, τ)m̂(α, β, t− τ) dτ,

where m̂(α, β, t) represents the history of wall measurements and Ŵ (α, β, t) is the
filter’s impulse response.

Results are first presented for two representative wavenumber pairs, namely
(α, β) = (1, 3) and (α, β) = (3, 1). A first measure of the estimation capability
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Figure 3.4: Lines at constant absolute value of (a)E{ĥv(y1,ref , t+τ)ĥHv (y2, t)} and (b)E{ĥη(y1,ref , t+τ)ĥHη (y2, t)},
where y+1,ref = 10. Level is taken at 25%, 50% and 75% of the maximum (dark to light gray). Dependent variables y2 and
τ normalized with viscous units. Results at α = 1, β = 2, Reτ = 100.



Chapter 3: Wiener filtering 53

τ+

y 2+

−50 0 50
0

5

10

15

20

25

30

(a)

τ+

y 2+

−50 0 50
0

5

10

15

20

25

30

(b)

Figure 3.5: Lines at constant absolute value of (a)E{ĥv(y1,ref , t+τ)ĥHη (y2, t)} and (b)E{ĥη(y1,ref t+τ)ĥHv (y2, t)},
where y+1,ref = 10. Level is taken at 25%, 50% and 75% of the maximum (dark to light gray). Dependent variables y2 and
τ normalized with viscous units. Results at α = 1, β = 2, Reτ = 100.
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Figure 3.6: (a) Plot of |E{ĥv(y1,ref , t + τ)ĥHv (y1,ref , t)}| (solid) and |E{ĥη(y1,ref , t + τ)ĥHη (y1,ref , t)}| (dashed)
against the time separation τ . (b) Plot of |E{ĥη(y1,ref , t + τ)ĥHv (y1,ref , t)}| (solid) and |E{ĥv(y1,ref , t +

τ)ĥHη (y1,ref , t)}| (dashed) against the time separation τ . These results are consistent with the symmetry properties on the
autocorrelationRr̂r̂(y1, y2, τ). Dependent variable τ normalized with viscous units. Results atα = 1, β = 2, y+1,ref = 10,
Reτ = 100.
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Real/Imaginary Wiener Kalman
part τx τz p τx τz p
Re(v̂) 0.1104 0.5936 0.5007 0.1303 0.5946 0.5013
Im(v̂) 0.1347 0.5903 0.5111 0.1520 0.5912 0.5107
Re(η̂) 0.7968 0.7716 0.7266 0.7766 0.7594 0.7323
Im(η̂) 0.8005 0.7705 0.7239 0.7804 0.7585 0.7300
Re(v̂) 0.0877 0.5934 0.4888 0.2138 0.5916 0.5024
Im(v̂) 0.1087 0.5909 0.4993 0.2362 0.5891 0.5116
Re(η̂) 0.7432 0.7697 0.7413 0.7562 0.7606 0.7317
Im(η̂) 0.7483 0.7677 0.7380 0.7613 0.7596 0.7295

Table 3.2: Correlation coefficients between the actual state and the estimated states, as provided by the Wiener and Kalman
filter. First block row corresponds to φdd = 10−3, second block row to φdd = 10−5; results for (α, β) = (1, 3), y+ = 10.

is the correlation coefficient between the actual state and its estimate provided by
either Wiener or Kalman filters. We choose a representative location in wall-normal
direction, y+ = 10, and compute the correlation coefficients on an ensemble of
data collected in a DNS performed for 2000 viscous time units. Table 3.2 and 3.3
report the computed correlation coefficients; it is shown that the results obtained
with the Wiener and Kalman filters are strikingly similar, and there is no substantial
improvement in the correlation coefficients when accounting for the time structure
of the noise, for these wavenumbers. The measurement disturbance intensity affects
these results in a wavenumber-dependent fashion, indicating that wavenumber-wise
tuning of the filter with the term φdd might improve results.

However, correlation coefficients do no provide an assessment of the quantita-
tive difference between the actual and estimated state. To this aim, we report in
fig. 3.7, 3.8 and 3.9 the time-averaged energy density in wall-normal direction, as
a function of the wall-normal variable, for the two wavenumber pairs considered.
These results show that both the Wiener and the Kalman estimators provide a rela-
tively good estimate of the spectral energy density only in the very near-wall region
y+ < 10 (with the exception in fig. 3.8 (b)). Further inside the channel, the energy
of the estimated state is far different from that of the actual state and, typically, the
Wiener filter tends to provide smaller values of the energy density if compared to
the Kalman filter. The fact that linear estimators do not provide a good estimate
of the energy in the flow is not unexpected. In fact, the evolution equation for the
spectral energy in the linear case misses the nonlinear triadic interaction term, ac-
counting for energy redistribution among wavenumbers [120]. Therefore, energy in
the linear case will be under- or over-estimated, depending on the nonlinear interac-
tions in spectral space of the real flow; the present results indicate that accounting
for the time structure of the state noise is not sufficient for recovering this effect.

Nevertheless, it was shown by previous work (see, e.g. [76; 65]) that linear
controllers derived from optimal control theory typically require information on the
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Real/Imaginary Wiener Kalman
part τx τz p τx τz p
Re(v̂) 0.0622 0.1848 0.4094 0.0537 0.1490 0.4131
Im(v̂) 0.0613 0.1848 0.4087 0.0529 0.1493 0.4127
Re(η̂) -0.0686 -0.4141 0.1685 -0.1217 -0.4109 0.2240
Im(η̂) -0.0690 -0.4139 0.1668 -0.1227 -0.4107 0.2235
Re(v̂) 0.2013 0.2429 0.3065 0.1471 0.1835 0.4154
Im(v̂) 0.2003 0.2429 0.3062 0.1463 0.1838 0.4152
Re(η̂) 0.0336 -0.4267 0.0065 -0.1200 -0.4279 0.2244
Im(η̂) 0.0336 -0.4263 0.0059 -0.1209 -0.4275 0.2239

Table 3.3: Correlation coefficients between the actual state and the estimated states, as provided by the Wiener and Kalman
filter. First block row corresponds to φdd = 10−3, second block row to φdd = 10−5; results for (α, β) = (3, 1), y+ = 10.

flow state in the near-wall region only. Therefore, state estimators may need to
provide a good estimate of the near-wall flow, while states far away from the wall
may be estimated wrongly without affecting substantially the control performance.
Stemming from this argument, it is natural to evaluate the estimation performance
of the Wiener and Kalman filters by weighting the estimated state using an optimal
controller designed for a turbulent flow at the same Re. To this aim, we use control
kernels designed for Reτ = 100 turbulent channel flow, obtained by minimizing a
functional derived from a weighted form of the kinetic energy norm; see App. A
for details about this optimal controller. This state-feedback controller led to drag
reduction up to ≈ 30% when applied to the fully turbulent flow. The control signal
computed from the application of such control kernel to the real flow state is com-
pared with those obtained by application of the kernel to the estimated state. Note
that no feedback is introduced to the flow; the purpose here is to compare directly
a reference control signal to the ones derived from the estimated data. A concise
presentation of the results for the two representative wavenumbers considered is re-
ported in table 3.4, where it is shown that the correlation coefficient between the
control signal derived from the Wiener filter estimate and the reference signal is
comparable to the one obtained with the Kalman filter. The time integral of the
energy of the control signal

∫
|û|2dt is reported for the reference case, the Wiener

filter case and the Kalman filter case in table 3.5. Again, it is shown quantitatively
that, at the two wavenumbers tested, the performance of both filters is similar.

Finally, estimation results obtained when using both the Wiener and Kalman
filter on the full array of wavenumbers |α| < α and |β| < β are reported in fig.
3.10, 3.11 and 3.12 for the streamwise, spanwise skin friction and pressure mea-
surements, respectively; measurement noise intensity is φdd = 10−3. As a concise
indicator of the estimation performance, we use here the energy density in wall nor-
mal direction, summed over all wavenumbers |α| ≤ α and |β| ≤ β. It is shown
that, when measuring either one of the wall skin friction components, both filters
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Real/Imaginary Wiener Kalman
part τx τz p τx τz p
Re(ĉ) 0.7180 0.7076 0.7208 0.6991 0.6943 0.7178
Im(ĉ) 0.7125 0.7062 0.7210 0.6939 0.6928 0.7166
Re(ĉ) 0.3419 0.4047 0.5756 0.3174 0.3872 0.5660
Im(ĉ) 0.3432 0.4049 0.5658 0.3177 0.3873 0.5645

Table 3.4: Correlation coefficients of the control signals ĉ computed from the Wiener and Kalman filters estimates with that
computed from the real flow state (reference signal), for the three measurements. Top block row: α = 1, β = 3; bottom
block row: α = 3, β = 1. Results with φdd = 10−3.

Reference Wiener Kalman∫
|û|2 dt τx τz p τx τz p

1.5675 2.4043 0.8252 1.3961 2.5796 0.9463 1.8081
0.0723 0.0646 0.0029 0.1340 0.0798 0.0026 0.1846

Table 3.5: Time integral of the energy of the control signal, as computed from the Wiener and Kalman filters estimates and
from the real flow state, for the three measurements. Top block row: α = 1, β = 3; bottom block row: α = 3, β = 1.
Results with φdd = 10−3.

perform similarly in the near wall region; in these cases, the estimated energy is
close to the actual energy in the very near wall region only, up to y+ ≈ 7. On the
other hand, pressure measurements leads to filters that substantially overestimate
the energy density of the flow; this is in agreement with the fact noted by Chevalier
et al. [24], that measurement of wall pressure is only useful when estimating the
pressure field, but does not provide significant information to estimate the near-wall
velocity field.

3.8 Conclusions
In this chapter, the Wiener filtering technique has been proposed as an effective

tool for designing optimal filters for estimation of wall turbulence. In particular, the
full time-space structure of the state noise, as measured by DNS, can be accounted
for through the use of these filters. In the linear setting, they are the best possible
LTI estimators for the system at hand. Their performance has been evaluated on rep-
resentative single-wavenumber cases, as well as for a large array of wavenumbers,
and compared to that of similar estimators designed to account for the spatial struc-
ture of the state noise only. Despite the non trivial temporal structure of the state
noise, our performance assessment shows that including it in the filter design does
not improve the estimation performance significantly. This suggests that the white-
noise assumption, first proposed in [24], is reasonably accurate for state estimation
purposes, at least in the present context of low-Reynolds number wall turbulence.
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Furthermore, the present results indicate that linear estimation strategies for wall
turbulence may be inherently limited, thus suggesting the need to resort to nonlinear
observers (for instance, in the form of extended Kalman filters) in order to provide
better estimates of the near wall flowfield on the basis of wall measurements.

Nevertheless, the formulation of the state estimation problem presented in this
chapter, and the associated Wiener filter design technique, is numerically efficient
if compared to the standard Riccati-based approach, especially when a single mea-
surement is available. Therefore, it may represent a viable alternative to the standard
approach in similar state estimation problems, where the high dimensionality of the
estimation problem can be coped by the present approach.
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Figure 3.7: Spectral energy density (solid) and relative estimates via Wiener filter (dashed) and Kalman filter (dash-dotted);
(a) (α, β) = (1, 3), (b) (α, β) = (3, 1). Results obtained for the measurement of streamwise skin friction τx.
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Figure 3.8: Spectral energy density (solid) and relative estimates via Wiener filter (dashed) and Kalman filter (dash-dotted);
(a) (α, β) = (1, 3), (b) (α, β) = (3, 1). Results obtained for the measurement of spanwise skin friction τz .
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Figure 3.9: Spectral energy density (solid) and relative estimates via Wiener filter (dashed) and Kalman filter (dash-dotted);
(a) (α, β) = (1, 3), (b) (α, β) = (3, 1). Results obtained for the measurement of pressure fluctuations p.
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Figure 3.10: State energy density (solid), Wiener filter estimate (dashed) and Kalman filter estimate (dash-dotted) in the
region y+ < 50, evaluated for the array of wavenumber pairs |α| < α and |β| < β. Measurement is streamwise skin
friction. Results at Reτ = 100, φdd = 10−3.
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Figure 3.11: State energy density (solid), Wiener filter estimate (dashed) and Kalman filter estimate (dash-dotted) in the
region y+ < 50, evaluated for the array of wavenumber pairs |α| < α and |β| < β. Measurement is spanwise skin friction.
Results at Reτ = 100, φdd = 10−3.
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Figure 3.12: State energy density (solid), Wiener filter estimate (dashed) and Kalman filter estimate (dash-dotted) in the
region y+ < 50, evaluated for the array of wavenumber pairs |α| < α and |β| < β. Measurement is wall pressure. Results
at Reτ = 100, φdd = 10−3.
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Chapter 4

Optimal compensator design: a
Wiener-Hopf approach

The present chapter addresses the optimal compensator design problem. Lever-
aging the technique proposed in Chap. 3, this problem is stated in frequency do-
main. It will be shown that the approach presented here allows for the design of the
optimal feedback compensator in one single step, without the need to resort to the
separation theorem. After a brief discussion on the Internal Model Control (IMC)
framework, the design procedure is outlined, and the Wiener-Hopf equation arising
from it is discussed. Therefore, a recently proposed average linear model of the tur-
bulent channel flow is presented and described; furthermore, statistics of the state
noise - defined differently from Chap. 3 - are briefly presented. These informations
are used in the design of optimal compensators, that are applied to turbulent channel
flow for two values of the Reynolds number. Performance of such compensators,
effects of design parameters and statistics of the controlled flow are discussed.

4.1 Frequency domain formulation of the optimal com-
pensator design problem

4.1.1 Internal Model Control structure
The classical structure of a feedback control loop is depicted in fig. 4.1. In this

figure, a compensator K(s) feeds the system with an input signal u, computed on
the basis of real-time measurements y. The input-to-state system transfer function is
denoted with H(s); the noise n typically accounts for unmodeled dynamics, while
the disturbance d denotes measurements errors. Note that both the function H(s)
and the noise n are different from those defined in Chap. 1, fig. 1.3; in particular,
the noise n acts on the state downstream the system’s transfer function, while in
Chap. 1 the noise was defined to act as an input to the dynamical system. The
feedback loop in fig. 4.1 may be recast in the equivalent form shown in fig. 4.2; the

65
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Figure 4.1: Classic feedback control loop.

compensator K is readily obtained by inspection as

K = (I −KCH̃)−1K, (4.1)

where H̃ is a model of the input-to-state transfer function of the system at hand.
The explicit presence of a model of the process in the compensator transfer function
gives to this structure the name of Internal Model Control (IMC) [90]. The feedback
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H̃C C

uxy

d
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H̃
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+-
+ ỹ x̃

r

Figure 4.2: IMC feedback control loop.

signal r in fig. 4.2 is given by:

r = y − ỹ = d+ Cn+ C(H − H̃)u. (4.2)

Eq. (4.2) shows that, in absence of noise, disturbance and modeling errors, the
feedback signal is zero; this instructively highlights the important fact that, for open-
loop stable systems, feedback is only required to compensate uncertainty.

4.1.2 Optimal compensator design in the IMC framework
Let us consider a multiple input-multiple output complex LTI system, character-

ized by an input-to-state frequency response function H(f), and an output matrix
C. Both the state and the measurements are corrupted by noise n and disturbances
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d, respectively, as shown in fig. 4.1; moreover, noise and disturbances are un-
correlated and have known statistics. We assume that the input-to-state frequency
response function is known exactly, i.e. uncertainty is accounted for in the terms
n and d only. Furthermore, we restrict ourselves to the case when H(f) is the fre-
quency response function of an asymptotically stable system, i.e. the corresponding
transfer function H(s) is analytic in the closed right half of the complex plane.

The optimal compensator design problem is that of designing a frequency re-
sponse function K(f) that, based on the measurements, computes the optimal feed-
back input signal u that minimizes the usual LQG expectation functional

J = E{xHQx+ uHRu}, (4.3)

where the state and input weighting matrices, Q and R, are given constant design
parameters. Wiener-Khintchine theorem and the properties of the trace operator can
be used to rewrite the functional (4.3) in frequency domain:

J =

∫ +∞

−∞
Tr[Qφxx(f)] + Tr[Rφuu(f)] df. (4.4)

It is important to notice that substitution of the closed loop relations obtained by
inspection of fig. 4.1 leads to a functional which is not quadratic in K; therefore,
it is not possible to directly express the minimization of J with respect to K as a
linear problem.

However, the IMC framework provides a convenient parametrization of all sta-
ble compensators K that ensure closed loop stability, by means of relation (4.1)
[90]. The IMC closed loop system depicted in fig. 4.2, when H = H̃ , is character-
ized by a feedback signal

r = d+ Cn

which may be defined uncontrolled output. Noticing from fig. 4.2 that

y = (I + CHK)(d+ Cn)

the closed-loop system in fig. 4.2 can be recast into an equivalent open loop form
as in fig. 4.3, showing explicitly that the controlled (stable) system is driven by the
noise n and the disturbance d.

The state x and input u can then be written as functions of the state noise n and
measurement disturbance d as

x = (I +HKC)n+HKd

u = KCn+Kd,

and, using relation (1.7), it is straightforward to obtain the spectral density functions
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Figure 4.3: Equivalent open loop system

φxx(f) and φuu(f) as functions of φnn(f) and φdd(f). Substituting in (4.4) yields:

J =

∫ +∞

−∞
Tr
{
Qφnn +QHKCφnn +QφnnC

HK
H
HH + . . .

. . .+QHKCφnnC
HK

H
HH +QHKφddK

H
HH
}

+ . . .

. . .+Tr
{
RKCφnnC

HK
H

+RKφddK
H
}
df.

(4.5)

It is noteworthy that this expression of the functional J is quadratic in K; there-
fore, minimization of this functional with respect to K leads to a linear problem
for K, and the original compensator K can be recovered from (4.1). In particular,
minimization of the functional in (4.5) with respect to K leads to the best possible
LTI compensator for the problem at hand. However, this compensator would be
noncausal, i.e. it would require both future and past informations from the mea-
surements to provide the optimal feedback signal. Causality is a fundamental re-
quirement for filters to be applied real-time in feedback applications. In a fashion
analogous to that reported in Chap. 3, causality is enforced by introducing an ap-
propriate Lagrange multiplier and using Parseval theorem, rewriting J as:

J =

∫ +∞

−∞
Tr
{
Qφnn +QHK+Cφnn +QφnnC

HK
H

+H
H . . .

. . .+QHK+CφnnC
HK

H

+H
H +QHK+φddK

H

+H
H
}

+ . . .

. . .+Tr
{
RK+CφnnC

HK
H

+ +RK+φddK
H

+

}
+ Tr[Λ−K

H

+ ] df.

(4.6)

Setting to zero the gradient of (4.6) with respect toK
H

+ yields the following Wiener-
Hopf equation:

(HHQH +R)K+(CφnnC
H + φdd) + Λ− = −HHQφnnC

H (4.7)
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When this equation is solved for K+, the original compensator can be recovered by
inverting the parametrization (4.1):

K = K(I + CHK)−1. (4.8)

This formulation has been first proposed by Luchini [79]. Related approaches have
been presented in the past by Youla and coworkers [139; 140] for the case of pro-
cesses described by rational (scalar or matrix) transfer functions.

A brief discussion of the fundamental features of the present formulation is in
order. The present strategy is exactly a restatement of the LQG design problem for
asymptotically stable systems in the frequency domain; note also that the symme-
try of the coefficients appearing in the Wiener-Hopf equation (4.7) highlights the
dual nature of the control and estimation problems. The state-space formulation
of the optimal compensator problem leverages the separation theorem to solve for
the controller and the estimator; in the present approach, the frequency response
function of the full compensator is designed in one single step. This feature is par-
ticularly relevant when the system is single input-single output; in this case, the
Wiener-Hopf equation (4.7) is scalar, and can be solved very efficiently by using a
Fourier-transform-based approach. This solution technique is particularly advanta-
geous from the numerical viewpoint, if compared to standard Riccati-based strate-
gies. In the general case of multiple input-multiple output system, the Wiener-Hopf
problem can be solved in the time domain by discretizing the corresponding integral
equation and factorizing an appropriate Toeplitz matrix.

It is worth noting that the spectra of the noise n and of the disturbance d ap-
pear in their functional form in the coefficients of the equation. Therefore, these
noises need not be white, and accounting for the time structure of the noise and
disturbance becomes straightforward. This is a key feature that allows to take into
account modeling errors in the term n by using directly the measured statistics
of n, instead of forcing the statistics to obey the dynamics of the system (as in
the Kalman approach). In a similar manner, it is straightforward to introduce a
frequency-dependent weighting as well as the dynamics of the sensors by letting C
depend on the frequency.

From the computational viewpoint, the construction of the coefficients in (4.7)
requires the input-to-state frequency function of the system, H(f), and the term
Cφnn(f), which corresponds to the cross-spectrum between the noise n and its
measurements; equivalently, the cross-correlation between state noise and its mea-
surements may be available. These two quantities can be computed by using DNS
or, in certain situations, may be obtained experimentally.
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4.1.3 Analytical example
Let us consider the following scalar, stable system:

ẋ = −x+ u+ w

y = x+ v.

The design problem is stated as the search of a feedback compensator that mini-
mizes the expectation:

J = E{x2 + u2}
whenw and v are white Gaussian noises having unit intensity. Standard LQG theory
reviewed in Chap. 2 provides straightforwardly the result: both Riccati equations
associated to the control and estimation problems read

p2 + 2p− 1 = 0

and the stabilizing solution is p = −1 +
√

2. The state-space representation of the
compensator reads

ȯ = (1− 2
√

2)o+ (
√

2− 1)y

u = (1−
√

2)o

and the corresponding frequency response function reads

KLQG(jω) = − (
√

2− 1)2

jω − 1 + 2
√

2
. (4.9)

Let us now follow the approach outlined in the previous section. Notice that the
state noise n, as reported in fig. 4.1, acts after the system dynamics. Therefore,
its spectral density function may be directly computed from that of w by means of
relation (1.7):

φnn(jω) =
1

ω2 + 1
.

Upon substitution of the system frequency response in (4.7) one obtains the follow-
ing Wiener-Hopf equation:

(ω2 + 2)2

(ω2 + 1)2
K+ + Λ− = − 1

−jω + 1

1

ω2 + 1

which is the same as the one reported in the example (3.13). Therefore, its solution
reads

K+(jω) = − (jω + 1)

(
√

2 + 1)2(jω +
√

2)2

and the frequency response of the Wiener-Hopf compensator can be recovered from
(4.8), to obtain:

KWH(jω) = − (
√

2− 1)2

jω − 1 + 2
√

2
, (4.10)

which is the same result as in (4.9).
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4.2 The average linear response of a turbulent chan-
nel flow to wall forcing

Any linearized stable model of the flow system, given in the form of impulse
response function (or, equivalently, frequency response function), can be used in
the IMC framework outlined in the previous section; for instance, it may be ob-
tained from a state-space form of the dynamical equations of the system at hand. In
the present work, we use a recently proposed linearized model of the wall-forced
turbulent channel flow [81] that represents, at a given Re, the average dynamics of
the turbulent flow when impulsive wall forcing is applied. Definition of this average
linear response is given in the following, and its numerical measurement is detailed.

4.2.1 Definition
We consider small perturbations to the statistically stationary turbulent channel

flow in the form of non-homogeneous boundary conditions on the i-th component
of the velocity at the walls, denoted by ui,w. We assume that such perturbations are
statistically stationary space-time white Gaussian noises, i.e. their autocorrelation
function reads:

E{ui,w(x+ ∆x, z + ∆z, t+ ∆t)u∗i,w(x, z, t)} = δ(∆x,∆z,∆t)

In the linear setting, these perturbations have a small effect on the velocity field;
hence, the perturbed field can be decomposed as

vtot(x, y, z, t) = v(x, y, z, t) + v(x, y, z, t)

ηtot(x, y, z, t) = η(x, y, z, t) + η(x, y, z, t)

where v, η is the unperturbed flow field and v, η is the small perturbation due to
wall forcing. The cross-correlation between the perturbed field and the wall forcing
reads:

E{vtot(x′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′)} = . . .

. . . E{v(x′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′)}︸ ︷︷ ︸
=0

+ . . .

. . .+ E{v(x′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′)}

E{ηtot(x′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′)} = . . .

. . . E{η(x′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′)}︸ ︷︷ ︸
=0

+ . . .

. . .+ E{η(x′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′)}
(4.11)
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and the first terms on the right hand sides vanish because the undisturbed turbulent
flow and the wall forcing are uncorrelated, being generated by different physical
processes. In the linear setting, both the wall forcing and the perturbation fields are
statistically stationary; hence, we can define the second terms on the right hand side
as

Hv,i(x, y, z, t) = E{v(x′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′)}
Hη,i(x, y, z, t) = E{η(x′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′)}.

(4.12)

It is well known from system theory that the input-output cross-correlation of a LTI
system driven by a unit intensity white Gaussian noise equals the impulse response
of the system. Hence, eq. (4.12) defines a linear time-invariant system representing
the average response of the perturbation field v, η when driven by a (small) input
ui,w at the walls.

The definitions in eq. (4.12) and (4.11) provide a convenient way to compute the
response function, as noted by Luchini et al. in [81]. Exploiting the usual ergodicity
assumption:

Hv,i(x, y, z, t) = . . .

. . . =
1

LxLz

∫ Lx

0

∫ Lz

0

M

∫
vtot(x

′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′) dt′ dx′ dz′ ≈ . . .

. . . ≈ 1

LxLz

∫ Lx

0

∫ Lz

0

1

T

∫ T

0

vtot(x
′ + x, y, z′ + z, t′ + t)u∗i,w(x′, z′, t′) dt′ dx′ dz′.

Hence, sampling on M discrete time points such that T = M∆t:

Hv,i(x, y, z, p∆t) ≈ . . .

. . . ≈ 1

LxLz

∫ Lx

0

∫ Lz

0

1

M

M−1∑
k=0

vtot(x
′ + x, y, z′ + z, (k + p)∆t)u∗i,w(x′, z′, k∆t) dx′ dz′

for p = 0, . . . , N.

Fourier-transforming in homogeneous directions and rearranging indexes in the
summation yields

Ĥv,i(α, y, β, p∆t) ≈
1

M

M−1+p∑
q=p

v̂tot(α, y, β, q∆t)û
∗
i,w(α, β, (q − p)∆t)

for p = 0, . . . , N, ∀α, β.

(4.13)

Eq. (4.13) provides an efficient way to compute the response function runtime,
while performing a direct numerical simulation of the turbulent channel flow per-
turbed by white-noise wall forcing; a sufficiently long computation averages out the
correlation between the unperturbed flow and the wall forcing in eq. (4.11), thus
leading to the response function defined in (4.12).
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4.2.2 Potential component of the response
Assume that the impulsive forcing at the wall, in a generic realization, has the

form
v(x,−1, z, t) = δ(x, z, t),

i.e. is applied on the wall-normal velocity at the wall. The velocity field V0 at the
time of the impulsive forcing is divergence-free but does not satisfy the compatibil-
ity relations with the boundary data, since

V0 · n = 0 6= δ(x, z).

The incompressibility constraint causes the velocity field to instantaneously adapt
to the impulsive wall forcing, correcting the field V0 with an irrotational field as

U0 = V0 +∇φ.

U0 is divergence-free and satisfies the impulsive boundary conditions, while φ is
referred to as the correction potential [75; 131]. The equation for φ can be derived
from:

∇ ·U0 = 0→ ∇ ·V0 +∇ · ∇φ = 0→ ∆φ = 0

U0 · n = V0 · n +∇φ · n = δ(x, z)→ ∇φ · n = δ(x, z)

Fourier-transforming in homogeneous directions yields the following set of equa-
tions ( d2

dy2
− k2

)
φ̂ = 0 ∀α, β

φ̂′(α,−1, β) = 1

φ̂′(α, 1, β) = 0

whose solution (up to an arbitrary constant) reads:

φ̂(α, y, β) = −cosh(k(1− y))

k sinh(2k)
k2 = α2 + β2; (4.14)

furthermore, note that φ = 0 is imposed at k = 0, in order to satisfy the integral
incompressibility constraint. It is noteworthy that φ is deterministic and does not
depend either on V0 or on Re, whereas the full response depends on Re for t > 0.

4.2.3 Numerical measurement of the response function
Two well resolved direct numerical simulations, at Reτ = 100 and Reτ = 180,

have been performed to numerically measure the response function (4.12) to wall
forcing with the wall-normal velocity component. The simulations are run using a
modified turbulent channel flow solver, that provides zero-mean time and space ran-
dom forcing on the v component at the lower wall. Specifically, random numbers
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Box size Resolution Response parameters
Reτ Lx Lz Nx Nz Ny ∆t+sim T+ ∆t+ T+

av Af
100 4π 2π 64 64 64 0.125 100 0.5 100000 0.0005
180 4π 4/3π 96 64 128 0.15 60 0.75 75000 0.000125

Table 4.1: Parameters used in the numerical measurement of the average linear response to wall forcing with wall-normal
velocity; ∆tsim is the time step size employed in the simulations, while Ny is the number of discretization points in wall-
normal direction.

are generated to provide, every time step ∆t of the discretized response, random
phase to the Fourier coefficients of wall-normal velocity at the wall. The small
forcing amplitude Af is constant in wavenumber space, and has been chosen in or-
der for the perturbations to remain in the linear regime; the values chosen have been
suggested by the previous linearity parametric study by Luchini et al. [81]. Simula-
tions are performed using a constant time step ∆tsim. The cross-correlation between
the perturbed flowfield and the white noise forcing at the wall is computed runtime,
in order to perform a running average having length Tav to determine the response
function. Further details about the domain and the space and time resolution of the
simulations are reported in table 4.1. These simulations required approximately 2
months on 24 AMD Opteron quad-core machines, available on a dedicated cluster
at the University of Salerno.

Potential component

The numerically measured response functions correctly reproduce the potential
component of the response function. Fig. 4.4 compares the measured v-component
of the response function at t = 0 (Hv,v(x, y, z, 0)) with the v-component of the ve-
locity field obtained from the gradient of (4.14), for the case Reτ = 100. With the
averaging time employed, agreement between the numerical result (a) and analyti-
cal solution (b) is shown; surfaces correspond to 10% of the maximum value in the
volume, which is, in the measured case,≈ 94% of the analytical maximum. A simi-
lar agreement is obtained when comparing the analytical solution with the potential
solution in the case Reτ = 180, in accordance with the observation that the po-
tential response is Reynolds number independent; in this latter case, the measured
maximum is ≈ 93% of the analytical maximum.

Physical space representation of the response

A physical space representation of the measured response function is depicted
in fig. 4.5 and 4.6, for the Reτ = 100 case. Figures correspond to two time in-
stants, namely, t+ = 5 and t+ = 15; in these figures, flow is from bottom-left to
top-right. Light and dark surfaces correspond to positive and negative values, re-
spectively. These figures show that the v component of the response is symmetric



Chapter 4: Wiener-Hopf compensator 75

(a)

(b)

Figure 4.4: Potential component of the average linear response of the turbulent channel flow to wall forcing with the v
component,Reτ = 100; represented is the lower half channel, in the subset x ∈ [−1, 1], z ∈ [−1, 1]. (a): Hv,v(x, y, z, 0)
computed numerically; (b): analytical solution. Isosurfaces at the 10% of the maximum value, which in the measured case is
≈ 94% of the one in the analytical case.
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(on average) with respect to the x− y plane, while the η component is antisymmet-
ric. The average impulse response field is convected downstream by the flow; since
this impulse response is, by construction, that of a stable system, it asymptotically
goes to zero as time goes to infinity. This is coherent with the fact that, at fixed
averaging time, the signal-to-noise ratio decreases with time because the response
amplitude decreases, while the background noise is constant; therefore, it is nec-
essary to increase the level of the isosurface in the figures in order to highlight the
average deterministic part. But for the potential part of the response, which is de-
fined in the whole domain, it appears that the average linear response is localized in
the near-wall region. Similar features were noted in [81], for a response computed
at Reτ = 180. Furthermore, in that work it was also shown that the decay rate of
the average response is significantly faster than that of either the laminar response,
or of the so-called pseudo-turbulent response (obtained from the Orr-Sommerfeld-
Squire equations linearized about the mean turbulent profile). This feature is due
to the capability of the average linear response to account for the average effect of
turbulent diffusion on the velocity field generated by the impulsive forcing.

Spectral space representation of the response

Absolute values of the Fourier coefficients of the response at the representative
values of y+ = 10 and t+ = 15 are reported against the wavenumber pair (α, β) in
fig. 4.7 (a) and (b), for the caseReτ = 100. Figures show that the response function
is localized in spectral space; this feature was found in the near wall region up to
y+ ≈ 30, for the two values of Re considered. As far as the time window where
the response function is significant is concerned, fig. 4.8 shows the energy norm
||H||E as a function of time, for the two Re considered; after the initial instant
– corresponding to the potential response – it is found that the energy norm of
the response decreases with time and tends to saturate at t+ ≈ 50 for both Re,
suggesting that for larger time separations the energy is due to the background noise
that has not been averaged out yet.

4.3 State noise measurements
It has been noted in Sec. 4.1 that the solution of the compensator design problem

requires the knowledge of the cross-correlation between the state noise and its wall
measurements in the uncontrolled flow:

Rτ̂x,n̂ = E{τ̂x(t+ τ)n̂H(y, t)}
Rτ̂z ,n̂ = E{τ̂z(t+ τ)n̂H(y, t)}
Rp̂,n̂ = E{p̂(t+ τ)n̂H(y, t)}

for each (α, β); note that, using the state variables introduced in Chap. 2, the noise
term may be splitted as n̂ = (n̂v, n̂η)

T , emphasizing the terms acting on the velocity
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(a)

(b)

Figure 4.5: Average linear response of the turbulent channel flow to lower wall forcing with the v component, Reτ = 100;
represented is the lower half channel, in the subset x+ ∈ [−150, 150], z+ ∈ [−75, 75]. (a): Hv,v(x, y, z, t+ = 5),
isosurfaces at ±8% of the maximum value (light to dark gray); (b): Hη,v(x, y, z, t+ = 5), isosurfaces at ±8% of the
maximum value (light to dark gray).
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(a)

(b)

Figure 4.6: Average linear response of the turbulent channel flow to lower wall forcing with the v component, Reτ = 100;
represented is the lower half channel, in the subset x ∈ [−150, 150], z ∈ [−75, 75]. (a): Hv,v(x, y, z, t+ = 15),
isosurfaces at ±40% of the maximum value (light to dark gray); (b): Hη,v(x, y, z, t+ = 15), isosurfaces at ±40% of the
maximum value (light to dark gray).
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Figure 4.7: (a) Absolute value of the Fourier coefficients of Ĥv,v(α, β; y+ = 10; t+ = 15); (b) absolute value of the
Fourier coefficients of Ĥη,v(α, β; y+ = 10; t+ = 15). Results for the average linear response computed at Reτ = 100.
The subset α ∈ [0; 20] and β ∈ [−40; 40] is represented. Only the half-plane α ≥ 0 is represented because of the Hermitian
symmetry of the (real) response function.



80 Chapter 4: Wiener-Hopf compensator

0 10 20 30 40 50
10−2

10−1

100

t+

E/
E 0

Figure 4.8: Normalized energy of the response functions at Reτ = 100 (solid) and Reτ = 180 (dashed). Energy of the
responses eventually saturates at t+ ≈ 50.

Box size Resolution Noise parameters
Reτ Lx Lz Nx Nz Ny ∆t+noise T+

noise

100 4π 2π 64 64 64 0.5 100
180 4π 4/3 π 96 64 128 0.75 150

Table 4.2: Parameters used in the numerical measurement of the state noise-measurement correlation.

and vorticity equations. This information can be computed runtime from a DNS of
a turbulent channel, or in a post-processing step. Note that this correlation has the
important advantage that the independent variables are 4 (namely, α, β, y, τ ) in con-
trast to the state-noise information used in Chap. 3 in the design of the Wiener filter
where the independent variables were 5; this feature reduces the dimensionality of
the problem, and allows for easier handling of the corresponding database.

The state noise-measurement correlations have been computed for Reτ = 100
and Reτ = 180. Parameters of the discretization in the channel flow simulations,
as well as time resolution ∆tnoise and maximum time window [−Tnoise, Tnoise] are
reported in table 4.2. The spatial structure of the computed state noise-measurement
correlation is reported in fig. 4.9, 4.10 and 4.11, at zero time lag; surfaces of con-
stant value at 20% of the maximum are represented. As may be expected, the v part
of the state noise-measurement correlations with τx and p is statistically symmetric
with respect to the x − y plane, while the η part is antisymmetric. Conversely, the
v part of the state noise-measurement correlations with τz is antisymmetric with
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respect to the x − y plane, while the η part is symmetric. These correlations are
localized in space, meaning that measurements with either one of the available wall
quantities at a given point are correlated to the flow state up to a certain extent
in wall-normal, streamwise and spanwise direction. This feature is directly inher-
ited by the autocorrelation of wall measurements, as highlighted in recent work
[57; 102]. These works also quantified the extent of such autocorrelations as a
function of the time separation; again, this feature is directly inherited by the time
structure of the correlations computed in the present work, which is exemplified,
for a given wall-normal position, in fig. 4.12.

4.4 Single input - single output optimal compensators:
a parametric study

Optimal compensators are designed for the single input-single output case with
drag reduction purposes. Actuation is performed with the wall-normal velocity
component at the lower wall, and either one of the wall shear stress components
or pressure are measured. As noted in the previous sections, this case requires the
solution of a scalar Wiener-Hopf problem for each wavenumber pair; this feature
allows us to perform a wide parametric study of the effectiveness of compensators,
with limited computational effort at the compensator design stage.

4.4.1 Compensator kernels

Compensators are designed for Reτ = 100 and Reτ = 180. Two different
state weighting matrices are used in the cost functional (2.13), corresponding to
the energy and dissipation norms of the state. Additional weighting in wall-normal
direction of the energy (as suggested, for instance, in [50]) is not employed here.
The “tunable” parameters in the control design are the control weight, R, and the
measurement noise intensity, φdd.

Leveraging the fact that the average response function of the turbulent chan-
nel flow is localized in spectral space (see Sec. 4.2), optimal compensators are
designed for a reduced set of wavenumbers, |α| ≤ α, |β| ≤ β. The response
functions used for the compensator design are those described in Sec. 4.2, as well
as the state noise-measurement correlations are those presented in Sec. 4.3. Prior
to Fourier transformation to frequency domain, both the response function and the
state noise correlations are windowed with a cos function, to prevent leakage and
smooth out the noise at large separation times. After completing the design in fre-
quency domain of these optimal compensators, their frequency response is inverse
Fourier transformed to obtain the corresponding impulse response function. Instead
of developing a minimal state space realization for the optimal compensator (whose
equations would be integrated together with the flow equations), the control action
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(a)

(b)

Figure 4.9: Surfaces at±25 % (light-dark gray,respectively) of the maximum for the state noise-measurement correlation, at
zero time lag. Measurement is streamwise wall friction τx; (a) v component; (b) η-component. Dependent variables x, y and
z normalized with viscous units. Results at Reτ = 100, x+ ∈ [−500, 500], z+ ∈ [−200, 200].
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(a)

(b)

Figure 4.10: Surfaces at ±25 % (light-dark gray,respectively) of the maximum for the state noise-measurement correlation,
at zero time lag. Measurement is spanwise wall friction τz ; (a) v component; (b) η-component. Dependent variables x, y
and z normalized with viscous units. Results at Reτ = 100, x+ ∈ [−500, 500], z+ ∈ [−200, 200].
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(a)

(b)

Figure 4.11: Surfaces at ±25 % (light-dark gray,respectively) of the maximum for the state noise-measurement correlation,
at zero time lag. Measurement is pressure fluctuation p; (a) v component; (b) η-component. Dependent variables x, y and z
normalized with viscous units. Results at Reτ = 100, x+ ∈ [−500, 500], z+ ∈ [−200, 200].
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Figure 4.12: Time dependence of the normalized correlation between wall measurement and state noise at y+ = 10, at zero
separation in spanwise and streamwise directions. Dependent variable t normalized with viscous units. Solid line: correlation
between τx and v; dashed line: correlation between τz and η; points: correlation between p and v. Results at Reτ = 100.

τx τz p

Reτ α β ∆t+ker T+
ker ∆t+ker T+

ker ∆t+ker T+
ker

100 20 40 0.5 12.5 0.5 12.5 0.5 37.5
180 12 54 0.75 18.75 0.5 18.75 0.75 56.25

Table 4.3: Parameters employed in the compensator design.

is computed runtime by direct application of the discretized form of the convolu-
tional relation:

v̂wall(α, β, t) =

∫ t

0

K̂(α, β, τ)m̂(α, β, t− τ) dτ (4.15)

for each wavenumber pair. Here m̂(α, β, t) denotes the history of the Fourier co-
efficients of a generic measurement, i.e. τ̂x, τ̂z or p̂, and K̂(α, β, t) is the compen-
sator impulse response function, parametrized with the wavenumber pair. Equation
(4.15) is discretized with a time resolution ∆tker and truncated at a finite length
Tker, corresponding to a truncation of the response function of the optimal kernel.
Numerical values of all the parameters mentioned above are reported in table 4.3.

The spatial structure of representative compensator kernels, at zero time lag and
for the measurements of τx, τz and p, are reported in fig. 4.13, 4.14 and 4.15, respec-
tively. Kernels designed to use streamwise skin friction or pressure show a symme-
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try with respect to the x − K plane, while kernels designed to use the spanwise
skin friction component are antisymmetric. Note also that the compensator kernels
are localized in physical space. This feature, also noted by other authors [49; 76],
and predicted theoretically in [4] for the LQG framework, is useful as it indicates
that the kernel requires wall information in the vicinity of the actuator only. There-
fore, in a practical implementation, it may be sufficient to use a spatially truncated
kernel in order to obtain sub-optimal compensators, without excessive degradation
of the compensator performance. This procedure was successfully verified in [49]
in control of transitional plane Poiseuille flow using state-feedback optimal con-
trollers. As a final remark, note that some noise is present in the spatial structure
of the kernels obtained with the present Wiener-Hopf procedure. This noise comes
directly from the use of measured statistics of the flow in the design procedure, and
eventually would disappear provided that the averaging time goes to infinity. Since
the signal-to-noise ratio for the computed kernels is relatively high (≈ O(10)) we
decide not to apply further spatial filtering to the present results.

−1000 −500 0 500 1000−2000200
−0.5
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0.5
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1.5

2

x+z+

K

Figure 4.13: Spatial representation of the compensator kernel at zero time lag, K(x, z, 0); measurement is the streamwise
wall friction. Dependent variables x and z normalized with viscous units. Result at Reτ = 180; the full computational
domain is represented.

4.4.2 Performance assessment
More than 300 direct numerical simulations of controlled turbulent channel

flows have been performed, in order to assess the drag reducing capability of feed-
back compensators designed with different parameters; these simulations required
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Figure 4.14: Spatial representation of the compensator kernel at zero time lag, K(x, z, 0); measurement is the spanwise wall
friction. Dependent variables x and z normalized with viscous units. Result at Reτ = 180; the full computational domain is
represented.
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Figure 4.15: Spatial representation of the compensator kernel at zero time lag, K(x, z, 0); measurement is the wall pressure
fluctuation. Dependent variables x and z normalized with viscous units. Result atReτ = 180; the full computational domain
is represented.
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D-norm E-norm
Reτ τx τz p τx τz p
100 2% 0% 0% 0% 0% 0%
180 8% 6% 0% 0% 0% 0%

Table 4.4: Best performance drag reduction results, as a function of Re, state weighting and measurement. Accuracy of the
drag reduction is estimated to be ≈ ±1%. The values 0% indicate that no measurable difference in the average skin friction
was obtained with respect to the uncontrolled case.

approximately 2 months of computational time on 64 AMD Opteron quad-core ma-
chines, available as part of a cluster dedicated to the simulation of wall turbulence
at the University of Salerno. Simulations at a given Re are initialized with the same
initial condition, corresponding to an instantaneous flowfield from a fully developed
turbulent channel flow. Drag reduction results, averaged over at least 1500 viscous
time units, are compactly reported in table 4.4.

A first noteworthy result from table 4.4 is that the unweighted energy norm is
ineffective in providing drag reduction results. This fact is coherent with previous
LQG-based results in literature, specifically with those of Lim [76], whose only
reported drag reduction results at Reτ = 100 are obtained with weighting functions
derived from the output equation in his state-space model; similar weighting was
successfully used by Lee et al. [74], in a LQG-Loop Transfer Recovery formulation
designed to reduce drag in Reτ = 100 turbulent channel flow. The present Reτ =
180 results strengthen the previous ones, indicating that the energy norm is not
appropriate when using linear feedback control with wall-based linear estimators
for turbulent drag reduction purposes.

Conversely, weighting functionals derived from the dissipation norm appear to
be effective. This fact is reasonable, as dissipation norm is related to the mean skin
friction in the uncontrolled case, as shown in Sec. 2.3.2. It is also interesting to note
that the performance of such controllers improves as Reynolds number increases.
This “inverse”Re-effect may be explained by the following argument. The zero-net
mass flux control action targets directly the rate of dissipation pertaining to turbulent
fluctuations; the modification of the average profile - along with the corresponding
reduction in skin friction drag - is a secondary effect due to nonlinear interactions
between fluctuations and the mean flow. In the uncontrolled case, the percentage
contribution of the mean flow and flow fluctuations to the total rate of dissipation
is reported in table 4.5. In this table, it is shown that the contribution of the flow
fluctuations to the average dissipation rate increases with Re. Therefore, it is rea-
sonable to expect that the dissipation norm may be more effective for control design
purposes even at higher values of Re, up to a certain saturation limit; it is argued
that this is the reason for the inverse effect on drag reduction reported in table 4.4.

Finally, from table 4.4 it appears that compensators using the pressure feedback
measurement are not effective, with the two state weighting used. The estimator in
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Reτ
∑

α,βD(α, β) Dmean

100 26.8% 73.2%
180 39.5% 60.5%

Table 4.5: Contribution of flow fluctuations and mean flow to the total dissipation, as a function of Re; see Sec. 2.3.2.

the form of a Wiener filter is automatically embodied in the present compensator
design procedure; in light of the estimation results in Chap. 3, this result is not
surprising, and suggests that the pressure measurement alone is not sufficient in
providing flow information to build an effective feedback control signal when using
the present objective functionals.

4.4.3 Best performance results

Performance

The best performing kernel led to drag reduction up to ≈ 8%, using streamwise
skin friction measurements; this value is estimated to be accurate within ±1%. The
optimal choice of “tuning” parameters corresponding to this best-performance ker-
nel is R = 0.04 and φdd = 0.04. The initial transient of the plane-averaged skin
friction drag is reported in fig. 4.16; it is shown that the flow rapidly experiences
drag reduction in the first 20 viscous time units, and then slowly moves towards a
statistically stationary steady state. In steady conditions, a reduction of≈ 7% of the
rate of dissipation of kinetic energy associated to flow fluctuations was measured.

The instantaneous power spent for the control action may be conservatively de-
fined as [12]:

Pφ =

∫
A

(
|vwall|

ρφ2

2
+ |vwall(p− p)|

)
dA,

where A is the area where the control action is applied, ρ is the fluid density and p
is the average wall pressure. The power reduction index (expressing the net power
saved when applying the controller) is defined as:

P.R. = 100
Pr − Pc
Pr

,

where Pc is the sum of the time average of Pφ and the (reduced) power required to
drive the flow against viscous stresses in the controlled flow, while Pr is the power
required in the uncontrolled case to drive the flow against viscous stresses. Pφ was
found to be ≈ 0.2% of Pr; the associated power reduction index was found to be
P.R. ≈ 7.7%.
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Figure 4.16: Temporal transient response of the normalized wall-averaged skin friction drag at the lower wall, against viscous
time units; control action is initiated at t+ = 0; uncontrolled (solid), controlled (dashed) flow.
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φdd 0.08 0.04 0.02
%D.R. 5% 8% 0%

Table 4.6: Effect of φdd on the drag reduction performance.

T+
ker 18.75 15 11.25

%D.R. 8% 8% 8%

Table 4.7: Effect of Tker on the drag reduction performance.

Sensitivity with respect to to design parameters

We briefly present here the effect of small variations of tuning and design pa-
rameters presented in table 4.3. The only parameter which is not considered in the
present study is the time resolution of the impulse response of the kernel, ∆tker.
This value is kept fixed in the whole design procedure, from the measurement of
the average impulse response to the design of the kernel; however, in this Reτ =
180 case the time resolution is ∆t+ker = 0.75, which corresponds to about three-
four times the typical time step size to perform well-resolved DNS at comparable
Reynolds number. This choice was considered a good compromise between the time
resolution requirements and the associated dimensions of the various databases used
in the kernel design procedure.

The single variation of the control weight, keeping all the other parameters fixed,
does not significantly affect the drag reduction performance, which is nearly equal
to ≈ 8% for R ∈ [0.005, 0.08]. On the other hand, table 4.6 shows the effect of a
small variation of the noise disturbance intensity φdd on the drag reduction perfor-
mance; it is shown that a lower limit for φdd exists, below which the performance is
degraded. Reduction of the time extension of the kernel does not affect the drag re-
duction performance; in fact, results shown in table 4.7, highlight that a reduction of
40% of Tker does not cause a measurable degradation of the kernel’s performance,
thus indicating that the time window length was chosen conservatively. Finally, ef-
fects of the reduction of the limit wavenumbers for the actuation are shown in table
4.8; it is shown that it is necessary to reduce by 50% the wavenumbers interested
by the actuation in both directions in order to obtain a performance degradation to
6%. This confirms that the wavenumber array used in the present investigation was
chosen conservatively.

(α, β) (0.75α, 0.75β) (0.5α, 0.5β)
%D.R. 8% 8% 6%

Table 4.8: Effect of wavenumber truncation on the drag reduction performance.
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Statistics of the controlled flow

Statistics of the controlled flow are computed using an ensemble of 10 velocity
fields, saved over a time window of 1500 viscous time units after the initial transient.
In the presentation of the results, note that the plus superscript indicates variables
made nondimensional with the actual friction velocity, e.g. in the controlled case
the friction velocity of the controlled flow is used.

Fig. 4.17 compares the mean velocity profiles, represented in the law-of-the-
wall form, of the uncontrolled and controlled flow. It is shown that the controlled
flow exhibits a logarithmic layer, having nearly the same slope of that in the refer-
ence case, and shifted upward; this is a common feature of a variety of wall flows
in drag reducing conditions [26; 74].

Fig. 4.18 to 4.20 show the wall-normal behavior of the diagonal components of
the Reynolds stress tensor, while fig. 4.21 compares the term −〈uv〉 for the uncon-
trolled and controlled flow. The control action, in general, reduces the fluctuation
intensity, in particular in the near-wall region; a notable exception is the spanwise
fluctuation intensity 〈ww〉, which appears not to be evidently affected by the control.
Furthermore, note that - owing to the non-homogeneous boundary condition on the
wall-normal velocity component - the fluctuation intensity 〈vv〉 is non-zero at the
wall (fig. 4.19). The only nonzero off-diagonal component of the Reynolds stress
tensor is mildly reduced in the controlled case over the whole channel half-width.
This effect corresponds to a reduction in the production of turbulent kinetic energy,
especially in the buffer layer where peaks are evident for both the uncontrolled and
controlled case in fig. 4.24.

It is interesting to compare the anisotropy pattern of the controlled and uncon-
trolled flow. The level of anisotropy can be quantified by introducing the normalized
anisotropy tensor [84]

aij =
〈uiuj〉
〈ukuk〉

− 1

3
δij.

Note that this tensor, by definition, has zero trace. Therefore, it is uniquely char-
acterized by its second and third invariants, IIa and IIIa, that may be computed
to produce anisotropy invariant maps (also known as “Lumley triangles”). These
maps are shown in fig. 4.22 and 4.23. Each point in the map corresponds to a given
location in wall-normal direction; thin black curves define the area in the IIIa−IIa
plane corresponding to the states of physically realizable turbulence. In particular,
the upper straight line corresponds to flow states characterized by two-component
turbulence, while the left and right curve lines correspond to axisymmetric turbu-
lence strained by compression or expansion, respectively. Fig. 4.22 shows the usual
anisotropy pattern for a turbulent channel flow, where the flow state moves from
a two-component state (in the near wall region up to y+ ≈ 10) towards a state
characterized by turbulence strained by axisymmetric expansion. In the controlled
case, the flow anisotropy moves from a pure one-component state at the wall (due to
the control action) to an intermediate state far from the two-component state in the
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Figure 4.17: Mean velocity profile in the law-of-the-wall form; uncontrolled (solid) and controlled (dashed).

viscous sublayer, to eventually move towards the same pattern of the uncontrolled
case in the center of the channel. It has been recently noted by Frohnapfel et al.
in [37] that a common feature of turbulent flows experiencing high drag reduction
(typically, as an effect of polymer injection) is the tendency of the near-wall flow
fluctuations towards a one-component state in the mean flow direction, and a con-
sequent tendency of the fluctuations far away from the wall to move towards the
right boundary of the Lumley triangle. We note here that, when wall actuation is
performed with wall blowing/suction with the wall-normal velocity component, this
condition is not satisfied, as shown in fig. 4.23; this is due to the fact that the con-
trolled flow will not experience a two-component condition in the near wall region,
and therefore the anisotropy pattern is dramatically changed.

4.5 Conclusions
In this chapter, a linear model of the turbulent channel flow – in the form of

the average impulse response to wall forcing – has been used in the design of op-
timal compensators aimed at skin friction drag reduction. A special formulation
of the optimal compensator problem in frequency domain has been employed; this
formulation is particularly attractive in the present very high-dimensional setting,
where it reduces the compensator design procedure to solving a sole scalar Wiener-
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Figure 4.18: Reynolds stresses 〈uu〉+. Comparison of the uncontrolled (solid) and controlled (dashed) flow.

Hopf equation. Furthermore, the compensator frequency response is designed in
one single step, without the need to resort to the separation theorem.

The designed compensators have been tested at two different values of Re, us-
ing two different weighting functions and either one of all the possible wall mea-
surements. It has been confirmed, even at the higher value of Re, that objective
functionals built on the energy norm of the flow fluctuations do not yield effective
compensators. On the other hand, objective functionals built from the dissipation
norm have been found to be effective, and in particular more effective at Reτ = 180
than at Reτ = 100. Compensators using the measurement of wall pressure alone
were found uncapable of reducing drag.

Overall, the performance of compensators described in the present chapter is
poor. Well designed passive control devices (e.g. riblets) offer comparable per-
formance but do not need feedback. However, considering that the estimator em-
bodied in the present compensator is in fact a Wiener filter accounting for the full
time-space structure of the state noise, and in light of the results of Chap. 3, it can
be deduced that the limited performance can be attributed to the choice of the cost
functions. Although objective functionals based on the dissipation norm may pro-
vide better performances at even higher Re, larger drag reductions were obtained
by other authors in the LQG setting by using particular state weighting matrices
derived from the output relations.
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Figure 4.19: Reynolds stresses 〈vv〉+. Comparison of the uncontrolled (solid) and controlled (dashed) flow.

However, the design methodology presented in this chapter has proved to be
very effective and computationally efficient, if compared to standard Riccati-based
techniques. Therefore, it may be exploited in the future to ease the compensator
design procedure, thus allowing a wide parametric study on a broader variety of
objective functionals. Furthermore, the present frequency-domain formulation may
be applied to different flow control problems (e.g. subcritical transition control)
whenever dealing with very high dimensional systems with a limited number of
actuators and sensors.
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Figure 4.20: Reynolds stresses 〈ww〉+. Comparison of the uncontrolled (solid) and controlled (dashed) flow.
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Figure 4.21: Reynolds stresses 〈uv〉+. Comparison of the uncontrolled (solid) and controlled (dashed) flow.
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Figure 4.22: Reynolds stresses 〈vv〉+. Top: comparison of the uncontrolled (solid) and controlled (dashed) flow.
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Figure 4.23: Reynolds stresses 〈vv〉+. Top: comparison of the uncontrolled (solid) and controlled (dashed) flow.
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Figure 4.24: Production of turbulent kinetic energy. Comparison of the uncontrolled (solid) and controlled (dashed) flow.



Chapter 5

Conclusions and future developments

The present work has considered the problem of the optimal estimation and
control of wall turbulence. After a discussion of the state-of-the-art results, key
issues have been outlined and addressed throughout the thesis.

A first open question is the optimal linear estimation, that has been recently ad-
dressed in the framework of Kalman filtering theory [24]. Results presented in that
work were based on the central assumption of whiteness of the state noise acting
on the linearized equations, thus resulting in a truncation of the time-structure of
the state noise autocorrelation. It was natural to ask whether the poor linear esti-
mation performance described in [24] is due to the noise structure truncation, or to
the use of a linear dynamical system as a state estimator. Results obtained in this
thesis suggest the reason to be the latter. In fact, it has been shown that Wiener fil-
ters, specifically designed with an efficient frequency-domain approach to account
for the full time-space structure of the state noise, did not outperform significantly
standard Kalman filters. Thus, it seems reasonable to blame the linearity assumption
for their rather poor performance. Indeed, linear dynamics of the state estimators
is decoupled in wavenumber space, and the nonlinear triadic interactions among
different wavenumbers are therefore completely missed; apparently, knowledge of
the time structure of the state noise is not sufficient to compensate for this effect.
Note also that this observation is in agreement with the findings presented in [24]
when using extended (nonlinear) Kalman filters. These estimators were designed
with a standard Riccati procedure, and then ad-hoc modified by reintroducing the
nonlinearity of the original equations. Such nonlinear estimators outperformed lin-
ear Kalman filters, but at the additional cost of a DNS to provide the state esti-
mate. Such nonlinear estimators, unless their order is not reduced appropriately, are
clearly not feasible in applications.

On the other hand, it was shown by initial attempts [50], and at substantially
higher values or Re in App. A of this thesis, that LQR controllers – requiring
full-state information – perform relatively well in friction reducing drag with a
net energy saving, provided that an appropriate objective functional is selected in
the design procedure. Hence, a possible route towards improving the performance

99
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of feedback compensators for turbulent drag reduction would be the optimization
of static state-feedback controllers, and the design of nonlinear (possibly reduced-
order) estimators for the flow state.

From the point of view of the design and test of optimal compensators, several
issues have been addressed in this thesis. The recently proposed average linear re-
sponse of the turbulent channel flow to wall forcing has been employed as a model
for the forced flow system. This model has the feature of being measured directly
from a DNS of turbulent channel flow or, at least in principle, from a laboratory ex-
periment (see, for instance, the work by Hussain and Reynolds [52; 53; 112]). This
model, given in the form of impulse response function, would require a state-space
realization prior to applying standard Riccati-based techniques for the controller
and estimator design. In order to avoid this procedure, which would be impractical
considering the dimensions of the problem, a novel formulation of the optimal com-
pensator design problem was employed. This formulation, first proposed by Luchini
[79], is based on a frequency-domain approach; it represents the dual formulation
in frequency domain of the optimal compensator problem for asymptotically sta-
ble systems, and offers several advantages. First, it allows designing an optimal
compensator in a sole step, through the solution of a certain Wiener-Hopf problem,
without the need to resort to the separation theorem. Secondly, the Wiener-Hopf
equation to be solved is a scalar equation when the system is single-input/single-
output, no matter the dimensions of the state; in this case, solving the compensator
design problem is computationally far more efficient than the solution of two high-
dimensional Riccati equations. Moreover, note also that, in the present control set-
ting, the Wiener-Hopf problem is always well-posed provided that the weight on
the control and the measurement disturbance intensity are nonzero. The present
frequency-domain approach effectively avoids the need of handling systems having
large dimensions of the state, thus answering one of the important issues raised in
the recent review by Kim & Bewley [65]. Since it is built in the frequency domain,
the present procedure allows for the design of LTI compensators only; however,
this is not considered a limitation, as LTI compensators are easier to implement in
practice (even with analog circuitry). Finally, the present formulation accounts for
the temporal structure of the noise on the state, when this is important; moreover,
dynamics of the measurement sensors may be easily accounted for by substituting
their frequency response function in the appropriate coefficients of the Wiener-Hopf
equation, without increasing the dimensionality of the problem.

The performance of single-input/single-output optimal compensators has been
thoroughly verified by testing different weighting functions, as well as measure-
ments of wall friction and pressure, for different values of the Reynolds number. In
agreement with the results previously reported in literature, it has been shown that
the unweighted energy norm is not a good choice for the construction of an objective
functional that yields drag reduction. Conversely, a functional based on the rate of
dissipation of fluctuations energy has been proposed, and shown to be increasingly
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more effective with increasing Reynolds number. Finally, it was shown that, with
this choice of objective functional, only compensators working with measurements
of wall friction components led to drag reduction.

In general, performance obtained in the present work in terms of drag reduction
is rather poor. In light of the results of the Wiener filter, this fact may not be at-
tributed to the estimation capabilities of the present compensators, as compared to
Kalman filters developed by other researchers in previous work. Moreover, the use
of an improved model of the flow system, based on measured average dynamics of
the flow in response to wall actuation, did not provide substantial improvement. It is
therefore natural to attribute this poor drag reduction performance to the objective
functionals employed in this work. Most of recent results that obtained signifi-
cant drag reductions [76] are based on objective functionals derived from quadratic
forms of the measured variables; other kinds of objective functionals, different from
the norms employed in this work, have been suggested in [65]. Therefore, a possible
extension of the present thesis is to leverage the computational effectiveness of the
Wiener-Hopf approach to test a large number of cost functions. Furthermore, the
dissipation-based functional presented here should be used at higher Re, in order to
establish to what extent compensators effectiveness increases with Re.

Most of the drag reduction results presented in the literature used wall actu-
ation and wall-normal transpiration as a natural choice. However, assuming that
the interpretation proposed in [37] is valid, the anisotropy patterns shown in Chap.
4 suggest that a condition of high drag reduction will never be attained when the
wall-normal velocity is used as the control input. Therefore, we suggest here that a
possible route to increasing the performance of feedback compensators may be that
of changing actuation component, for instance employing active feedback with a
wall distribution of spanwise velocity. Although spanwise forcing may be difficult
to implement, in partial support of this statement we note that substantial drag re-
ductions have been obtained with spanwise forcing when using feedforward control
strategies, such as spanwise wall oscillations [104] or streamwise-traveling waves
of spanwise velocity at the wall [101; 106].

The work presented in this thesis may be further extended in several directions.
The Wiener filtering approach to state estimation can be naturally augmented by
using multiple measurements of both skin friction components and pressure. In
this case, the resulting Wiener-Hopf equation for the filter frequency response will
have a matrix multiplicative coefficient and, therefore, will have to be necessarily
solved in time domain; this procedure is entirely feasible, provided that efficient
algorithms for the Cholesky factorization of the resulting block-Toeplitz matrix are
available. In an analogous fashion, the optimal compensator design can be ex-
tended to the multiple input-multiple output case; again, this extension leads to a
Wiener-Hopf problem with matrix coefficients, and the corresponding spectral fac-
torization should be performed via a time-domain algorithm. A further extension
of the present approach is the use of a robust control design technique in the IMC
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framework. Finally, the optimal compensator design technique presented in this
thesis can be employed, in general, whenever a linear control problem has to be
solved, given noise statistics and a linear model of the system; an example situation
may be when intermediate linear control problems have to be solved in a nonlinear
optimization procedure.

Though most of the results obtained in the present work do not appear encourag-
ing at first sight, feedback control of wall turbulence is on the very edge of research
in flow control, and much more efforts are needed to devise successful control and
estimation strategies. In the framework of linear control theory, it is our hope that
the present work will help developing viable design techniques for general flow con-
trol applications, while suggesting possible routes to be explored in future research
on control of wall turbulence.



Appendix A

LQR-control of wall turbulence: flow
statistics and Re-effects on drag
reduction

We study via DNS the performance of Linear Quadratic Regulators (LQR) de-
signed to reduce turbulent friction drag in a plane channel flow. Actuation is per-
formed via wall blowing/suction with zero net mass flux. We report the first sim-
ulations of controlled flow at moderate Reynolds numbers, and establish that the
amount of drag reduction decreases with Re. The controlled flow is given a statis-
tical description, that enables us to discuss similarities between LQR control and
opposition control.

Introduction
The reduction of turbulent skin friction drag is particularly appealing in many

industrial applications – such as those in aeronautics and naval industry – where
a slight improvement of the hydro- or aerodynamic efficiency of vehicles has the
potential of greatly reducing the operating costs. Passive and active feed-forward
control techniques for drag reduction have been developed in the past, and have met
with various degree of success [40]. Recently, active feedback control techniques
have been considered; owing to their feedback nature, such techniques have the
potential for yielding significant performance with limited control effort. Most of
the recent attempts to feedback-control a turbulent wall flow have addressed simple
flows in elementary geometries, such as the plane channel flow, and have explored
via Direct Numerical Simulation (DNS) different control approaches. Features of
MEMS-based actuators, to be used in prospective applications, most naturally sug-
gest distributed wall blowing/suction with zero net mass flux as the actuation tech-
nique of choice.

Choi et al. [26] introduced more than ten years ago a control strategy that uses
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such actuation, and that is today referred to as opposition control: at each time in-
stant and at each wall position, the wall-normal velocity component is set as oppo-
site to the one measured at some distance above. Provided this distance is properly
chosen, this technique has been shown to yield as much as 25% drag reduction, with
a net energy saving. Drag reduction was shown to occur [26] through the weaken-
ing the near-wall streamwise vortical structures, since the wall forcing counteracts
their induced velocity field. Opposition control has since then been considered by
other authors [45; 109], and in particular Iwamoto et al. [55] addressed the effect
of changing Reynolds number on the performance of opposition control, finding
a limited performance penalty when Reτ (based on friction velocity and half the
channel width) is increased from 100 to 650.

Leveraging modern control theory is a more recent approach, that does not rely
on physical intuition: it simply requires a linear model of the system to be avail-
able, and a proper objective function. Bewley et al. [12] and Högberg et al. [49; 50]
applied optimal control theory to the design of full-order LQR controllers for tran-
sitional and low-Reynolds number turbulent channel flow. They used the same kind
of wall forcing, i.e. distributed blowing/suction, and obtained encouraging results.
Drag reduction results have been reported also by Cortelezzi & Speyer [31] and Lee
et al. [74]; these authors focused on the design of reduced-order compensators, to
help handling the huge computational cost of the compensator design procedure.

There is thus an active research line devoted to designing model-based con-
trollers for turbulent drag reduction through wall-based actuation. To date, however,
a statistical characterization of the LQR-controlled flow is still missing. Indeed, re-
ports of control theoretic approaches mainly focused on the design procedure of
the controller itself, and the closed-loop system made by the turbulent flow plus its
controller was considered as a black box, looked at through the chosen objective
function and the corresponding performance in terms of drag reduction. It is a first
aim of the present paper to provide some additional physical insight as to how a
LQR controller affects the turbulent flow; in particular, we will discuss the degree
of similarity to the opposition control in terms of flow statistics and drag reduction
mechanism. A second, and not totally unrelated aim is to discuss how drag reduc-
tion performance depend on the value of the Reynolds number. Indeed available
data for LQR control concern low values of Re only, owing to the huge computa-
tional costs involved, and the highest simulated Reynolds number in the context of
turbulent plane channel flow is Reτ = 100. While inner scaling could be advocated
to suggest that positive performances extrapolate to higher Re, a careful scrutiny of
this aspect is essential to motivate further efforts and developments in this area, and
to assess how far the LQR control of turbulent wall flows can actually reach.

The structure of the paper is as follows. In §A a brief description of the flow
and the related control problem will be given, as well as a discussion of the control
parameters. Section §A focuses on the initial response of the system to the con-
trol action. Sections §A and §A are devoted to the analysis and discussion of the
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statistics of the controlled turbulent channel flow, and to a performance assessment.
Section §A discusses the drag reduction mechanism, and a concluding discussion is
given in §A.

Problem formulation
We shall consider the incompressible flow in an indefinite plane channel, with

control at the walls made by a distribution of wall blowing/suction with zero net
mass flux. The flow is simulated via DNS in a bi-periodic computational box with
size [0, L1]× [0, 2δ]× [0, L3] in the streamwise (x1), wall-normal (x2) and spanwise
(x3) directions, respectively. The corresponding velocity components are denoted
by u, v and w. When convenient, the x2 direction will be denoted with y.

The design procedure for the controller follows closely the one proposed by
Högberg et al.[49], to which the reader is referred for details. The governing in-
compressible Navier-Stokes equations are linearized around the laminar Poiseuille
solution U(x2) and rewritten in the well-known v-η formulation, where η denotes
the wall-normal vorticity component. Fourier transforming the v and η equations in
the homogeneous directions x1 and x3 yields:

∆ ˙̂v = [−iαU∆ + iαU ′′ + ∆∆/Re]v̂ = Lv̂

˙̂η = [−iβU ′]v̂ + [−iαU + ∆/Re]η̂ = Cv̂ + Sη̂
(A.1)

which corresponds to a transformation into the Orr-Sommerfeld-Squire form. Here
α and β denote the wavenumber in x1 and x3 directions, respectively, and ∆ =
∂2/∂x2

2 − α2 − β2; variables with the hat are Fourier coefficients, the dot denotes
time differentiation, and the Reynolds number Re is defined with the bulk velocity
Ub and the channel half-width δ.

The system (A.1) is then recast in state-space form with a lifting procedure[49].
The differential system

ẋ = Ax+Bφ̇ (A.2)

is obtained, where x is the state and the control input φ̇ is the time-derivative of the
wall blowing/suction velocity at the channel walls.

Controllers are designed by applying optimal control theory to this system. In
particular, the problem is stated as the search for a proportional (in Fourier space)
controller K such that the control law φ̇ = Kx minimizes a suitable quadratic cost
functional, as the following:

J =

∫ +∞

0

(xHQx+ φ̇HRφ̇) dt, (A.3)

where the hermitian positive semidefinite matrix Q and the hermitian positive defi-
nite matrixR are design parameters. The optimal control problem is thus reduced to
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the minimization of the functional J , constrained by the state-space equation (A.2).
It can be shown [36] that the optimal feedback gain matrix K can be found by

K = −R−1BHZ,

where Z is the so-called stabilizing solution to the following algebraic Riccati equa-
tion:

ZA+ AHZ − ZBR−1BHZ +Q = 0. (A.4)

The optimal control problem is completely defined by the system dynamics (ma-
trix A), the actuation technique (matrix B), and the state and input weighting ma-
trices Q and R. In order to obtain a linear representation which is, in some sense,
closer to the real flow system, the mean flow profile of the uncontrolled turbulent
flow is used in the definition of A. The importance of using the actual mean flow
profile has been highlighted by Högberg et al.[50], where a controller scheduled
on a set of velocity profiles between the laminar and mean turbulent one led to
relaminarization of Reτ = 100 turbulent channel flow. The dependence of the con-
trol performance on the choice of the cost functional has been discussed in previous
work[12] suggesting that, in the present infinite-horizon setting, it is senseful to em-
ploy an objective function derived from the kinetic energy of the flow perturbations,
in the following weighted form:

E(α, β) =
1

8k2

∫ 1

−1

w(x2)
(
k2|v̂|2 + | ∂v̂

∂x2

|2 + |η̂|2
)
dx2

The function w(x2) is an arbitrary weighting function that can be used as a
tailoring parameter in the controller design process. Kim & Lim[66] suggested
that a control system targeting the linear coupling term C = −iβU ′ in the Orr-
Sommerfeld-Squire equations would be effective in suppressing the self-sustained
cycle of wall turbulence. Following Högberg et al.[50], we choose a weighting func-
tion of the form w(x2) = 1 +U ′(x2)2 to target indirectly the coupling term C, with
the additional advantage of having an increased weight on near-wall states, more
prone to be affected by wall-based control. The selection of the control weighting
matrix R is a practical matter, that in the design of real control systems involves
accounting for technical specifications of the actuators. In the present idealized set-
ting, we use a matrix R = ρI , I being the identity matrix, and ρ = 0.01. This value
allowed us to keep the maximum magnitude of the wall blowing/suction velocity
below the reasonable limit of 15% of the bulk velocity, for the considered values of
Re.

The solution to the optimal control problem described above involves solving
equation (A.4) for each wavenumber pair (α, β): thanks to decoupling in Fourier
space, the entire control problem requires the solution of a large number of one-
dimensional problems. Controllers are reconstructed for the full velocity and vor-
ticity fields v and η. Fourier transforming back to physical space yields the so-called
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case Re Reτ N1 N2 N3 ∆x+
1 ∆x+

2,m ∆x+
3 ∆t+

L 1450 100 128 64 128 9.8 5.4 4.9 0.31
M 3333 200 256 128 256 9.8 5.4 4.9 0.29
H 6882 400 512 256 512 9.8 5.4 4.9 0.19

Table A.1: Parameters of the spatial and temporal discretization (quantities with + superscript are made nondimensional with
inner variables of the uncontrolled flow); ∆x2,m is the maximum grid spacing in the wall-normal direction.

control convolution kernels; these two kernels Kv and Kη relate the control signal
φ̇(x, z, t) at a given time to the v and η fields in the whole domain via the following
convolution integrals:

φ̇(x, z, t) =

∫
Kv(x− x, y, z − z)v(x, y, z, t) dxdydz

+

∫
Kη(x− x, y, z − z)η(x, y, z, t) dxdydz.

(A.5)

Computing the control kernels requires the efficient solution of a large number
of algebraic Riccati equations (A.4), one for each wavenumber pair. These equa-
tions are solved using the Schur method [32]; the flop count of this method can be
estimated to be O(N3), where N is the number of states. The overall complexity
of the algorithm for the computation of the whole kernel, exploiting hermitian sym-
metry in Fourier space, is O(4N1 · N3 · N3

2 ), where N1 and N3 denote the number
of modes in streamwise and spanwise directions, respectively, whereas N2 is the
number of points in the wall-normal direction.

The controlled channel flow is simulated numerically with DNS by using the
computer code and computing system developed by Luchini & Quadrio[80]. The
code is a parallel solver of the Navier-Stokes equations for the incompressible flow
in a plane channel. Time advancement employs the usual semi-implicit approach,
where nonlinear terms are advanced explicitly with a low-storage Runge-Kutta
scheme, and viscous terms are advanced implicitly. The mixed spatial discretiza-
tion employs Fourier expansions in wall-parallel directions, and fourth-order accu-
rate compact explicit finite difference schemes discretize the wall-normal direction.
The locality of finite difference operators in physical space allows to exploit a sim-
ple partitioning of the data among different computing machines, with excellent
parallel performance. The amount of communication is reduced by a carefully de-
signed parallel algorithm, so that the code can run on a computing system assembled
without expensive networking hardware.

Direct numerical simulations of the controlled turbulent channel flow are per-
formed at three values of the Reynolds number, namelyRe = 1450,Re = 3333 and
Re = 6882. The simulation with the lowest Re will be referred to in the following
as case L; the one with the medium value as case M, and the one with the highest
value of Re as case H. In all the three simulations the computational domain has
dimensions of L1 = 4πδ and L3 = 2πδ. The integration time for cases L, M and
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H is TUb/δ = 1500, TUb/δ = 1000 and TUb/δ = 500, respectively. The spatial
resolution is kept constant in inner units as Re increases; details on the number of
modes / points employed in each simulation and its space-time resolution are re-
ported in Table A.1. The initial condition for every simulation is a velocity field of
a fully developed turbulent channel flow, each adapted to the required value of Re.
The temporal integration scheme used to advance the governing equations is also
used to integrate the control derivative φ̇(x̂1, x̂3, t) from a zero initial condition to
obtain the control history.

Initial response to control action
When the controller is turned on at t = 0, the turbulent flow exhibits a tran-

sient response before ultimately reaching a new statistically stationary equilibrium
state. It is interesting to focus on the transient response of the longitudinal shear
stress. Figure A.1 (top) shows the initial evolution of the space-averaged friction
in response to the control action; here quantities are made non-dimensional with
the friction velocity of the uncontrolled flow, since this is the appropriate reference
velocity when t → 0+. The three responses peak at t+ ≈ 4 and, more importantly,
responses in cases M and H almost collapse. The response for case L presents the
same qualitative behavior, but with quantitative differences, and this may be a low-
Reynolds-number effect. This result suggests that the initial transient response of
the wall shear stress is a property associated to the inner layer of the uncontrolled
turbulent flow.

A similar behavior is found in the initial history of the control power Pφ, defined
as[12]:

Pφ =

∫
A

(
|φ|ρφ

2

2
+ |φ(p− p)|

)
dA,

whereA denotes the area where control is applied (both channel walls in the present
case), p − p denotes the fluctuation around the mean pressure, and ρ is the density
of the fluid. Fig. A.1 (bottom) shows the initial transient of P+

φ . The three curves
peak at t+ ≈ 1; moreover, the responses in case M and H almost collapse, are not
monotonic in the interval 0 < t+ < 5.

The initial response of other quantities characterizing the flow, namely, turbulent
kinetic energy and dissipation, did not reveal the same scaling. This is an expected
result, explained with the integral nature of energy and dissipation, that involves
contributions from fluctuations residing both in the inner and the outer layer.

Statistics
After the initial transient has elapsed, the LQR-controlled channel flow features

peculiar statistics. These are discussed in the following, where variables with the
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Figure A.1: Top: Initial response of the space-averaged wall shear stress τ+. Bottom: initial history of the control power
P+
φ . Case L (dashed), case M (solid), and case H (dot-dashed). Each curve is obtained by ensemble averaging over the

two walls and over 10 realizations of the initial transient, starting from independent initial conditions. Quantities are made
non-dimensional with wall variables of the uncontrolled flow.
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+ superscript are now made non-dimensional with the viscosity and the friction
velocity of the controlled flow.

We first look at the mean velocity profile U+. A Taylor series expansion of the
ratio U+/y+:

U+

y+
= 1 +

1

2Reτ

[ δ
u2
τ

〈uy,wφ〉 − 1
]
y+ + . . .

highlights the effects of the control on the mean velocity profile. In this expres-
sion, 〈·〉 is the averaging operator over time and homogeneous directions, and uy,w
denotes the wall-normal derivative of the streamwise velocity at the wall. In the
controlled case, the first-order coefficient −1/2Reτ is modified by the presence of
the non-zero term 〈uy,wφ〉. Its effect on the near-wall behavior of the mean velocity
profile is shown in fig. A.2 (top), where the ratio U+/y+ is reported against y+ for
both the uncontrolled and controlled flows, in case M. The effect of the control is
evident for y+ < 10, and it is shown qualitatively that an increase in the size of the
buffer layer is accompanied by a decreased thickness of the layer where the mean
velocity profile is linear. The term 〈uy,wφ〉 is a function of Reτ itself, and an in-
crease of the Reynolds number emphasizes its effect, as shown in fig. A.2 (bottom);
this figure also shows that, for all the Reynolds numbers considered,

〈uy,wφ〉 <
u2
τ

δ
= −1

ρ

dp

dx
,

where dp/dx is the mean pressure gradient. It is noteworthy that the wall-normal
velocity component φ at the wall depends, after its definition eq. (A.5), on the flow
and its history; as a consequence, statistics of φ inherit in a nontrivial way features
of the whole turbulent field. Hence, modifications of the near-wall behavior of
mean velocity profiles may be associated to a strengthened coupling between the
inner and outer layer with respect to the uncontrolled flow.

Semilogarithmic plots of the mean velocity profile for the uncontrolled and con-
trolled flow are reported in fig. A.3. The controlled flow exhibits a log layer, with
the same slope as the uncontrolled. An upward shift in the log layer is shown in
fig. A.3 (top); this feature has been noticed in a large variety of drag-reduced tur-
bulent wall flows. As expected, increasing the Reynolds number is associated to an
increased extent of the logarithmic region.

We note here that similar effects were shown by Choi et al. [26] when using
opposition control. In their work, the upward shift in the log law was attributed to
an increased size of the viscous sublayer in presence of the control; this argument
was supported with plots (similar to the present fig. A.2) where an increased size
of the region where U+/y+ ≈ 1 was reported. In the present case, the departure
of the mean velocity profile from linearity is much more evident; however, the re-
gion where viscous stresses are dominant is thickened by the control. This can be
noticed from fig. A.4, where the component 〈uv〉+ of the Reynolds stress tensor is
reported against y+. Fig. A.4 (top) compares the 〈uv〉+ profile of the controlled and
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Figure A.2: Near-wall behavior of the mean velocity profile U+. Top: comparison of the uncontrolled (solid) and controlled
(dashed) flow for case M. Bottom: Reynolds number effect on the near wall behavior for case L (dashed), case M (solid) and
case H (dash-dotted).
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Figure A.3: Mean velocity profile in the law-of-the-wall form. Top: comparison of the uncontrolled (solid) and controlled
(dashed) flow for case M. Bottom: Reynolds number effect on the mean velocity profile for case L (dashed), case M (solid)
and case H (dash-dotted).
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uncontrolled flow in case M; it is shown, indeed, that the region where Reynolds
stresses are less than ≈ 10% of the total stress widens from ≈ 5 to ≈ 10 wall units.

Taylor series expansion in y direction of the velocity components near the wall
and application of boundary conditions reveal that, in the controlled case, the de-
parture of the Reynolds stress profile from the wall is linear:

〈uv〉+ ≈ 〈uy,wφ〉+y+ + . . .

instead of the usual behavior ∼ y+3 in uncontrolled channel flow. The intensity
of the fluctuations is reduced along the whole channel, but for the region y+ <
5. An increase in the value of the Reynolds number modifies the curve in terms
of amplitude and position of the local minimum and global maximum, while the
position of the near-wall local maximum apparently is not changed with Re.

The variance of the streamwise and wall-normal velocity fluctuations 〈uu〉+ and
〈vv〉+ is reported in fig. A.5 and fig. A.6. The component 〈ww〉+ of the Reynolds
stress tensor is slightly affected by the control and it is not reported here. Top frames
of both figures compare the uncontrolled and controlled flow for case M. Control
reduces the intensity of fluctuations, and in particular the peak intensity of 〈uu〉+
is moved toward the center of the channel. In the near wall region, this profile
is not monotonic with y+, and a local maximum and minimum are present. These
features characterize the whole Reynolds number range considered, as shown in fig.
A.5 (bottom). The wall-normal velocity fluctuation 〈vv〉+ is affected by the non-
homogeneous boundary condition on v, and this explains the non-zero variance at
y+ = 0. A local minimum is present at about y+ ≈ 5; the same feature was reported
by Choi et al. [26], and was then associated by Hammond et al. [45] to the presence
of a so-called virtual wall inside the flow. For y+ > 10, the 〈vv〉+ fluctuations in the
controlled case are reduced, but the peak is located nearly in the same position of the
controlled case. Reynolds number increase affects the intensity of the fluctuations,
but the overall behavior of the curves does not change significantly (see fig. A.6
(b)). We also note here that, by Taylor series expansion of the v component near the
wall, and using continuity, one obtains:

〈vv〉+ = 〈φφ〉+ + 〈φvyy,w〉+y+2

+ . . .

where vyy,w denotes the second derivative of v at the wall. It can be seen from fig.
A.6 that the term 〈φvyy,w〉 is negative, for the three values of Re considered; this
fact was evident also in in the data of Choi et al. [26] when using opposition control.

The production term
(
−〈uv〉dU/dy

)+

in the balance equation for the turbulent
kinetic energy is reported in fig. A.7 (top) for the uncontrolled and controlled flow
in case M. It is interesting to note that, although the intensity of the components
of the Reynolds stress tensor is reduced along most of the channel, the production
of turbulent kinetic energy is reduced in the range 5 < y+ < 15 only, i.e. where
the production of the uncontrolled flow peaks. Outside this range, the production
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Figure A.4: Reynolds stresses 〈uv〉+. Top: comparison of the uncontrolled (solid) and controlled (dashed) flow for case M.
Bottom: Reynolds number effect on the profile of 〈uv〉+; curves for case L (dashed), case M (solid), case H (dash-dotted).
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Figure A.5: Reynolds stresses 〈uu〉+. Top: comparison of the uncontrolled (solid) and controlled (dashed) flow for case M.
Bottom: Reynolds number effect on the profile of 〈uu〉+; curves for case L (dashed), case M (solid), case H (dash-dotted).
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Figure A.6: Reynolds stresses 〈vv〉+. Top: comparison of the uncontrolled (solid) and controlled (dashed) flow for case M.
Bottom: Reynolds number effect on the profile of 〈vv〉+; curves for case L (dashed), case M (solid), case H (dash-dotted).
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Figure A.8: Performance of the controller as a function of Re. 4: Turbulent kinetic energy. ◦: Skin friction drag. 2: Net
power saved.

for the controlled flow exceeds the one of the uncontrolled flow, at least with the
present scaling. A Reynolds number increase (fig. A.7 (bottom)) does not affect the
general shape of the curves, and affects slightly the positions of the extrema in the
y direction .

Performance
Skin friction drag and turbulent kinetic energy are significantly reduced in the

controlled turbulent flow, if compared with the uncontrolled flow at the same Re.
This effect is quantified by introducing the following drag reduction (DR) and en-
ergy reduction (ER) indexes:

DR = 100
τr − τc
τr

, ER = 100
Er − Ec
Er

,

where the subscripts r and c stand for the reference and controlled flow, respectively,
and E denotes the turbulent kinetic energy. The power reduction index (expressing
the net power saved when applying the controller) is defined as:

PR = 100
Pr − Pc
Pr
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where Pc is the sum of the time average of Pφ and the (reduced) power required to
drive the flow against the viscous shear stress. In the evaluation of these indexes,
care has been exercised in properly removing the transient initial response of the
turbulent channel flow to the control action. Values of these performance indexes
are reported in fig. A.8 against Re. Fig. A.8 shows that energy reduction is most af-
fected by the Re increase, while drag and power reduction decrease almost linearly
with Re. It is shown that, in case H, 20% drag reduction is achieved with 15% of
net power saved with respect to the uncontrolled case. In terms of drag reduction,
these results slightly outperform the opposition control [55] at comparable Reynolds
number. However, the trend which emerges from our simulations is definitely one
of decreasing DR with increasing Re, in contrast with the opposition-controlled
flow, whose drag-reducing performance above Reτ = 100 has been shown to be
practically independent of Re.

Drag reduction mechanism
To discuss the mechanism by which LQR control achieves turbulent drag reduc-

tion, we start by comparing the degree of anisotropy that characterizes the near-wall
flow with and without control.

As shown by Lumley & Newman[84], anisotropy in a turbulent flow is properly
quantified by the normalized anisotropy tensor aij , defined as:

aij =
〈uiuj〉
〈ukuk〉

− 1

3
δij

where δij is the Kronecker symbol, and repeated indexes imply summation.
In particular the second and third invariants, IIa and IIIa, of the tensor aij

can be computed, to produce anisotropy invariant maps. In fig. A.9 these maps
for the uncontrolled (top) and the controlled flow (bottom) are compared in case
M. A point in the map identifies a particular wall distance y, to which the couple
(IIIa,IIa) is associated. All admissible turbulence states lie inside the triangular
region, known as the Lumley triangle [99], delimited by black thick lines. In the
uncontrolled case (fig. A.9, top), the usual anisotropy pattern of a turbulent chan-
nel flow is observed, namely, the turbulent flow is predominantly two-component
in the near-wall region, and eventually moves towards the isotropic state in the cen-
ter of the channel. The anisotropy invariant map for the controlled flow (fig. A.9,
bottom) shows some special features. The point at y = 0 (not shown) is charac-
terized by pure one-component turbulence (the control action), and is located on
the right-top corner of the triangle. The very-near-wall velocity field changes along
y from a condition of nearly axisymmetric turbulence strained by expansion (right
side of the triangle, where the v component is much larger than the other two com-
ponents) to a condition of nearly axisymmetric turbulence strained by compression
(left side of the triangle, where the fluctuations of v are smaller than those of u and
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Figure A.9: Anisotropy invariant map for the uncontrolled (top) and controlled (bottom) flow for case M.
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w) at y+ ≈ 6, the location corresponding approximately to the minimum of 〈vv〉+.
Locations closer to the centre of the channel tend towards the isotropic state, as
in uncontrolled channel flow. A recent study [37] used the concept of anisotropy
invariant mapping to characterize common features in drag-reduced turbulent wall
flows. These authors noted that a large variety of such flows were characterized by
increased level of anisotropy (towards the one-component state) of the flow in the
near wall region. The present results show that this interpretation does not apply in
the present case, where the anisotropy pattern of the flow is fairly more complex.

To gain some insight on the effects of increasing Re on drag reduction, we use
the result, recently demonstrated by Fukagata et al. [38], that the friction coefficient
in a turbulent channel flow at fixed flow rate can always be expressed as:

Cf =
3

Re
+ 6

∫ 1

0

(y − 1)〈uv〉 dy

even when wall blowing and suction with zero net mass flux is applied.
In this relation, the first term is the laminar contribution, and the second is a

weighted integral of the Reynolds stress component 〈uv〉 across the channel. The
integrand (y − 1)〈uv〉 is plotted against y in fig. A.10, for the uncontrolled and
controlled flows, cases L and H. The difference in the areas under the two curves is
directly proportional to the drag reduction. It is shown that the effect of the control
causes a negligible positive contribution to the total drag for y → 0, and this effect
becomes less and less important at higher Re. It is interesting to note that, in the
controlled case, an increase of the value of the Reynolds number causes the peak
value to increase and its position to become closer to the one of the uncontrolled
flow, squeezing the area under the curve in the near wall region, hence decreasing
the drag reduction amount.

Finally, the drag reduction mechanism may also be investigated by means of
visualizations of the instantaneous velocity fields in the controlled case, to verify
whether a link between LQR control and opposition control can be visually estab-
lished.

In fig. A.11, surfaces of constant (uv)+ = −3 are visualized, and colored
according to the value of the vertical velocity, to highlight that a pattern emerges
where wall suction is applied under ejection events (regions with u < 0 and v > 0),
whereas wall blowing tends to be associated with sweep events (regions with u > 0
and v < 0). Similar conclusions can be drawn from the analysis of fig. A.12,
where two views of the channel wall are presented, separately picturing blowing
with high-speed streaks and suction with low-speed streaks.

Discussion and conclusions
This paper has described LQR controllers applied to turbulent channel flow for

drag reduction, and has focused on their performance at differentRe. We have stud-
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Figure A.10: Weighted Reynolds stress contribution (y − 1)〈uv〉 for case L (top) and case H (bottom). Comparison of the
uncontrolled (solid) and controlled (dashed) flow.
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Figure A.11: Visualization of surfaces at constant value of (uv)+ = −3 in the controlled flow, in a subset of the computa-
tional domain with size L1/2× L3/2 in streamwise and spanwise direction, and y+ < 60. Surfaces are colored according
to the local value of the vertical velocity v. Light surfaces correspond to ejection events, whereas dark correspond to sweeps.
The wall (lower surface) is colored according to the same scheme, showing that, typically, wall blowing/suction is applied
underneath sweep/ejection events, respectively.

ied the effects of this control strategy at values of Re significantly higher than those
ever reported in the literature. Though this issue is certainly of crucial relevance in
assessing the feasibility of a control strategy for practical applications, LQR control
has been studied to date with DNS at very low values of Re, owing to the huge size
of the computational problem, where computing the control kernels is significantly
demanding.

Results presented in this paper suggest that LQR control, that uses optimal con-
trol theory by relying upon a linearized model of the system, shares some of its
features with opposition control [26], that in contrast derives its control law from an
informed guess driven by physical intuition alone. Statistics of the controlled flow
and flow visualizations suggest that the LQR controller interacts favourably with
near-wall structures, counteracting the sweep and ejection events, and ultimately
acts with a mechanism which definitely resembles, at least qualitatively, that of the
opposition control. It becomes thus natural to compare the two control strategies
in terms of performance degradation at relatively high Re. On one side, opposition
control has been shown [55] to present a low (if any) sensitivity to Re in terms
of amount of drag reduction. This is at odds with the LQR controller, whose per-
formance have been shown here to degrade significantly. Moreover, the net power
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Figure A.12: Visualization of high (light, bottom) and low (dark, top) speed streaks u+ = ±3 in the same subset of the
computational domain as in fig. A.11. View from below; black lines (at the wall) are at constant wall-normal velocity
v+ = 0.2 (bottom) and v+ = −0.2 (top). It is shown that, typically, wall blowing/suction is located underneath the
high/low speed streaks, respectively.
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saved as a function of the Reynolds number decreases almost linearly from ≈ 30%
at the lowestRe to≈ 15% in case H: this results is particularly worrying, especially
if one considers that the present results might still be affected by residual low-Re
effects, as pointed out by Moser et al. [91].

While this is certainly not good news for LQR control, it is as yet unclear,
however, how far-reaching the significance of this result really is. The maximum
Reynolds number tested in this work is limited by computational resources, and it
is not yet high enough to exclude that performance degradation will disappear as
soon as low-Re-effects are suppressed. On the other hand, the two techniques are
quite similar in terms of physical mechanism. It is our opinion that a possibility
exists to exploit the few design degrees of freedom available in LQR control to
further increase performance and at the same time to obtain a smaller performance
degradation with Re, or no degradation at all.

It is worth recalling that the asymptotic performance of active controllers at high
Reynolds numbers has been studied theoretically by Iwamoto et al. [54]. They have
hypothesized that the control system is capable of completely suppressing velocity
fluctuations in the near-wall region, and have demonstrated that such a controller
could yield good performance at high Reynolds number too. We notice that this
theoretical result does not apply to the present case, since our controllers increase,
or at least do not reduce, the intensity of near-wall fluctuations when compared to
the uncontrolled case.

Finally we conclude with the observation that the success of LQR control pro-
vides further indirect support to the idea that linear mechanisms, related to the Orr-
Sommerfeld-Squire operator and in particular to the linear coupling term, play an
important role in the non-linear, self-sustaining mechanism of the turbulence wall
cycle [66]. The present controller, thanks to the model-based design that accounts
for the linear dynamics of the system, is indeed capable of targeting these linear
mechanisms and of weakening the wall cycle.
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Appendix B

Feedback control of transient energy
growth in subcritical plane Poiseuille
flow

Active suppression of the transient energy growth in subcritical plane Poiseuille
flow is addressed. It is assumed that the time derivative of the wall-normal ve-
locity component can be imposed at the walls as the control input, and that full-
state information is available. We show first that it is impossible to design a linear
state-feedback controller that leads to a closed-loop system without transient en-
ergy growth. In a second step, a linear state feedback many wavenumber controller
kernel, targeting directly the transient growth mechanism, is designed, and its per-
formance successfully tested in a fully nonlinear simulation.

Introduction
Transient energy growth has recently been recognized as a possible mechanism

explaining subcritical transition in wall-bounded flows. In fact, subcritical flows
may experience large transient amplifications of the energy of perturbations, that
could trigger nonlinear mechanisms and lead to transition to turbulence[20; 110;
122; 77].

Many recent attempts in the active control of transitional flows have targeted
this transient growth mechanism. In recent works Corbett & Bottaro[30] addressed
the control of two- and three-dimensional nonmodal disturbances in boundary-
layer flows in the framework of optimal control theory, and Zuccher et al.[142]
applied steady suction for attenuating the growth of assigned optimal disturbances
in a Blasius boundary layer. In plane Poiseuille flow, optimal and robust control
theory was applied to a state-space model derived after discretization of the Orr-
Sommerfeld-Squire equations, by Bewley & Liu[15] for a single wavenumber pair
and by Högberg et al.[49] for a large array of wavenumber pairs. This led to a

127
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reduction of the maximum transient growth as well as to an increase in transition
thresholds. Despite these efforts, however, to date no feedback control law has been
ever found that is capable of ensuring that the closed-loop system does not admit
transient energy growth, or, in other words, is strictly dissipative. Such control law
is the subject of the present paper.

The problem of designing active controllers with constraints on some norm of
the state trajectory has received attention in the analysis of a class of partially linear
cascade systems [130], and more recently in conjunction with a linear matrix in-
equality (LMI) approach [98; 97]. In a fairly recent paper, Whidborne & McKernan
[136] extended these results, and gave conditions for the existence of a feedback
controller that ensures the strict dissipativity of the closed-loop system.

Leveraging these results, in the present paper we will show that it is impossible
to design a linear state-feedback controller ensuring the controlled plane Poiseuille
flow to be strictly dissipative. Then, using a recently developed technique [85; 137],
we will compute an upper-bound minimizing controller; its performance will be
tested in a fully nonlinear simulation.

Problem formulation
We consider the dynamics of small perturbations to the laminar Poiseuille solu-

tion in a plane channel. A cartesian coordinate system is introduced, where x, y de-
note the streamwise and wall-normal directions, and u, v denote the corresponding
perturbation velocity components. The Navier-Stokes equations, linearized around
the laminar solution U(y) = Up(1 − y2), are non-dimensionalized with the centre-
line velocity Up and the channel half-width δ, and rewritten in the form of a single
equation for v. Fourier transformation in x direction yields the well known Orr-
Sommerfeld form:

∆ ˙̃v = [−jαU∆ + jαU ′′ + ∆∆/Re]ṽ (B.1)

at the streamwise wavenumber α. In this expression, the tilde denotes Fourier co-
efficients, j is

√
−1, ∆ = d2/dy2 − α2, and Re = Upδ/ν is the Reynolds number,

ν being the kinematic viscosity of the fluid. We select boundary conditions repre-
senting time-varying wall-normal transpiration:

ṽ(y = 1, t) = q̃u(t),

ṽ(y = −1, t) = q̃`(t),

∂ṽ

∂y
(y = ±1, t) = 0.

(B.2)

These conditions are enforced by representing ṽ as a homogeneous component
ṽh(y, t) plus inhomogeneous (actuation) components fu(y)q̃u(t), f`(y)q̃`(t)

ṽ(y, t) = ṽh(y, t) + fu(y)q̃u(t) + f`(y)q̃`(t), (B.3)
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where fu(y) = (−y3 + 3y+ 2)/4 and f`(y) = (y3− 3y+ 2)/4 are inhomogeneous
functions for the upper and lower wall actuations, respectively[85]. All components
of ṽ have vanishing y derivatives at the walls. We discretise ṽh in the wall-normal
direction using a modified Chebyshev series cardinal function basis

ṽh(y, t) =
N−4∑

0

ΓDNn (y)av,n(t), (B.4)

where the modified Chebyshev functions ΓDNn (y) implicitly enforce the required
homogeneous Dirichlet and Neumann boundary conditions, lead to good condition-
ing of the discrete Laplacian operator, and are such that no spurious modes are
generated [85].We then evaluate the equations on a set of Gauss-Lobatto colloca-
tion points in y direction, i.e. yk = cos(πk/N), k = 2, . . . , N − 2, to obtain the
system of equations

Ea + Fq = Lȧ + Gq̇, (B.5)

where q = (q̃u, q̃`)
T and a = (av,0, . . . , av,N−4)T . Finally we rearrange the equa-

tions as actuation by rate of change of transpiration q̇ instead of a combination with
transpiration q [49](

ȧ
q̇

)
=

(
L−1E L−1F

0 0

)(
a
q

)
+

(
−L−1G

I

)
q̇

i.e. as a linear time-invariant plant[127]

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (B.6)

where A, B are constant system and input matrices, and u, x are respective input
and state vectors, and where we have transformed x such that the system energy is
xHx[127].

Theorem
We now recall a theoretical result that will be exploited in the sequel. We con-

sider the linear time-invariant plant (B.6) and further assume that BHB > 0, that is
B has full column rank (i.e. all the actuators are independent). As shown by Whid-
borne & McKernan[136, Theorem 1], a static state-feedback controller u = Kx
exists, where K is a constant matrix, such that the closed-loop system possesses
strict dissipativity (i.e. energy xHx decays monotonically from all initial conditions
x0), if and only if

B⊥
(
A + AH

)
B⊥H < 0 or BBH > 0, (B.7)

where B⊥ is the left null space of B. Additionally[136], if no static controller that
achieves strict dissipativity exists, then no dynamic state-feedback controller, where
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u is given from x by the dynamic system

ẋk(t) = Akxk(t) + Bkx(t), xk(0) = xk0, (B.8)
u(t) = Ckxk(t) + Dkx(t), (B.9)

where Ak,Bk,Ck and Dk are constant matrices and xk are controller states, exists
either. The theorem is actually more general, as it states[136] additional criteria in
the case of a static and dynamic output feedback controller.

We now move to applying the theorem to the present system. It is immediate to
verify that the second criterion in (B.7) is never satisfied in the present system, as the
hermitian matrix BBH is never positive definite but is always positive semidefinite,
since the dimension of the input vector is always smaller than the one of the state
vector.

On the other hand, verifying the first algebraic criterion in (B.7) is not trivial,
and thus we opt for a numerical verification. In particular, the state-space model
(B.6) is first obtained on a fine grid and then truncated, as suggested by Reddy
& Henningson[110], by retaining a limited number Nt of eigenfunctions, while
discarding the ones corresponding to highly damped eigenvalues. This leads to a
reduced-order model Ar,Br, and the negative-definitess of the corresponding matrix
B⊥r
(
Ar + AH

r

)
B⊥Hr in (B.7) is verified by computing its maximum (real) eigen-

value λmax, for an array of (Re, α) pairs. Figure B.1 shows the present result along
with the well-known result on the transient growth dependence on (Re, α) in plane
Poiseuille flow[110] (i.e. the open-loop case). The white area corresponds to the do-
main where the open-loop system is strictly dissipative[110], while the shaded area
is the region where the open-loop system admits transient energy growth. Lines
correspond to level curves of λmax, and it can be appreciated that the line corre-
sponding to λmax = 0 lies on the very boundary between the shaded and white
areas. This means that the hermitian matrix B⊥r

(
Ar + AH

r

)
B⊥Hr is indefinite when

the open-loop system is not strictly dissipative. From the theorem stated above,
this implies that a linear state-feedback controller cannot be designed to ensure the
closed-loop Poiseuille flow to be strictly dissipative, when the corresponding open-
loop flow is not. This result highlights an inherent limitation in the feedback control
of the transient growth mechanism, when actuation with the time rate of change of
the wall-normal velocity at the walls is used. In a practical setting, perturbations
will be spectrally distributed on a broad range of wavenumbers, including those as-
sociated to two-dimensional dynamics; hence, the present result is significant in the
three-dimensional case as well.

LMI upper bound minimizing controller and results
We now turn to the design of a linear state-feedback controller by using a tech-

nique that directly targets the transient growth mechanism. The technique of Whid-
borne & McKernan[136] to design controllers that minimize the transient growth is
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Figure B.1: Numerical verification of the first algebraic criterion in eq. (B.7). Lines: contours of constant λmax(Re, α).
Levels are from −0.1 to 0.4 by 0.1 increments (from left to right); dashed line is negative value. The shaded area corre-
sponds to the domain where the open-loop system is not strictly dissipative, i.e. admits a transient growth. The level curve
corresponding to λmax(Re, α) = 0.0 lies on the boundary of the region, indicating that no state feedback controller can be
designed to ensure strict dissipativity of the closed-loop system when the open-loop system is not strictly dissipative. Result
obtained with N = 100, Nt = 50.

too computationally demanding for this problem. However, a less demanding LMI-
based technique [85; 137] that minimizes an upper bound on the transient growth
can be used instead. In order to keep controller gains sensibly low, the constraint
uH(t)u(t) ≤ µ2 for all t ≥ 0 is now included in the formulation.

This upper bound minimizing controller is designed for an array of wavenum-
ber pairs, in a plane channel having length Lx/δ = 24π and αmaxδ = 2, and the
same constraint to the control effort µ = 100 is applied to all wavenumbers. The
exacting memory requirements of LMI solvers limit matrix sizes to double figures;
in the design of the present controller, y discretization was limited to 54 grid points,
itself a significant increase over the 20 grid points employed by McKernan[85] in
plane Poiseuille flow. Upon inverse Fourier transformation to physical space, con-
troller gains take the form of a convolution kernel. The integral in y direction of
the squared value of the kernel is reported in fig. B.2 as a function of x, evidenc-
ing compact support. This feature has been noticed previously, e.g., by Högberg et
al.[49], when describing the spatial structure of a convolution kernel obtained by a
LQR approach in plane Poiseuille flow.

The effectiveness of this kernel has been tested on a direct numerical simula-
tion of perturbed Poiseuille flow, where optimal perturbations are given as initial
conditions on the first 24 modes. The DNS is performed with the code developed
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Figure B.2: Integral in y direction of the LMI kernel. Result obtained with Lx/δ = 24π, αmaxδ = 2, µ = 100.

by Luchini & Quadrio[80]; the length of the domain in streamwise direction is
Lx/δ = 24π and the value of the Reynolds number is Re = 500. Results reported
in fig. B.3 show that the maximum energy amplification in the controlled case is
about 70% of the one of the uncontrolled system.

Conclusions
In summary, we have exploited a recent result in the field of control theory,

to demonstrate that it is impossible to achieve strict dissipativity for the plane
Poiseuille flow when using a linear state-feedback controller that uses the time
derivative of the wall-normal velocity component at the walls as control variable.
We have also proposed a technique, based on a Linear Matrix Inequality approach,
that directly addresses the growth mechanism, and we have shown an example re-
sult in a fully nonlinear simulation. Clearly, the ability of a feedback controller to
completely suppress the transient growth mechanism depends on the kind of ac-
tuators used (i.e. the matrix B). Thus, this result does not exclude that feedback
controllers designed for systems with different actuators (for instance, tangential
actuation, or actuation with the wall-normal velocity itself) may achieve the com-
plete closed-loop suppression of the transient growth mechanism, at least in some
range of α and Re. An example of such complete closed-loop suppression was pre-
sented by Sharma et al.[125]; however, the actuation in their model was made by
a body force (corresponding to having BBH positive definite) instead of the more
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Figure B.3: Time history of the energy in the uncontrolled (solid) and controlled (dashed) cases; results obtained with
Lx/δ = 24π, αmaxδ = 2, µ = 100, and the optimal initial condition for the uncontrolled flow is given to both simulations
on the first 24 modes.

practically appealing wall-based actuation.
For a given system and actuation technique, the present results provide an alter-

native and general approach to the design of feedback controllers when the transient
behavior of some norm of the state is of interest; moreover, an algebraic criterion
is provided to check the existence of fundamental performance limitations in the
transient response of the closed-loop system.
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