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Drag reduction
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A model problem: turbulent channel flow
Incompressible flow between two plane, parallel, infinite walls

I Flow is spatially invariant with x and z
I In DNS, tipically, ≈ 108 d.o.f.s
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Linear(ized) model

I Governing Navier–Stokes equations written in v–η
formulation

I Linearization about a reference profile (direct approach)
I Fourier expansion in homogeneous directions:

wavenumbers decouple

Recent evidence exists (e.g. Kim & Lim, PoF 2000; Kim, PoF
2003 ) that linear models are good for control design.
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State-space form

Linear time-invariant (LTI) system:

ẋ = Ax + Bu + r
y = Cx + d

I Actuation: distributed wall blowing/suction at the walls
I Sensing: distributed skin friction or pressure

measurements
I Nonlinearity and modeling errors recovered as a state

noise (typically white)
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Model-based optimal compensator

Goal: design of a feedback compensator minimizing

J = E{xHQx + uHRu}

I Separation theorem: optimal controller and state estimator
can be designed separately

I Requires the solution of two matrix Riccati equations
having the same dimension of A
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Open issues

I A state-space realization is required from measured
models

I Accounting for the full space-time structure of the state
noise is impractical

I Riccati-based design is prohibitively expensive for
high-dimensional systems
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A measured linear model

Looking for the average impulse response to wall forcing

I Wall forcing with a small space-time white Gaussian noise
on the wall-normal velocity at the wall vw

I In the linear setting, the perturbed flow reads:

vtot (x , y , z, t) = v(x , y , z, t) + v(x , y , z, t)
ηtot (x , y , z, t) = η(x , y , z, t) + η(x , y , z, t)
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A measured linear model

Computing the cross-correlation between the state and
the wall forcing:

E{vtot (x ′ + x ,y , z ′ + z, t ′ + t)v∗w (x ′, z ′, t ′)} = . . .

. . .E{v(x ′ + x , y , z ′ + z, t ′ + t)v∗w (x ′, z ′, t ′)}︸ ︷︷ ︸
=0

+ . . .

. . .+ E{v(x ′ + x , y , z ′ + z, t ′ + t)v∗w (x ′, z ′, t ′)}
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The average impulse response

Leveraging a result in linear system theory, the state-forcing
cross-correlation defines the impulse response of a LTI system:

Hv (x , y , z, t) = E{v(x ′ + x , y , z ′ + z, t ′ + t)v∗w (x ′, z ′, t ′)}
Hη(x , y , z, t) = E{η(x ′ + x , y , z ′ + z, t ′ + t)v∗w (x ′, z ′, t ′)}.

This function represents the average response of a turbulent
channel flow when impulsive wall forcing on v is applied.
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The average impulse response

Hv (x , y , z, t+ = 5) Hη(x , y , z, t+ = 5)
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The average impulse response

Hv (x , y , z, t+ = 15) Hη(x , y , z, t+ = 15)
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The average impulse response

Hv (x , y , z, t+ = 25) Hη(x , y , z, t+ = 25)
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Feedback control loop

K

n
d

xy
C+ + H

u

I n represents turbulent fluctuations in the uncontrolled flow
I The aim is to design a K such that the expectation

J = E{xHQx + uHRu}

is minimized in the closed loop system
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Compensator design

I It would be nice to avoid a state-space realization of H
I It would be very nice to devise a procedure reducing the

complexity of the compensator design

However. . .
I In this problem, LTI systems with wide-sense stationary

stochastic forcing are considered
I A frequency domain approach is feasible
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Frequency domain approach

K

n
d

xy
C+ + H

u

Rewriting the objective functional in frequency:

J =

∫ +∞

−∞
Tr [Qφxx (f )] + Tr [Rφuu(f )] df .

Substituting, J is not quadratic in K .
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Internal Model Control structure
Introducing a model H̃ of the plant H:

+ C +

n

H K

H̃C C

uxy

d
K

H̃

y

+-
+ ỹ x̃

r

and K may be written as:

K = (I − KCH̃)−1K .

This change of variable is known as Youla’s parametrization
(Morari & Zafiriou, 1998).
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Equivalent open loop system

It is assumed that H̃ = H (modeling errors included in n only).

d

KHC
y

+

+

C
n

Substituting, J is now quadratic in K !
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Optimal compensator in frequency domain

J =

∫ +∞

−∞
Tr
{

Qφnn + QHK Cφnn + QφnnCHK
H

HH + . . .

. . .+QHK CφnnCHK
H

HH + QHKφddK
H

HH
}

+ . . .

. . .+Tr
{

RK CφnnCHK
H

+ RKφddK
H
}

df .

I Minimization leads to the best possible LTI compensator
for the problem at hand

I However, such compensator is noncausal
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Causality enforcement

Introducing an appropriate Lagrange multiplier to enforce
causality

J =

∫ +∞

−∞
Tr
{

Qφnn + QHK +Cφnn + QφnnCHK
H
+HH . . .

. . .+QHK +CφnnCHK
H
+HH + QHK +φddK

H
+HH

}
+ . . .

. . .+Tr
{

RK +CφnnCHK
H
+ + RK +φddK

H
+

}
+ Tr [Λ−K

H
+] df .

Plus and minus subscripts denote frequency response
functions of causal and anticausal response functions,
respectively.
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Wiener-Hopf problem
Minimization leads to the following Wiener-Hopf problem:

(HHQH + R)K +(CφnnCH + φdd ) + Λ− = −HHQφnnCH

I Solution to this problem yields directly the compensator’s
frequency response, without invoking the separation
theorem

I Directly accounts for the input-output relation (no model
order reduction needed)

I Noise spectral densities apper in functional form Cφnn: full
space-time structure of the noise easily accounted for

I Scalar equation for the single-input/single-output case
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Compensator design and testing procedure

I Response function and noise spectral densities are
measured via DNS and Fourier transformed in x and z

I Wiener-Hopf problem is solved wavenumber-wise
I Compensators are tested in a full nonlinear DNS
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Compensator kernel in physical space

u(x , z, t) =

∫
K (x − x ′, z − z ′, t − t ′)y(x ′, z ′, t ′) dx ′dz ′dt ′
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Compensator kernel in physical space
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Performance assessment

Parametric study addressing:

I Objective functional (Q matrix based on energy and
dissipation)

I Actuation/sensing technique
I Re effects

More than 300 DNS (≈ 40 years of CPU time) run at the
supercomputing system located at the University of Salerno.
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Best performance results

Dissipation Energy
Reτ τx τz p τx τz p
100 2% 0% 0% 0% 0% 0%

180 8% 6% 0% 0% 0% 0%

I Energy norm is ineffective
I Dissipation norm is effective
I Pressure measurement alone is not useful
I “Inverse” Re-effect when using dissipation norm

Overall best performance with ≈ 7.7% of net power saved.
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“Inverse” Re-effect

The performance of dissipation-based compensators improves
with Re. Why?

d〈U〉
dy

∣∣∣
w

= − 1
UB

〈 ∑
(α,β)6=(0,0)

D(α, β)

︸ ︷︷ ︸
Dturb

+
1
2

∫ 1

−1

(∂Û
∂y

)
(0,0)

(∂Û
∂y

)∗
(0,0)

dy︸ ︷︷ ︸
Dmean

〉

I Dturb is affected directly by zero net mass flux
blowing/suction

I Dmean is affected indirectly via nonlinear interactions
between fluctuations and the mean flow
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“Inverse” Re-effect
But the relative contribution of the Dturb to the total dissipation
increases with Re!

Laadhari, PoF 2007

Reτ Dturb Dmean
100 26.8% 73.2%

180 39.5% 60.5%
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Critical discussion
The use of linear estimators

I Present compensators incorporate Wiener filters (instead
of Kalman filters) accounting for the full space-time
structure of the state noise

I They are the best possible LTI filters for this problem
I However, their estimation capability is similar to that of

Kalman filters
I This suggests that the use of linear filter is the issue

Substantial improvement may be obtained by using nonlinear
filters, providing accurate estimates of the state far away from
the wall.
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Critical discussion
Selecting of appropriate cost functions

I Present compensators are the best possible LTI
compensators for the problem at hand

I Their performance is, however, rather poor if compared to
that of optimal compensators designed with analogous,
state-space techniques

In the linear setting, the sole remaining degree of freedom is
the cost function to be minimized.
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Conclusions

I A novel cost-effective compensator design formulation has
been proposed

I A measured linear model of the turbulent channel flow has
been employed

I The approach accounts for the full time-space structure of
the state noise
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Possible developments
Control of wall turbulence

I Exploiting the compensator design methodology to
optimize the cost function, with approximate models for the
system dynamics and state noise

I Design based on experimentally measured
shear-fluctuations cross-correlations

I Resorting to a state-space to optimize nonlinear (possibly
reduced-order) estimators to be used in conjunction with
standard optimal controllers
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Possible developments
Design methodology

I Robust formulation in the IMC framework
I Multiple-input/multiple-output design
I Use of the present technique in a nonlinear optimization
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Statistics of the controlled flow
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Anisotropy pattern
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Wiener filter performance

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

y+

E
ne

rg
y 

de
ns

ity

Streamwise skin friction

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y+

E
ne

rg
y 

de
ns

ity

Pressure

Fulvio Martinelli DIA PoliMi

Feedback Control of Turbulent Wall Flows


	Introduction
	Standard approach
	Wiener-Hopf approach
	Conclusions

