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Preface

This Thesis deals with turbulent flows, mostly wall-bounded flows, with a special
focus on skin-friction drag reduction. It takes a global stance at the topic, by
making new attempts to understand the elusive physics behind drag reduction with
novel methods, and by addressing some of the many practical obstacles that still
prevent drag reduction techniques to be deployed in applications.

The document is structured in two parts. Part [I| is an original summary of
the work, where its main ideas and results are presented. It is organized in four
Chapters. Chapter |1| presents the main research questions and provides a broad
overview of the entire thesis. Chapter[2]introduces novel tools to give new insights
on the physical mechanisms driving wall-bounded turbulent flows and their changes
by skin-friction drag reduction. Chapter [3|addresses a number of practical aspects
that need to be considered before drag reduction techniques become a viable
strategy in applications. Lastly, Chapter 4] provides a concluding discussion and
delineates possible future developments of the present work. The subsequent Part
details each part of the work through articles, which are presently at various
stages of the editorial process. The list of papers included in the Thesis is reported
below, along with the respective publication status and the description of my own
contribution to each work.

Paper 1 GatTERE, F., CopriGgNaNT A., GaTTi, D. & Quabprio, M. Mean Impulse

Response in a Turbulent Channel Flow. Journal of Fluid Mechanics (in
preparation).
Contribution: The idea of the work started back with the Master thesis of
A. Codrignani. I wrote missing codes, run the corresponding simulations,
and furthered the simulations already performed. I improved the post-
processing analysis, and investigated the physical implications of the results.
I developed the codes for the final verification against DNS results. 1 wrote
the current manuscript together with the co-authors.

Paper 2 GATTERE, F., CHiARINI, A., GALLORINI, E. & QuaDRrio, M. 2023 Structure
function tensor equations with triple decomposition. Journal of Fluid Me-
chanics 960, A7.



Paper 3

Paper 4

Paper 5

Paper 6

Paper 7

Contribution: I started this work with my Master thesis, by extending the
code for the anisotropic generalised Kolmogorov equations to compute its
phase-aware variance, and by running part of the simulations. I investigated
the results, wrote the first draft and the rebuttal letters to the reviewers,
together with the co-authors.

Quabrio, M., CAsTELLETTI, M., CHIARINI, A. & GATTERE, F. On the optimal
period of spanwise forcing for turbulent drag reduction. Journal of Fluid
Mechanics (in preparation).

Contribution: I conceptualized this work together with A. Chiarini and M.
Quadrio. I performed the simulations and handled the post-processing of
the results. I investigated the results and wrote the manuscript together with
the co-authors.

Garrl, D., Quabprio, M., CHIARINI A., GATTERE, F. & PirozzoLi, S. Tur-
bulent skin-friction drag reduction via spanwise forcing at high Reynolds
number. Journal of Fluid Mechanics (under review).

Contribution: I performed the preliminary analysis of the data and decided
what simulations to perform together with A. Chiarini. I reviewed and edited
the manuscript together with the co-authors.

GATTERE, F., ZAaNoLINI, M., GaTTI, D., BERNARDINI, M. & QUADRIO, M.
2024 Turbulent drag reduction with streamwise-travelling waves in the com-
pressible regime. Journal of Fluid Mechanics 987, A30.

Contribution: This work started with the Master thesis of M. Zanolini. I run
most of the simulations and performed part of the validation of the code. I
developed the post-processing of the data and analyzed the results together
with M. Zanolini. I wrote the first draft of the manuscript. I investigated
the implications of the different comparison and replied to the reviewers
together with D. Gatti, M. Bernardini e M. Quadrio.

LucHing, P., GarTr, D., CHIARINI, A., GATTERE, F., ATZoRrI, M. & QUADRIO,
M. A simple and efficient immersed-boundary method for the incompressible
Navier—Stokes equations. Journal of Computational Physics (under review).
Contribution: I prepared the literature review on the topic and wrote the
Introduction together with A. Chiarini. Together with A. Chiarini and D.
Gatti, I wrote the Methods section starting from an informal report written
by P. Luchini. I reviewed and edited the manuscript together with the co-
authors.

GATTERE, F., CHIARINI, A. & QuaDRrIO, M. 2022 Dimples for Skin-Friction
Drag Reduction: Status and Perspectives. Fluids 7 (7), 240.
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Paper 8

Contribution: I conceptualized the work together with the co-authors. I
prepared the literature review, and wrote the first draft of the manuscript. I
replied to the reviewers together with the co-authors.

Cacciatorl, L., BrigNnoLl, C., MELE, B., GaTTERE, F., MonTI, C.M. &
Quapbrio, M. 2022 Drag Reduction by Riblets on a Commercial UAV.
Applied Science 12 (10), 5070.

Contribution: I co-supervised L. Cacciatori and C. Brignoli during their
Master thesis. 1 reviewed and edited the first draft and I replied to the
reviewers together with M. Quadrio.
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Part 1

Skin-friction drag reduction:
physics and applications



1 Introduction

Turbulence is ubiquitous in natural and artificial flows; fathoming the physics be-
hind turbulent flows and learning how to tame it is a long-standing effort in fluid
mechanics. Turbulent flows are complex, especially those with practical interest
that are usually confined by solid boundaries; they are strongly anisotropic and
inhomogeneous, and have a finite (yet often large) Reynolds number that leads to
an incomplete separation of scales. The nature of turbulent flows is chaotic; one
can only hope to describe them statistically. However, for wall-bounded flows, a
quasi-deterministic description of turbulence is also possible; some structures can
be recognized through a random background, and their evolution is essentially de-
terministic. Turbulent flows are multiscale; fluctuations of different scales interact,
and transfer energy (on average) from the large energy-containing scales embed-
ding the geometrical information towards small dissipative local isotropic scales
via a cascade mechanism. The presence of a solid wall also introduces the physical
position as an additional independent variable; energy, beyond being transferred
among scales, is transferred in space along the inhomogeneous directions, e.g.
from the wall towards the bulk of the flow and vice versa. Turbulent flows possess
a strong non-linear nature; non-linearity drives the energy cascade. However, lin-
ear mechanisms play a central role in the near-wall turbulence regeneration cycle.
Turbulent flows are diffusive; through viscous mechanisms, small-scale fluctua-
tions are spread and the transfer of momentum and energy is enhanced. In the
presence of a wall, the diffusive nature of the turbulent flow results in more intense
wall-shear stresses and a larger skin-friction drag than the laminar counterpart.
Owing to their complexity, anisotropy and inhomogeneity, wall-bounded tur-
bulent flows can be studied with many approaches (see e.g.|Pope, 2000; Davidson,
2004). Although Navier—Stokes equations are strongly non-linear, they are often
studied after linearisation about a base flow. Linear mechanisms are key in the
near-wall turbulent cycle; the streaks of streamwise velocity are due to quasi-
streamwise vortices interacting with the mean velocity shear via a linear process.
However, the self-sustainment of the cycle which regenerates the vortices from the
streaks needs non-linearity (Reynolds & Tiedermann, [1967). Therefore, even if
the linear behaviour of non-linear turbulent flows can be instructive, a complete



characterization needs the full non-linear description. Statistics are probably the
best way to represent turbulence: despite turbulent flows are not deterministic,
their statistics are. The simplest is the mean, i.e. the average over time (and usu-
ally homogeneous directions), useful to decompose the complete flow field into
a mean field and turbulent fluctuations. Higher-order moments further enrich the
description of the statistical distribution (e.g., the velocity here). For instance, the
variance measures how data are spread around the mean, the skewness measures
the asymmetry around the mean, and the kurtosis measures the importance of
extreme events in the tails of the distribution. One-point statistics measure the in-
tensity of the fluctuations, and they are usually associated to physical space where
quantities are characterized in their evolution along a certain inhomogeneous di-
rection. Two-point statistics, such as spectra (in homogeneous directions only) and
correlations, indicate their spatial scales.

An alternative approach to statistics involves the identification of structures
which share a sort of coherency compared to the background random turbulence
and show a deterministic evolution (Robinson, [1991). The near-wall region is
dominated by two classes of structures: streaks and quasi-streamwise vortices
(QSV). The former are elongated and meandering regions of alternating streamwise
low and high speed superimposed on the mean velocity, whereas the latter are
vortical structures roughly aligned with the streamwise direction. Streaks and QSV
are the two main actors of the self-sustaining cycle of the near-wall turbulence;
through their mutual regeneration, turbulence is sustained. Vortices generate
the low-speed and high-speed streaks by the interaction with the mean velocity
profile, advecting low-streamwise velocity upwards and high-streamwise velocity
downwards. In turn, QSV are generated by a transient growth of perturbations,
driven either by the streaks instability or by the mean shear (Jiménez, 2018)).

The complexity of turbulent flows and the practical consequence of their prop-
erties in applications drive researchers towards the comprehension of the physical
mechanism of turbulence and the discovery of ways to control it for specific pur-
poses, such as reducing its harmful interaction with the wall, i.e. reducing the
skin-friction drag. The current incomplete knowledge of the turbulence physics
reflects into currently unsatisfactory drag reduction strategies.

Regardless of their significant room for improvement, both numerical and ex-
perimental studies have amply documented the effectiveness of some flow control
techniques in decreasing skin-friction drag. Most of the studies (particularly nu-
merical ones) seeking to understand the physics of turbulent flows and how they
are modified by control are carried out in simple configurations such as internal
flows, i.e. plane channel flows or circular pipe flows, in the incompressible regime
and at low values of the Reynolds number. These features make it feasible to
carry out computations using Direct Numerical Simulations (DNS), which resolve
every scale of the flow and produce high-fidelity data without modelling errors.



However, practical applications for skin-friction drag reduction techniques include
complex external flows, such as for example wind turbines and aircraft. Aeronau-
tical applications are of particular interest. About 50% of a civil aircraft’s drag
comes from viscous effects caused by the turbulent boundary layer near the solid
surface. So, an efficient drag reduction technology which develops even a tiny
reduction would have huge economic and environmental benefits.

A highly promising approach to reduce skin-friction drag is spanwise forcing
(Ricco et al.l 2021), which involves generating an unsteady spanwise cross flow
that interacts with the near-wall turbulence, attenuating the turbulent activity and
decreasing skin-friction drag. This spanwise motion can be achieved through
various methods, including transverse oscillations of the wall (Quadrio, 2011)),
incorporation of rotating discs on the surface (Ricco & Hahn, [2013)), or the use of
plasma actuators (Chot et al., 2011). Among spanwise forcing strategies, in-plane
oscillation of the wall is an interesting category. The two simplest techniques
are the oscillating wall (Jung er al.l [1992) which induces the wall to move in the
spanwise direction with a harmonic time law and the steady waves (Viotti et al.,
2009) which impose a steady spanwise wall velocity that varies periodically in
the streamwise direction. The most significant reduction in drag is attained when
the two techniques are combined in the streamwise travelling waves of spanwise
velocity (Quadrio et al., [2009) involving periodic oscillation both in time and
space. Besides achieving large drag reduction rates, travelling waves also yields
considerable net benefit, meaning they are still convenient after the energy cost of
the actuation is considered.

Before declaring a drag reduction technique as a viable option for implemen-
tation in practical applications, such as on commercial aircraft, some aspects must
be investigated. Typical flight Reynolds number (Re) is on the order of Re ~ 107;
thus, an important aspect to consider is the dependence of the drag reduction
rate on the Reynolds number. Gatti & Quadrio| (2016) measured the drag reduc-
tion achieved by streamwise-travelling waves of spanwise velocity (Quadrio et al.,
2009). They found out that drag reduction presents a mild logarithmic decrease
with increasing Reynolds number and proposed a model to extrapolate the drag
reduction at high Reynolds number from its value at low-Re. Even though the
performance deteriorates, they measured that a significant level of drag reduction
can still be attained at values of Re commonly encountered in aviation. Recently,
Marusic et al.| (2021) offered a new view for the exploitation of spanwise forc-
ing at high Re, measuring an increasing drag reduction rate with Re thanks to
the interaction of the near-wall forcing with the large-scale outer motions, whose
importance grows with Re.

Also, typical commercial airplanes fly in transonic regime; a quantification of
the compressibility effects on the drag reduction performance is needed through
the study of the dependence of the drag reduction on the Mach number. [Yao &
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Hussain| (2019) and Ruby & Foysi (2022) investigated the oscillating wall and
the spanwise steady waves, respectively and found a large positive effect of the
compressibility on drag reduction, hinting at a possible beneficial application of
spanwise forcing in aeronautics.

Finally, practical applications feature complex surfaces with non-planar walls,
where pressure drag comes into play and provides extra drag. |Quadrio et al.|(2022)
studied travelling waves applied on a portion of a wing in transonic flight, finding
that localized actuation has the potential to boost the aerodynamic efficiency of the
whole aircraft via indirect effects on the pressure drag. These results are highly
encouraging, suggesting the potential for the successful implementation of drag
reduction strategies in real scenarios, particularly within the field of aviation.

This Thesis concerns itself with turbulent drag reduction and its practical
applications. On one hand, novel tools are introduced to improve our understanding
of the interaction between near-wall turbulence and an external forcing. On the
other hand, skin-friction control is applied to flows of practical interest, to clarify
a number of open issues related to a future industrial exploitation.



2 Understanding wall-bounded tur-
bulence towards its control

The first goal of the present Thesis is to provide a comprehensive description of
turbulent flows and of how they are modified by the skin-friction drag reduction
control. We aim at disentangling the different mechanisms that drive turbulent
flows with and without control, by analyzing their contributions separately.

Due to the key role of linear mechanisms in the creation of the structures
of the near-wall turbulent cycle (Kim & Lim, 2000), an obvious starting point
is separating the linear and non-linear dynamics of turbulence. To this aim, we
exploit the linear impulse response function, a fundamental tool of signal theory.
Within the limit of linearity, the response function informs us of positions and
scales of forcing that are required to achieve a desired effect. Instead of following
the classic approach where the equations of motion are linearized about either the
laminar (Jovanovi¢ & Bamieh, 2005) or the mean turbulent (Hogberg et al., 2003))
velocity profile, here we measure (numerically) the mean linear response function
of a fully non-linear turbulent flow, to also account for the mean effect of turbulent
diffusion (Luchini et al., 2006). Even though turbulent flows are strongly non-
linear, as long as they are forced by a sufficiently small perturbation, non-linearity
does not kick in, and the linear response of the system can be isolated.

The linear response could be exploited in linear control algorithms as the best
model of the plant. However, a complete description of turbulence and the quanti-
tative assessment of drag reduction techniques require non-linear processes to be
fully accounted for. For this, we resort to the anisotropic generalised Kolmogorov
equations (AGKE) (Gatti et al., 2020), which describe the production, redistri-
bution, transfer and dissipation of turbulent fluctuations across both scales and
positions, simultaneously. This is the most informative description of a turbulent
flow from the standpoint of velocity second moments. To enable such a complete
description when flow control comes into play, we start from the observation that
most of the skin-friction drag reduction strategies possess a coherent, determinis-
tic component. For instance, active techniques (which need extra energy to work)
such travelling waves both in-plane (Quadrio et al., [2009; Zhao et al., 2004) and



of wall-deformation (Nakanishi er al., 2012; Tomiyama & Fukagata, [2013) are
coherent in time and/or space. Among passive techniques (which do not need
extra energy) riblets (Walsh & Weinstein, [1979)), dimples (Lienhart ez al., [2008),
permeable substrates (Abderrahaman-Elena & Garcia-Mayoral, [2017) and super-
hydrophobic surfaces (Daniello ef al., 2009) are organized roughness featuring
a spatial periodic pattern. To understand how the coherent deterministic forcing
interacts with the non-deterministic small-scale turbulence, the two contributions
to the fluctuating field can be separated. Building upon a triple decomposition
of the variables into mean, deterministic and stochastic components, we derive a
phase-aware version of the AGKE which describes the dynamics of both the co-
herent and stochastic fields, as well as their interplay at each phase of the coherent
pattern. This tool enables connecting scales and positions of the forcing to scales
and positions at which turbulence is modified.

Lastly, in the context of active flow control, the need for an actuator involves
substantial limitations to the control strategy. For example, given a mechanical
system to create a spanwise motion of the wall, the penetration depth of the
induced motion cannot be chosen at will. Here, we propose to free the control law
from the limitations inherited by the actuator, an endeavor that is only possible in
numerical simulations. A thought numerical experiment is therefore carried out
to appreciate under a new angle the role of various control parameters in spanwise
forcing: limitations derived from a specific actuator are lifted, thus revealing the
true dependence of drag reduction upon the various quantities.

In this Chapter we exploit these new developed tools to describe the char-
acteristics of a simple, turbulent, wall-bounded flow: a fully developed, incom-
pressible, low-Reynolds-number, turbulent channel flow. The turbulent channel
flow is the simplest configuration of a wall-bounded turbulent flow; it possesses
two statistically homogeneous directions (streamwise x and spanwise z) parallel
to the flat, smooth, indefinite walls, and only one non-homogeneous direction (y)
perpendicular to the walls. Also, the incompressibility constraint removes the
thermodynamics from the Navier—Stokes equations and the low-Reynolds number
limits the size of the smallest flow structures, that scale with Re™3/4. This simple
configuration therefore allows employing Direct Numerical Simulations (DNS),
although they are in general very computationally demanding. DNS resolve all
spatial and temporal scales of the flow and produce high fidelity data, which are
necessary to understand the physics of the flow.

We leverage DNS in this simple configuration also to perform parametric
studies to investigate how the change of the control parameters affects the drag
reduction performance. With the aim to describe the interaction between drag
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reduction and turbulence, we focus on one of the simplest active drag reduction
techniques: the spanwise-oscillating wall. First, active techniques reduce drag
more than passive ones. So, their effects on the flow are larger and easier to
detect and study. Second, unlike most passive techniques, the oscillating wall is
flat, so that only skin-friction drag matters, leaving out pressure drag. Third, the
oscillating wall is described by few parameters, so it is easier to track their single
effects on the flow field.

The oscillating wall, introduced by Jung et al.| (1992)), forces the wall to move
in the spanwise direction with a harmonic oscillation in time, i.e.

w(y =0,7) = Asin (Z%I) , (2.1)
where A is the amplitude and T the period of the oscillation. The wall’s harmonic
oscillation generates a cross-flow that is periodic after space- and phase-averaging,
and that superimposes to and interacts with the turbulent flow. The phase-averaged
spanwise flow matches the analytical laminar solution of the second Stokes problem
(Quadrio & Sibilla, [2000), hereafter referred to as the Stokes layer (SL), with small
deviations for large 7"

n . [(2n n
wsr(y,1) = Aexp (—1 /V—Ty) sin (?t - V—Ty) ) (2.2)

where v is the kinematic viscosity.

The drag reduction performance of the oscillating wall have been extensively
studied in the past 30 years from the seminal work of Jung et al.|(1992). Quadrio
& Ricco| (2004) found the drag reduction rate increasing monotonically with the
amplitude of the forcing A; at fixed A the maximum drag reduction is always
attained for the optimum period 7+ ~ 100. Hereinafter the superscript + identi-
fies quantities made dimensionless with the friction velocity u; = +/7,,/p of the
uncontrolled case where 7, is the average wall shear stress.

In an channel flow configuration run at constant mass flow rate, the drag
reduction (R) is defined as the difference between the skin-friction drag coefficient
(Cy) of the controlled and uncontrolled flow, i.e.

R = 100x L2 2.3)
Cf’()
where the subscript O refers to the uncontrolled flow. The skin-friction coefficient
is defined as Cy = 27,/ (pU 2), with 7,, the average wall shear stress, p a reference
density and U a reference velocity, usually defined as bulk quantities (p, Up) for
internal flow, such as the channel flow; in the particular case of incompressible
flow, the density is constant, i.e. pp = p.
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2.1 A linear description of turbulence

First, we introduce a new tool to investigate the linear behavior of a turbulent
flow. Although a turbulent flow is a highly non-linear system, the study of its
linear dynamics is of capital interest. The suggestion (see for example Kim:
& Lim, 2000) that linear mechanisms are central to the near-wall turbulence
regeneration cycle means that linear models of turbulence may suffice for flow
control purposes. Linear model-based controls, either iterative (adjoint-based)
and direct (Riccati-based) approaches, applied to turbulent flows need the mean
state equations; unfortunately, in the turbulent regime they are not available and
must be replaced by a linearized laminar model. The applicability of linear control
approaches to turbulent flows lies upon the assumption that appropriately linearized
models faithfully represent at least some of the important dynamic processes of
turbulent flow systems. However a model obtained by linearizing the non-linear
governing equations of a turbulent flow fails to capture some of its distinctive
features such as the turbulent diffusion. Capturing such behaviour may be of non-
negligible importance when trying to optimize a control algorithm and understand
the mechanism by which the control disrupts turbulence. We propose exploting
the linear impulse response function (LIRF), a classic tool for the description of
linear time-invariant dynamical systems that we aim at applying to a non-linear
system such as a turbulent flow. In the simplest single-input single-output (SISO)
case of scalar variables and dependency on the time only, the LIRF H links the
input f and the output ¢ of a system in the time domain through a convolution,
ie.:

q(t) = ‘[ H(t—7)f(r)dr. (2.4)

By setting the input to a Dirac delta function &(7), then ¢g(¢) = H(z), hence
the name LIRF. It is the most complete description of the linear dynamics of a
system and provides information about where and how apply a forcing to achieve
the desired mean effect elsewhere and after a certain time delay. Although the
response is linear, our approach fully accounts for the mean effects of turbulent
mixing, otherwise lost via linearization.

In a non-linear setting such as a turbulent flow, the linearity of the response
is only guaranteed by the small amplitude of the forcing. Indeed, although the
system is non-linear, if it is forced by a sufficiently small perturbation, then it
responds linearly. Although inconsequential in the noiseless laminar case, this
limitation makes the approach highly unpractical in the turbulent case. Turbulent
fluctuations are akin to noise, which can be averaged out by employing ensemble
averaging, or at least an average over periodic repetitions of the same impulsive
forcing over a long enough simulation time. Unfortunately, the forcing amplitudes
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Figure 2.1: Sketch of the plane channel with reference system and definition of
quantities related to the linear impulse response function.

required for linearity are much smaller than the natural turbulent noise, so that
the simulation time required to bring down the statistical noise at a level at which
the deterministic part of the response appears is simply not affordable. A viable
alternative consists in the measure of the response of the system in the frequency
domain, as employed by Hussain & Reynolds (1972). In the frequency domain,
the constraint on the intensity of the forcing for linearity is less strict and a phase-
locked average enables separating the deterministic part of the response from the
random part. The obvious drawback of this approach is that a single experiment
only yields the LIRF for a single frequency. To overcome this problem we rely on
a property of the signal theory that avoids the direct measure of the response to an
impulse either in physical or frequency domain and brings together the best of the
two approaches, i.e. it has a decent signal to noise ratio and it provides a complete
measurement in one shot. The approach, originally introduced by Luchini et al.
(2006) relies on the property that when the system is forced by a white noise, the
LIRF can be computed as the correlation between the output and the input.

We test the LIRF for the multiple-input multiple-output (MIMO) case of a
turbulent channel flow, where the inputs are body forces and the outputs are the
velocity components, both defined for each point of the channel and in time. The
body force vector components are fy, f, and f; and the velocity components u, v,
w in the streamwise x, wall-normal y and spanwise z directions, respectively. The
channel and the reference system are sketched in figure The LIRF, written as
the correlation between the input and the output of the system and in frequency
domain (owing to the symmetries of the channel flow), reads:

. (Gj(a,y, B0 (@, yr, Bt —T))
%—)](a,y’ﬁ’(i—’yf) = : > ﬁ 2 Y ﬁ t’ (25)

€

after converting the convolutions into products in the homogeneous directions.
Here the hat indicates Fourier transform, @ and 8 are the wavenumbers in the
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streamwise x and spanwise z directions; ys is the wall-normal location of the
impulsive forcing, where y s spans from the first inner point up to the centerline
(h); T is the elapsed time after the application of the impulse and -); is the average
over the simulation time; (-)* is the conjugate transpose and ¢; is the vector of the
amplitudes of the forcing. The measured LIRF H;_,; describes the linear response
of the velocity of the system in every direction of the channel, at each point of the
space and in time, after the application of a forcing directed in a specific direction
and placed at a certain point of the space and at a previous time.

The LIRF is computed on the fly while running a DNS at Re;, = Uph/v = 2280,
where U, is the bulk velocity, / the channel half-height and v is the kinematic
viscosity of the fluid, corresponding to a friction Reynolds number of Re, =
uch/v = 150 with u; = /7, /p being 7, the shear stress at the wall and p
the density. The deterministic response emerges progressively averaging out the
noise from the turbulent fluctuations while the simulation proceeds. Hence, the
simulation needs to be run as long as possible and in the present case it is advanced
for 200004/U,, (or, equivalently, 2 X 107 viscous time units).

The LIRF is a powerful tool since it provides altogether a large amount of
information. The computed impulse response function H;_, (@, y, 8,7 ;yy) of a
turbulent channel flow depends on five variables: the wavenumbers @ and S in
the two homogeneous (streamwise and spanwise, respectively) directions of the
channel, the position y in the wall-normal direction, the time 7 elapsed after the
impulsive forcing is applied and the parameter y ; describing the distance from the
wall where the forcing is applied.

Figure shows the LIRF tensor H;_,; in the physical space at a fixed bulk
time 7~ = 0.48 after being forced at y;: = 15. This picture brings to light the high
anisotropic character of the response.

First of all the shape of the impulse response can be associated to different
flow structures which respond to the external forcing. The components Hy, ., ;
and Hy,_,; with j = u,v,w show that the forcing acts on the structures of the
near wall-cycle (Jeong et al., |1997). The streamwise component of the response
(j = u) yields to structures elongated in the streamwise direction, with alternating
positive and negative sign in the spanwise direction. Such structures are com-
patible with the amplification of the near-wall high- and low-speed streaks. The
wall-normal (j = v) and spanwise (j = w) components of the response iden-
tify alternated vertical and spanwise fluctuations typical of the turbulent quasi-
streamwise vortices (QSV). The relative position of the isosurfaces in figure
indicate the simultaneous presence of streaks and QSV, which mutually interact in
the cycle for the self-sustainment of turbulence. This picture is compatible with
what found by [Jovanovic & Bamieh (2005) and confirmed by the present work
in the wavenumbers plane investigating the same problem for a laminar channel
flow. In the laminar regime, the most amplified disturbances to a wall-normal
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Figure 2.2: Isosurfaces of the response tensor H;_,; at the non dimensional time
7 = 0.48 of a turbulent channel flow forced at the wall-normal distance y = 0.1h
or y} = 15. All the isosurfaces are at the value +0.5 except for the diagonal
components, H f,—u and Hy, ., which are at the value +1. Red is for positive
values, blue for negative ones.
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Figure 2.3: Isosurfaces of the response tensor H, _,,, at bulk time 7~ = 0.48 for the
laminar (left), pseudo-turbulent (center) and turbulent (right) case. The forcing is
at the wall-normal distance y s = 0.1h. All the isosurfaces are at the value +1.

and a spanwise forcing Hy,,; and Hy,,; are found to be either oblique waves
or streamwise perturbations which yield after transition to turbulence to stream-
wise streaks and quasi-streamwise vortices. Similarly, the relative position of the
isosurfaces of H, _,; suggests that the streamwise forcing acts on the hairpin vor-
tices (Theodorsen, |1952) near the wall, as highlighted by Vadarevu et al.| (2019)
by Linearized Navier—Stokes Equations (LNSE) augmented with eddy-viscosity
(eLNSE). This agrees with the idea that the Tollmien—Schlichting waves detected
in the laminar regime for this forcing (Jovanovi¢ & Bamieh, 2005) evolves into 3D
hairpin vortices in the late stage of transition to turbulence.

Although we find compatible information from the response of the linear and
turbulent channel flow, it does not mean they provide the same exact information.
The inadequacy of a linearized channel flow to provide the complete response of
a turbulent channel flow has been recently emphasized by the results obtained by
Russo & Luchini (2016). They measured the LIRF of a linearized and of a fully
turbulent channel flow to a steady volume force finding that they are significantly
different, which implies that the “background” turbulence has a non-negligible
impact on the linear response. Moreover, they demonstrated that it is impossible to
conceive a (positive and finite) eddy viscosity that makes the results obtained with
eLNSE compatible with the true measurement. To investigate this discrepancy, we
additionally compute the response to external volume forces of a laminar channel
flow and of a pseudo-turbulent channel flow, i.e. where turbulence is absent but the
base flow is the mean flow of the turbulent case, at the same Re;, of the turbulent
case. Owing to the small intensity of the forcing, the response is again linear
and coincides with the one obtained by the LNSE. Figure [2.3| plots as an example
‘Hy. ., for the laminar, pseudo-turbulent and turbulent cases. Although the same
response shape is shared by all the investigated regimes, the shape and intensity
of the response show non-negligible differences. We conclude that the dynamics
of the impulse response in the turbulent regime has a linear component, yet this is
not sufficient for its complete description.

A second aspect of the anisotropic nature of the response of the channel flow is
the different intensity of each term of the tensor. As expected, the largest response
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corresponds to the diagonal components of the LIRF tensor, meaning that the
forcing mostly amplifies the velocity component in its same direction. Among the
off-diagonal terms, Hy, ., and H. ,,, show the largest magnitude of the response.
(See the caption of figure [2.2|for the details about the different contour levels used
for each term of the tensor).

Third, the components of the LIRF tensor also show different behaviour de-
pending on the time and on the distance from the wall of the forcing. Again Hy,
and Hy,_,, show particular characteristics, different from the ones of the other
terms. Whereas the other components decay monotonically to zero, their response
in time exhibits a transient growth (Schmid, 2007) in the first instants after the
application of the forcing, before decaying. Moreover, whereas the other terms
of the LIRF tensor show an almost monotonic increase of the response with the
increased distance from the wall at which the impulsive body force is applied, the
two off-diagonal terms involving the response in the streamwise direction exhibit
a local peak in the buffer layer. This is a second hint of the link of the maximum
H fy—u and Hy,_,, to the amplification of the near-wall structures. This results
comply with the idea that an external forcing in the buffer layer directed either in
wall-normal direction (e.g. blowing and suction (Mickley et al., [1954), opposition
control (Chot et al.| [1994)) or in the spanwise direction (e.g. spanwise forcing
Ricco et al., [2021) are the most effective techniques to perturb the streamwise
velocity field, e.g. with the aim to reduce the drag in the turbulent regime.

Figure 2.4 shows as an example the response Hy, ,, in time (left) and depend-
ing on the position y s (right), comparing laminar, pseudo-turbulent and turbulent
cases. The turbulent diffusion, lacking in the laminar and pseudo-turbulent cases,
damps the turbulent response faster so that the turbulent case possesses a con-
siderably smaller transient growth compared to the other two cases. Moreover,
for larger 7, the turbulent response does not decay to zero but shows a lower
bound representing the background noise of the turbulence overwhelming the de-
terministic part of the response. This noise floor is due to the finite horizon of the
response computation. Looking at the dependence of the LIRF on y r,the response
of the laminar channel flow completely fails to capture the local peak in the buffer
layer, whereas the pseudo-turbulent channel captures it, although with a different
intensity and position compared to the fully turbulent case. This confirms that the
complete characterization of the turbulence needs to be accounted for a complete
linear description of a turbulent channel flow.

Once the response function H;_,; is computed, it can be used to predict the
linear response of the system through direct convolution between the LIRF itself
and the given (not necessarily small) input forcing, exploiting Eq. (2.4) after
tailoring it for the channel flow. This approach can be leveraged to predict the
linear behaviour of the channel flow to whatever external forcing shape at a fraction
of the cost of a DNS.
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Figure 2.4: Linear impulse response function as a function of time, i.e. Hy,_,,(7)
(left) and as a function of the forcing position y¢, i.e. Hy, ., (y) (right) for the
laminar, pseudo-turbulent and turbulent cases, after taking the absolute maximum
value of the other variables.

2.2 A complete description of turbulence

A linear representation of the flow may be sufficient to design a linear controller
for skin-friction drag reduction. However, for a complete characterization of the
dynamics of a turbulent flow and to investigate the effects of the control on the
turbulent activity, a full non-linear description of the (controlled) flow is needed.
The anisotropic generalised Kolmogorov equations (AGKE) provide information
about the mechanisms occurring at different scales and at different positions,
simultaneously. They bring together the scale information of the spectral analysis
and the position information of the analysis in physical space, thus providing a
natural definition of scales in the inhomogeneous directions, and describing fluxes
across scales. The AGKE are the budget equations for the second order structure
function <5u,-6u j ), where du; is the increment of the i-th velocity between two
points x| and x;, identified by their midpoint X = (x| + x3)/2 and their separation
vector r = (xp —x1),1.e. ou; = u;(X+r/2)—u;(X —r/2);(-)represents the average
in time and homogeneous directions.

When the structure function is written for the fluctuating velocity u’, after a
Reynolds decomposition divides the velocity field w into mean U and fluctuating

u’ fields, the structure function <6u:(5u;> is related to the sum of the single-point

Reynolds stresses evaluated at the two points X +7/2 ,i.e. V;; and the two-points
correlation tensor R;; (Davidson et al.,|2006) as

<5u;5u;>(x, ) = Vil (X1 t) = Rif(X.r.0) = Rij(X,—r1)  (2.6)
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where
Vii(X,r,1) :<u:u;>(X + g,t) +<u:u;>(X - g, t) (2.7)

and
Riy(X,7,0) =(u} (X + gr) ) (X - > 1)). 2.8)

The AGKE is an extension of the generalised Kolmogorov equation (GKE) by
Hill|(2001)), also referred to as Karman-Howarth-Monin-Hill equation (Alves Portela
et al.,2017). GKE is the exact budget equation for half the trace of the second-
order structure function tensor, i.e. the scale energy, whereas the AGKE consider
each component of the tensor separately. The AGKE have already been success-
fully employed to describe the key features of a channel flow (Gatti et al.,[2020) at
low and moderate Re, to investigate the ascending/descending and direct/inverse
cascades of the Reynolds stresses in a turbulent plane Couette flow (Chiarini et al.,
2022b), to describe the structure of turbulence of the flow past a rectangular cylin-
der (Chiarini et al., [2022a) and to characterize the effects of the curvature on the
structure of near-wall turbulence (Selvatici ef al., 2023)). It has also been employed
in the context of drag reduction to investigate the differences between an uncon-
trolled channel flow and one subjected to the wall-oscillation control (Chiarini
et al.,[2019).

In all the above cited cases, AGKE are derived for the fluctuating velocity
field, after a Reynolds decomposition is employed to separate the mean flow and
the turbulent fluctuations. However, in the wall oscillation case the fluctuating field
sums together the contributions of the purely stochastic turbulent field with the
coherent one of the periodic oscillation of the wall. To separate the contribution of
the turbulence and the one of the control, and to investigate how they interact and
exchange energy, we define the mean field with a simple temporal average U () =
lim; 400 %/OT u(x, t)dt, the coherent field @ (x, ¢) = w(x,p) — U(x) with a
phase average U(x, ) = limy—10 & 2hg u (@, (5= +n) T) and the stochastic
field as what is left, i.e. u” = uw— U - u. After decomposing the velocity
and pressure fields with such definitions, three tensorial budget equations, called
¢AGKE, can be written for U;6U, 6ii;61i j and 5u;’6u;’ , which add to the standard
AGKE the interplay among the mean, coherent and stochastic fields at each phase

®.

The pAGKE, i.e. the budget equation for the mean 6U;6U, the coherent 6i; 61 ;
and the stochastic 6 u;’é u;.’ second-order structure functions, in their compact form
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where repeated index k implies summation. They describe how a structure function
evolves in time and in space (both scale and physical). The terms ®", ¢¢,¢* and ¥,
W ° represent the fluxes across scales and in the physical space, respectively; ™,
£¢,&° represent the source terms, denoting the net production of 6U;6U;, 0i;6ii;
and 5u;’6u}’ , respectively. The source is the balance between the production,
the redistribution due to velocity-pressure interaction and the dissipation of the
second-order structure function. The coherent equations also feature the term (¢
at the right hand side, representing the interaction among different phases driven
by the coherent flow field.

Beyond dividing the coherent and stochastic field contributions, the pAGKE
also add additional terms to the equations, that describe the interplay between the
fields. Originally, the fluxes, either in the space of scales or positions, feature the
mean transport, the viscous diffusion and the fluctuating transport; the latter is now
broken down into coherent and stochastic transport to account for the transport
processes either due to the coherent and the stochastic field, separately. The
same happens for the source, which beyond the pressure strain, the dissipation and
interaction between the velocity field and the external forcing, also breaks down the
former production due to the interaction between the mean and fluctuating fields
into the production between the mean and coherent fields pl’.;’." and the production
between the coherent and the stochastic fields pfjs in the equations of 6i;6ii; and
into the production between the mean and stochastic fields pZ’:Y and the production

between the coherent and the stochastic fields pl‘; in the equations of 5u;’6u}’ .
The coherent-stochastic production p?? indicates the exchange of stresses between
the coherent and the stochastic fields, and appear in both the equations but with
opposite sign. It describes the position, the scales and the phase at which the
exchange of energy between the two fields takes place.

In this study, we employ the phase-aware ¢ AGKE as a framework to analyze
the interplay between an external harmonic control and the turbulent fluctuations
present in a fully developed turbulent channel flow subjected to the drag reduction
technique of wall oscillation introduced in the preamble of the present Chapter.
The channel flow configuration reduces the independent variables from seven to
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Figure 2.5: Diagonal components of the stochastic tensor 6u; 6u’/ " at ¢ = minthe
(rf,Y") plane. From top to bottom: uncontrolled case with A = 0, 7" = 75 and

T* = 250. The contour is set at 95% of each maximum. The coordinates of the
maximum, marked with a cross, can be read on the axes. Taken from Gattere ef al.

(2023).

five: three separations r,, ry and r, in the streamwise, wall-normal and spanwise
directions, the position in wall-normal direction Y and the phase ¢; in the channel
flow, ¢-AGKE do not depend on X and Z, being homogeneous directions. The
spanwise-wall-oscillation control (see Eq. [2.1]) generates above the wall a spanwise
velocity profile called Stokes layer of Eq. where ¢ = 27/T t is the phase of
the oscillation. The external oscillation has amplitude A* = 12 and two periods
are investigated, namely 7% = 75, close to the optimum value for maximum drag
reduction and T* = 250, a suboptimal case. The simulation is run at Re, =
200. The objectives of this study are threefold: first, examining the impact of
coherent motion on the dimensions and spatial configuration of near-wall structures
throughout the control period; second, characterizing the interaction between
mean, coherent, and stochastic fields within both scale and physical spaces; and
third, analyzing the phase dependency of the interaction between the coherent and
stochastic fields. For this problem the mean velocity is (U,V,W) = (U(y),0,0),
the coherent velocity is (i, 7, w) = (i(y, ¢), 0, wsz(y, ¢)) and the stochastic field
is (u”, v/, w”) = (U’ (x,y,2,0),v"(x, ¥, 2, 0), W (x, ¥, 2, ).

The scales and wall-normal position at which the diagonal terms of the structure
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function tensor peak are associated to the statistic trace of the turbulent structures
(Gatti et al., 2020). In the uncontrolled case (see “Ref” in figure , ou”’éu’”,,
(where the subscript m stays for the maximum) is in the buffer layer and for r, # 0
and ry = ry = 0 meaning that the streamwise structure function is associated to
structures aligned in the streamwise direction (r, = 0) and negatively correlated
(6u”éu” > 0 means R;; < 0) in spanwise direction (r, # 0); it represents the
positive and negative streaks of the near-wall cycle. Instead, both 6v”6v” and
ow”ow” peak in the buffer layer and for r, = 0; the former for r, # 0, the latter
for r, # O (result not shown) so that they are associated to the statistical trace
of the QSV which induce vertical velocity at the sides and spanwise velocity at
the top and the bottom of a vortex. The oscillating wall leaves ou”éu”,, and
ov”ov”,, almost unchanged (see figure , indicating that the dimension and
intensity of the near-wall structures only marginally depend on the drag reduction
rate. However, the streaks are slightly pushed away from the wall: ou”du”,, shifts
upwards, highlighting a thickening of the viscous sublayer with the control (Cho1
et al.l,[1997). Interestingly, in the controlled case with 7% = 250, a local peak of
ow”ow” appears in the r, = r, = 0 plane (not shown) and in the r, = r, = 0
plane at a wall-normal distance resembling the one of 6u”éu”. We associate it to
the statistical trace of the streaks tilted in wall-parallel planes under the spanwise
velocity of the control, that deviates their direction from the streamwise alignment.
This effect is visible only for the suboptimal case T+ = 250, for which the near-
wall structures have time to tilt and align with the instantaneous shear vector
(dU/dy, 0w/dy). The same effect is visible investigating the phase evolution of
the maximum of the diagonal terms of the structure function tensor ou.’6 u;.’ . In

figure ou”oéu”,, and ow”dw”,, share the same trend and show a phase-shift
compared to dv”ov”,,. This is consistent with the different wall normal distance
of streaks and QSV which implies a different shear to which they are subjected
because of the Stokes layer profile (Baron & Quadrio, [1996). Similar information
about the turbulent structures are usually extracted from phase-locked conditional
averages (Yakeno et al., 2014), which are unavoidably subjected to some degree
of arbitrary, e.g. one need to determine a priori a specific wall distance for the
eduction procedure. With p AGKE we obtain equivalent information via statistical
analysis that is free from assumption and hypothesis.

A part of the wall-paralle] modulation of 6w”éw”,, is also induced by the
interaction between the QSV and the coherent spanwise shear 0w /dy introduced by
the wall oscillation. At the phase and distances from the wall for which 9w /dy > 0,
the quasi-streamwise vortices move low-spanwise-velocity fluid (w” < 0) upwards,
and high-spanwise-velocity fluid (w” > 0) downwards. The opposite happens
when the coherent shear is negative. This leads to the change in the statistical
scale-wise trace of the spanwise stresses ow”ow”, which have their largest peak
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Figure 2.6: Phase variation of the maxima 6u;’5u;’; in the (7}, Y™) plane for the
case at T+ = 250. ¢; = in/4. Taken from Gattere et al. (2023).

inr;, #0.

This interaction mechanism between the coherent Stokes layer and the
stochastic turbulent fluctuations is captured by the coherent-stochastic produc-
tion of the spanwise fluctuations, that in the r, = 0 space reduces to p},, =
=26v”6w” (0w /dy). The interaction mechanism between the Stokes layer and
the QSV, which moves low (high)-spanwise-velocity fluid w” upwards (v > 0)
(downwards (v < 0)), and high (low)-spanwise-velocity fluid downwards (up-
wards) for positive (negative) spanwise shear, also leads to the creation of shear
stresses 0v”’ow”, otherwise null in the uncontrolled channel. The sign of 6v”ow”
changes, with the same mechanism which leads to the change of sign of the
Reynolds shear stresses (5u”6v”) at the sides of QSV due to the sweep and ejec-
tions of streamwise velocity fluctuations u” caused by the mean shear dU/dy.
The wall normal position of such an interaction depends on both the shape of the
Stokes layer directly and on its influence on 6v”dw”, leading to the alternation of
positive and negative stripes of energy exchange between coherent and stochastic
field, differently at each phase of the oscillation. Stripes of pfjs > (0 means energy
going from the coherent motion to the turbulent field as expected, whereas pl?'; <0
means that the turbulence has a feedback on the coherent field. The change of
ov”ow” also influences the scales at which the energy exchange between coherent
and stochastic field takes place. Figure shows for a specific phase, pS’, in
the r, — Y plane. Going from the optimal 7% = 75 to the sub-optimal T+ = 250
period, the stripes of energy exchange from the stochastic to the coherent field
weaken, while those from the coherent to the stochastic field strengthen; overall,
the contribution of the spanwise velocity to the energy drained from the coherent
and given to the stochastic part becomes larger. A larger period of oscillation
implies a larger Stokes layer thickness, proportional to VvT; as a result, the co-
herent spanwise shear and, as a consequence, the scale-space map of 6v”ow” are
stretched outwards, yielding an overall increase of the positive transfer of energy
towards the turbulent fluctuations. Anyway, when p{;,  is averaged over the phases,
it turns out to be positive for both the periods investigated, meaning that overall
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Figure 2.7: Coherent-stochastic production p¢3, " in the (rF,Y™) plane for T+ = 75
(left) and T* = 250 (right) for ¢ = m. The thin contour line is set at 95% of the
smallest (positive and negative) maximum over the phases; the thick black contour
line is p}), = 0. The coordinates of the maximum, marked with a cross, can be

read on the axes. Taken from |Gattere et al.|(2023).

turbulence drains energy from the external harmonic motion.

Thanks to ¢ AGKE a description of the phase by phase modification of the flow
field of a turbulent channel flow due to interaction between the near-wall turbulent
structures and the coherent spanwise velocity generated by the wall oscillation
control is made possible for the first time simultaneously in the space of scales and
physical space. However, ¢ AGKE is suitable to study many different flows where
stochastic fluctuations coexist with some sort of coherent motion, very common
in turbulent flows. For instance, turbulent flows controlled by an external periodic
forcing, such as oscillating airfoils, rotors and turbines; the turbulent flow past
bluff bodies, where large-scale motions of the Kdrméan-like vortices in the wake
coexist with small-scale stochastic motion; the Couette flow where large rolls
and small perturbations live together; the atmospheric boundary layer, featuring
quasi-two-dimensional structures forced at smaller scales.

2.3 A conceptual description of controlled turbu-
lence

Thanks to the ¢ AGKE, one can fully characterize a wall-bounded turbulent flow
and its modification by the oscillating wall. While we can identify the variations
in the turbulent flow due to two distinct oscillation periods and link these to the
dynamics of the near-wall cycle, the underlying physical mechanisms governing
drag reduction control remain elusive. Understanding how a control inhibits the
regeneration of turbulence concerns researchers since the pioneering work by Jung
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et al. (1992). The available evidence points to the existence of an optimal value
T, p; for the oscillation period to reduce the skin-friction drag, and there is broad
consensus that this value is 7, ~ 100. Despite the evidence, however, there is
no consensus on the physical interpretation of the optimum period, and more than
one meaning can be attached to these specific value. For example, 7, ,; can be
associated to time scales of the flow, such as the characteristic life time of the
near-wall coherent structures (Quadrio & Luchini, 2003). Owing to the convective
nature of the flow, 7,,, can be also converted into a longitudinal length scale in
terms of a convection length scale, and be compared with typical lengths of the
near-wall coherent structures (Touber & Leschziner,|2012)). The optimum 7" might
also identify the maximum lateral displacement of the moving wall D,,,, = AT,
which is another (possibly) relevant length scale of the flow (Quadrio & Ricco),
2004)). Finally the optimum period can also be associated to a wall-normal length
scale ¢; the more obvious definition (Baron & Quadriol (1996)) of a wall-normal
length scale is through the relation:

6 =85, = \WT/n. (2.12)

The length scale d5; represents the penetration of the effects of the wall oscillation
far from the wall into the bulk of the flow and it is defined as the wall distance
where the maximum spanwise velocity during the oscillation reduces to exp(—1)
times the maximum wall velocity A.

As mentioned in the preamble of the present Chapter, the harmonic oscillation
of the wall generates a spanwise periodic cross-flow that superimposes to and
interacts with the turbulent flow and coincides with the analytical laminar solution
wsr(y,t) of the Stokes second problem (Quadrio & Sibilla, 2000), with small
deviations for large 7. The generated time-varying velocity profile, called Stokes
layer (SL), already described by Eq. (2.2) is rewritten exploiting Eq. (2.12) as:

2r y )

wsr(y,t) = Aexp (—;E) sin (—t _y

2.13
T' " %s (2.13)

where dg; is also known as the SL thickness, representing the wall-normal diffusion
length scale associated to the Stokes layer.

As discussed in the coherent SL cross-flow is at the root of the drag
reduction process, yet no consensus exists regarding the details of how it interacts
with the incoming turbulent flow. Our inability to discriminate among the different
possible interpretations of 7,,,; reflects our current limited understanding of the
whole drag reduction mechanism of the oscillating wall set up. Aiming at under-
standing how the generated Stokes layer interacts with the underlying turbulence
and what time and space scales are actually targeted by the oscillation of the wall
to reduce drag, we decouple the effects of the period T and of the penetration
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depth o of the Stokes layer. Based on Direct Numerical Simulations, we go be-
yond the concept of the conventional oscillating wall and get rid of the 6 = dg1
constraint: we explore the complete (7, §) two-dimensional space of parameters
and investigate separately the role of 7" and ¢. Instead of imposing the harmonic
spanwise oscillation of the wall to generate the SL, we enforce at each time step
of the simulation a mean spanwise velocity profile of the form

2,y

T 5) , (2.14)

which we dub extended Stokes layer (ESL), and vary ¢ and T independently. The
operator (-);, indicates spatial averaging along the homogeneous directions. It
should be remarked that our procedure is equivalent to solve the Navier—Stokes
equations with the boundary condition of the wall oscillation and an additional
volume forcing that is practically zero whenever the extended Stokes layer reduces
to the standard Stokes layer.

We perform a set of DNS at Re, = 400. We increase the value of Re compared
to the previously used Re. = 200 (see §2.2) since at this value of Re the forcing
of Eq. can be significantly more effective than the conventional oscillating
wall, such that the turbulent flow is prone to relaminarization. For the control, the
amplitude is set constant to A* = 12, whereas the space of parameters (T, ) is
investigated varying the period in the 10 < 7* < 200 range, while the SL thickness
varies between 2 < §* < 20.

Figure [2.8| shows the drag reduction on the (7" — ) plane. The black line
represents the results pertaining the oscillating wall, when T and ¢ are constrained
by Eq. (2.12)) and clearly shows that the maximum R when being constrained
to move on the line is achieved at Tt ~ 100. Instead, once 7 and § are made
independent, then 7% ~ 100 (thus 6* ~ 6 following Eq. (2.12))) is not particularly
meaningful and to reach larger R is convenient to move towards smaller periods
of oscillation, i.e. 7, ~ 30 and larger SL thickness, i.e. d,, ~ 14. It is worth
noting that, when moving along the SL line, it is impossible to change 7" and ¢ in
opposite directions.

The peak of drag reduction (7™, 6%) =~ (30, 14) is quite broad and flat, and the
value of 6, corresponds to the position in the buffer layer where the near-wall
cycle takes place, suggesting that the maximum R is gained for the ESL effectively
interacting with the near-wall coherent structures. Instead, for either 6* < 4 or
for T* < 20, the characteristic space and time lengths of the forcing are too small
compared to the characteristic lengths of the turbulent structures of the near-wall
cycle, thus they do not successfully target them. For both T and ¢ larger the
optimum, the R performances degrade due to the enhanced turbulent activity. We
conclude that the values of the parameters (7*,5%) ~ (100, 6), well known in
literature to provide the maximum R with the wall oscillation, do not possess

wsp =(w(y,t;6,T)), = Aexp (—%) sin (
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Figure 2.8: Drag reduction map in the (7', §) two-dimensional space of parameters.
The black thick line indicates the & = 657 constraint. The green dot identifies the
point of maximum drag reduction, whereas the black dot indicates the maximum
along the line 6 = 657 (T). Small back points indicates evey simulation’s parame-
ters.

a special meaning. Instead, the global maximum (7%, %) ~ (30, 14) might be
associated to some characteristic scales of turbulence.

As highlighted above, the optimal oscillating period T;,; can be obviously
compared to other time scales in the turbulent flow. |Quadrio & Luchini| (2003)
computed the integral scale 77 of the space-time autocorrelation of velocity fluc-
tuations along the path of maximum correlation in the space-time plane, and
interpreted it as the integral lifetime of near-wall structures. We perform the same
analysis at the present Re; = 400 and at 6;,,, we measure 77, = 75 for the
streamwise velocity fluctuations. These value is of the same order of T* = 30, yet
quite far from it. Moreover our results of decreasing T for increasing ¢ are not
compatible with this interpretation since the integral lifetime increases with the
distance from the wall, being e.g. Ty, = 62 at y* =S5 and 77, = 75 at y* = 15.

A possible alternative is to associate the optimal oscillating period 7, to the
characteristic timescale of the near-wall cycle. measured its period
to be T = 400, with a bursting phase lasting 7* ~ 100 followed by a longer phase
of quiescence. Half of the bursting phase (T* ~ 50, comparable to our T;p[ = 30)
is taken for the eruption and growth of the burst and the remaining for its decay.
The same time-scale 7" ~ 50 has been measured by Blesbois et al. (2013) and
as the regeneration time-scale of the streaks. Again, our results of
decreasing T for increasing ¢ contradict also this interpretation, being the bursting
period proportional to the distance from the wall of the structures.

Due to the convective nature of the near-wall flow, T;,; can be compared to
the convective time scale 7, of the near-wall structures, which can be estimated
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looking at the convection velocity U.. The convection velocity U, is known to
substantially differ from the local mean velocity in the near-wall region (Kim &
Hussain, |1993); it is nearly constant with a value U} =~ 10 in the viscous sublayer,
whereas it increases from the buffer layer upwards approaching the mean flow
(Quadrio & Luchini, 2003). The increase of U, with y translates into a decrease
of T,, as these two quantities are inversely proportional 7, = L/U, , with L being
a length scale. This is consistent with our data that report a decrease of the local
optimum 7, as ¢ increases.

Finally, we consider the dominant interpretation of the optimal period for
the SL in terms of the wall-normal diffusion length scale 6. This view is as
simple as appealing, and has been put forward very early by Baron & Quadrio
(1996)), who noticed that the different wall-normal average positions of low-speed
streaks (y* < 10) and streamwise vortices (10 £ y* < 50) enables an optimally
configured Stokes layer to break their coherency and alter the relative spanwise
position between them. The optimum value of §,,, ~ 14 might be linked to this
Interpretation.

The information of the optimal (7', ) is crucial when developing alternative
strategies that produce near-wall spanwise motion, without the need of moving the
wall, in a view of the possible simplest implementation in practical applications.
Some examples may be plasma actuators Jukes & Choi| (2012), the alternation of
slip and no-slip stripes (Hasegawa et al.l 2011) or texture (Garcia-Mayoral et al.,
2019)), sinusoidal riblets (Sasamori ef al., 2014}, dimples (Lashkov & Samoilova,
2002)), elettroactive polymers combined with an electromagnetic actuator (Gouder:
et al.,[2013)).

From this perspective, the search for a control law should not be necessarily
dictated by the selection of an actuator, as done over the years for the wall oscilla-
tion. Instead, it may be more advantageous to seek first what is the most effective
control action, and start thinking of an actuator afterwards. Furthermore, the
strategy proposed in this study allows for a wider understanding of how spanwise
motion influences near-wall turbulence.
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3 Understanding controlled turbu-
lence towards applications

Probing natural turbulence with drag reduction is useful to understand the nature
of turbulence itself. However, despite our partial understanding of turbulence and
drag reduction, it is undeniable that several flow control techniques are definitely
effective at reducing turbulent skin friction. Hence, it is of no lesser importance to
assess whether or not such techniques can be exploited in practical applications,
e.g. for decreasing fuel consumption and pollutant emissions in the transportation
field, or for increasing the energy production of wind turbines.

Several practical aspects need to be investigated before claiming that drag re-
duction strategies are a viable real-world solution. In the previous Chapter, the
physics of wall-bounded turbulence has been studied in extremely simple and ide-
alized flows, but we are particularly interested in aeronautics, one of the industries
where drag reduction holds the highest potential. The most important parame-
ters to account for are the Reynolds number and the Mach number. The former
describes the relative importance of the inertial forces compared to the viscous
forces and in typical aeronautical applications ranges from Re ~ 10° — 10° for
Unmanned Aerial Vehicles (UAVs) up to Re = 10 — 108 for commercial and
military airplanes. The latter is a measure of the velocity made dimensionless by
the speed of sound, and quantifies how much the flow deviates from the incom-
pressible regime; it ranges from M < 0.3 for UAVs and gliders, to M =~ 1 for
commercial flights, up to M = 10 for hypersonic vehicles such as reentry space
capsules. Also, in practical applications the geometry is often more complex
than a flat wall, both because the body has a non-planar shape, and because the
locally planar wall may possess small-scale patterns. Applications such as wind
turbines or airplanes clearly involve solid objects that are far away from a flat plate,
possessing complex shapes featuring curved walls and multi-body configurations.
When passive drag reduction techniques are considered, most often these involve a
sort of smart roughness, i.e. small-scale modifications of the flat geometry which
interact with the near-wall turbulence to reduce the skin-friction drag.
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In the first part of the Chapter we still remain on the simple geometry of the
plane channel flow, to study the effects of the Reynolds and Mach numbers on
the drag reduction. We control the channel with one of the most promising active
technique: the streamwise travelling waves of spanwise velocity (StTW) (Quadrio
et al., 2009). StTW not only attain large drag reduction rates, but are also capable
of large net savings, i.e. they are still convenient after the energy cost of the
actuation is accounted for. For this type of forcing, the spanwise velocity at the
wall depends on both time and the streamwise coordinate as:

w(x,y =0,t) = Asin(kx — wt), (3.1)

where A is the forcing amplitude, x is the streamwise direction and ¢ is the time, « is
the wavenumber (which defines the wavelength A = 27/«) and w is the frequency
(which defines the oscillation period T = 27 /w). The oscillating wall of Eq.
(Jung et al., [1992), obtained for « = 0 and the stationary wave (Quadrio et al.,
2007)), obtained for w = 0, are two limit cases of this general type of forcing.

To assess the efficacy of an active drag reduction technique, the benefit, i.e.
the reduction of drag, needs to be compared to the cost of the actuation, i.e. the
power spent to move the wall. To do so, we disregard the actuator losses, which
are actually unavoidable in a practical implementation, and only consider the
power transferred from an ideal actuator towards the viscous fluid. Following the
definitions of the dimensionless indicators provided by Kasagi ez al.| (2009), the
control power per unit wetted area is defined as a fraction of the pumping power
per unit wetted area Py = Uj7y 0, Where 7, is the streamwise component of the

wall shear stress, as:
100
Py = P—<W()’ =0) ), (3.2)
0

with w(y = 0) the velocity imposed at the wall by the control and 7, the spanwise
component of the wall shear stress. Finally, to compare benefits and costs of the
control, the net energy saving rate P, is defined as:

Ppet = R = Piy. (3.3)

Depending on the couple of parameters (k,w), drag increase or drag reduction
can be achieved. Quadrio et al.| (2009) considered a channel flow at Re, = 200
and A* = 12, and found a largest drag reduction of 48% which translates into a
positive net power saving of 17% for low frequency and small wavenumber. For
smaller forcing intensities A, a net power saving of as high as 32% can be achieved
at this value of Re.
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3.1 Drag reduction and the Reynolds number

Despite the very large drag reduction and net power saving achieved, the results
of |Quadrio et al.| (2009) have been obtained for a Reynolds number (Re;, =
10° — 10%) that is quite far from the typical aeronautical values. Gatti & Quadrio
(2016) examined the relationship between the drag reduction performance and
the Reynolds number. Although they confirmed the decrease of drag reduction
with Re, they found it to degrade at a much slower rate than with the previously
suggested power law (Touber & Leschziner, 2012; Hurst et al., 2014). They also
demonstrated that the drag reduction rate by spanwise forcing becomes almost
constant with Re, provided that it is expressed not via R, that is per se Re-
dependent, but through the Re-invariant parameter AB*, i.e. the shift of the
logarithmic portion of the mean velocity profile, which expresses the main effect
of the StTW on the flow:

1
U'(y") = 7 Iny" + By +AB", (3.4)

with k the von Karman constant, Bg the additive constant in the reference channel
flow, and B* = BZ‘) + AB” the additive constant of the controlled flow, where the
superscript = indicates quantities made dimensionless with the friction velocity of
the controlled flow. Thus, from the knowledge of the drag reduction at low-Re,
they were able to extrapolate drag reduction at higher Re, showing that a drag
reduction of R = 50% at Re, = 1000 translates into R = 34% at Re, = 10°,
so that travelling waves are still of large interest for aeronautical purposes. Their
model (hereinafter indicated as GQ model) hinges on the assumption that AB*
depends on the control parameters (A", k*, ") but not on Re and reads:

1
s 2 (1 —R)-12_q] - _
AB* = Cro [(1-R) 1] T In(1-R), (3.5)

where the Re-dependence is embedded in Cyp. However, this study has two
limitations. First, they used relatively small computational domains (Jiménez &
Moinl, 1991]) to limit the otherwise prohibitive computational cost needed to explore
a large portion of the parameter space. Second, their study varies the Reynolds
number up to Re, = 1000, which may not be sufficiently large for the log-law in Eq.
to be well developed, thus jeopardizing the correct extrapolation at higher Re.
More recently, Marusic et al.| (2021) observed for the first time R increasing with
Re and justified it with the particularly slow timescale of forcing employed (T* =
|27 /w*| > 350), aiming at targeting the large outer-scaled turbulent structures
whose importance increases with Re. They found that with a backward travelling
wave (w/k < 0) with w* = -0.0105 (T* ~ -600), «* = 0.0008 and A" ~ 5,
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Figure 3.1: Drag reduction rate (R) as function of the reference friction
Reynolds number (Re-,) for backward-travelling wave with parameters A* = 5,
k* = 0.00078 and w* = —0.0105; colored symbols are the present data; experi-
mental data by Marusic et al. (2021) are black circles, while black squares denote
their LES numerical data; the straight line is the prediction of the GQ model (3.5)).

R increases from 1.6% at Re; = 1000 (obtained by numerical simulations for
an open-channel flow), up to 13.1% at Re, ~ 12800 (obtained by experiments
for a boundary layer). This result would open up new frontiers, suggesting that
spanwise forcing is more efficient at Reynolds number typical of real problems.
Despite the promising results, this study also have shortcomings; it relies on the
joint observation of data for a low-Re open channel flow obtained by Large Eddy
Simulations (LES) and data for a high-Re boundary layer flow (up to Re; =
12000) obtained by experiments, bringing together different flow configurations
and methods. Also, the experimental setup, whose dimensions are fixed in external
units, does not allow to keep the control parameters constant in viscous units
while varying Re.. The relevance of this result encourages us to provide a new
accurate database produced by high fidelity data obtained by DNS in a single
configuration, i.e. an open channel. The computational domain employed in the
present simulations is sufficiently large to properly account for all relevant scales of
turbulence, and the investigated Reynolds numbers, ranging 1000 < Re, < 6000,
are large enough to avoid low-Re effects.

Figure [3.1] compares the numerical results of the present simulations with
the same control parameters of Marusic et al.| (2021) with their numerical and
experimental results. Figure confirms the validity of the predictive model for
drag reduction by Gatti & Quadrio| (2016) and its underlying hypothesis. This
result implies that the drag reduction induced by streamwise travelling waves at a
given combination of the parameters (A*, w™, k*) monotonically decreases with
the Reynolds number, suggesting that the large outer inertial structures do not
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Figure 3.2: Net power saving (P,.;) as function of reference friction Reynolds
number (Re.o) for backward-travelling waves with the same parameters of figure
Colored symbols are the present data; experimental data by Marusic et al.
(2021) are black circles, while black squares denote their LES numerical data;
the straight line is the theoretical prediction obtained by combining the GQ model
with the expression of P;, provided by |Gatti & Quadrio| (2013).

significantly interfere with the working mechanism of wall-based strategies for
drag reduction, confirming the predictive model based on AB* proposed by |Gatti
& Quadrio| (2016) and their results.

For a potential application of StTW to real world, not only the benefit but also
the cost of the actuation needs to be considered. Figure [3.2]reports for the same
parameters of figure [3.1] the net power saving P, i.e. the balace between the
reduction of drag and the power spent to actuate the wall. Although we could not
confirm the improvement of the drag reduction rate with Re measured by Marusic
et al. (2021)), the increase of the net saving P,.; with Re is verified, and it gives
to StTW a great potential to their exploitation for aviation. The control cost may
decrease with Re at a faster rate than R, so that P, can actually increase with Re.
However, P,.; increasing with Re can happen only for StTW parameters far from
the optimum (as for the present combination of parameters), where both R and P;,
contribute. Unfortunately, the portion of the StTW parameter space where P,,; is
maximum is dominated by R and hence exhibits similar Re-dependence.

3.2 Drag reduction and the Mach number

The second parameter which is of paramount importance in aeronautics and has
received limited attention so far for friction drag reduction studies is the Mach
number. The first comprehensive study of the compressibility effects on drag
reduction via spanwise forcing was carried out by Yao & Hussain (2019) who
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performed a set of DNS of a channel flow controlled by spanwise wall oscillation
at Mach number M = 0.3,0.8, 1.5, at Re; = 200 and A* = 12. They reported
R increasing with M until reaching relaminarization for slow oscillations. More
recently, Ruby & Foysi| (2022) discussed the drag reduction for a channel flow at
Re; =200 - 1000, at M = 0.3, 1.5, 3 forced by stationary waves at A* = 12 and
they confirmed the beneficial effect of compressibility. We have extended their
work to the more general and more effective travelling waves, to investigate the
effect of compressibility both on drag reduction and net power saving to assess the
applicability of this drag reduction techniques to real scenarios.

Following the approach of the previous studies, we perform DNS of a com-
pressible channel flow for subsonic (M = 0.3), transonic (M = 0.8) and supersonic
(M = 1.5) speed at the baseline friction Reynolds number of Re, = 400 to avoid
relaminarization occurring at lower Re due to the larger performance compared
to the incompressible case. When compressibility is accounted for, the picture
noticeably complicates and the problem of fairly compare results is not straight-
forward. When studying the drag reduction effect at different Re, the problem of
comparison relates to choosing the proper figure of merit to measure the reduction
of skin-friction drag that is Re-independent and to decide how to compare the
uncontrolled and controlled cases as well as different controls. The former is the
shift of the mean velocity profile AB. The latter can be either a scaling in nominal
or actual viscous units, i.e. employing the friction velocity of the uncontrolled or
controlled flow, respectively. When compressibility brings thermodynamics into
the picture, the problem of comparison complicates since more quantities come
into play implying more scalings available. Again it is fundamental to find the
correct way to compare drag reduction at different Mach numbers, but also to
compare the uncontrolled and controlled flows and the results at different control
parameters.

A turbulent flow confined by walls in a compressible regime requires char-
acterization through three distinct parameters: the Reynolds number, the Mach
number, and an additional parameter that delineates the thermal state of the wall.
In the context of channel flow, the relevant parameters are typically expressed as
bulk quantities, specifically the bulk density p;, the bulk velocity Uj, and the bulk
temperature 7. The bulk Reynolds number, i.e. Re, = ppUph/u,,, where u,, is
the dynamic viscosity at the wall, is kept constant during each simulation, which
is run at a constant flow rate (CFR) (Quadrio et all 2016a) where the pressure
gradient is adjusted at each time step to keep a constant Uj;. Being the control
wall-based and being the control parameters known to scale in viscous units (Gatti
& Quadrio, 2016)), Rey, is chosen so that the corresponding friction Reynolds num-
ber is fixed to the target value Re; = 400 for the uncontrolled simulations. For
the same reason, it is convenient to define the Mach number as M = U,/cy,, in
which the velocity scale is Uj, and the speed of sound c¢,, = \/yRT,, is evaluated at
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Figure 3.3: Drag reduction rate (R) versus frequency w* for the streamwise-
travelling waves at k* = 0.005, for ZBC (left) and CBC (right). Incompressible
data are in green: solid line without symbols from |Gatti & Quadrio (2016) and
solid symbols from Hurst et al. (2014). The dashed lines data are for ZBC case.
Taken from |Gattere et al.|(2024).

the wall temperature 7,,. Following Yao & Hussain| (2019), the Mach number is
varied as M = 0.3,0.8, 1.5.

In a confined flow scenario, such as that observed in channel flow, the bulk
temperature is not fixed and can evolve freely until it attains an asymptotic state at
which the heat produced within the flow is balanced by the heat flux through the
isothermal walls. This methodology results in varying bulk temperatures across
different simulations, complicating the physical interpretation of the outcomes.
The discrepancies in heat transfer rates makes it difficult to discern the effects of
compressibility and wall cooling. Furthermore, the elevated heat transfer rates at
the wall do not accurately reflect the characteristics of typical external flows, which
is the context in which we aim to implement active techniques like spanwise forcing.
Exploiting this approach (the one followed by both Yao & Hussain|(2019) and Ruby
& Foysi (2022)) that we dub Zero Bulk Cooling (ZBC), we find compressibility
having a favorable effect for most of the control parameters, especially for small
wavenumbers and frequencies. We explore 42 points on the (k, w) parameter space
located in the most interesting areas of the map (see Quadrio et al., 2009). The
left panel of figure [3.3]shows the drag reduction for some points of the parameter
space of StTW at M = 0.3,0.8, 1.5 for the ZBC case for a fixed value of the
wavenumber k* = 0.005. The peak of R increases from 40% to 52% going from
the M = 0.3 to M = 1.5. However, to discern the direct effect of compressibility
and the indirect effect of changed thermodynamics due to the specific geometry
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Figure 3.4: Temperature profiles in the wall region of an uncontrolled compress-
ible channel flow at M = 0.3, 0.8 and 1.5, with ZBC (dashed lines) and CBC
(continuous lines) approaches. Taken from Gattere et al.| (2024).

employed, we propose a second approach to compare the results. Following Cogo
et al.| (2023) we suggest to keep the value of the so-called diabatic parameter,
defined as 8 = (T,, — Tp) /(T — Tp) where T,, is the wall temperature, 7} the bulk
temperature and 7, the recovery temperature, fixed across the values of the Mach
number, the uncontrolled and controlled cases and across the control parameters
of the StTW. Keeping 6 constant means that a fixed portion of bulk flow kinetic
energy is converted into thermal energy for each simulation. To fix it constant
during the simulation we add to the energy equation a cooling source term, that
i1s computed and adjusted at each time step. It resembles the CFR technique to
advance the momentum equation for which the pressure gradient evolves in time to
keep a constant flow rate. This approach, we call Constrained Bulk Cooling (CBC)
leads to two desirable effects at the same time. First, it is an artifact to obtain an
internal flow (computationally cheaper) with a temperature profile that resembles
that on an external flow, which is the configuration the active techniques are meant
for. Second, the profiles of the thermodynamics quantities are such that their value
do not change much between the wall and the buffer layer, so that the parameters
of the control scaled in viscous units with the wall thermodynamics properties,
still have the same value in the buffer layer, where the spanwise Stokes layer
interacts with the near-wall structures to weaken them. Figure shows for the
uncontrolled case the different temperature profiles of 7'(y)/T,, for both the ZBC
and CBC cases. On the right panel of figure the results for k™ = 0.005 with
the CBC approach shows the maximum of R increasing only from 40% to 43%
going from the subsonic to the supersonic case. Overall, spanwise forcing remains
fully effective in transonic and supersonic regimes, yet the increased performance
with M is substantial only with ZBC approach, whereas when R is compared at
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Figure 3.5: Drag reduction for the streamwise-travelling waves at k* = 0.005 and
-0.2 £ w* £ 0.3 measured in the compressible regime versus drag reduction
of the incompressible regime when the control parameters are scaled with the
thermodynamic properties of each different case at y* = 10. Open symbols are
for the ZBC case and solid symbols for the CBC case. Taken from |Gattere et al.
(2024).

different M with CBC approach the increment in performance is very limited and
only marginal improvements are detected.

In conclusion, we find that when the control parameters are made dimension-
less with the actual (of each controlled case) thermodynamic properties in the
buffer layer, the altered effect of the thermodynamics is removed and drag reduc-
tion becomes constant with the Mach number. Figure [3.5] shows for the same
parameters of figure the drag reduction measured by the present simulations
plotted against the drag reduction expected from incompressible case for the same
control parameters after being scaled with the actual (of each controlled case) ther-
modynamic properties in the buffer layer at y* = 10. The majority of the points lie
on the diagonal line meaning that drag reduction becomes constant with the Mach
number, after removing the spurious effects of the changed thermodynamics. The
few outliers represent those points of the map where the drag reduction gradients
are extremely large, and the incompressible data by Gatti & Quadrio| (2016) are
not sufficiently dense, thus they provide a poor interpolation. This result demon-
strates that, once the spurious thermodynamic changes due to the internal flow
configuration employed are factored out, compressibility has little to no effect on
the drag reduction performance of the StTW.

In the end, to assess the overall efficacy of StTW at increasing Mach number,
we also account for the cost of the actuation. Compared to the expression of
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equation (3.2)), the CBC case also features an extra cost due to the additional
term added to the energy equation to cool the flow. However, this term serves
the purpose of yielding an internal flow with a temperature profile that resembles
an external flow; yet in true external flows cooling would occur naturally, so we
discard this additional term in the computation of P;,. Under the CBC approach,
P;, almost perfectly collapses for different values of M. This leads to P,.; being
practically constant with M, with a positive value for some parameters of the (x, w)
space; this result declares StTW effective also at large Mach number, making the
exploitation of this strategy interesting in aeronautics.

3.3 Drag reduction and the real world

When integrating drag reduction into real-world scenarios, two main issues come
into play.

First, although active techniques provide large drag reduction and power saving,
to date no actuators are available to enforce their control laws. On the other hand,
passive techniques reach smaller drag reduction but they can be actually produced
and installed. Classic passive drag reduction techniques involve small-scale orga-
nized roughness at the wall, which can be either arrays of small protrusions, e.g.
riblets (Walsh & Weinstein, [1979) or small indentations, e.g. dimples (Alekseev
et al., 1998) or compliant surfaces (Gad-el-Hak, 1996)), where the surface moves
in response to the interaction with the flow above and adapts to reduce drag. Other
examples include permeable substrates (Abderrahaman-Elena & Garcia-Mayoral,
2017)) made by coatings with anisotropic permeability, superhydrophobic surfaces
(Daniello et al.l [2009) where air gaps form between the substrate and the lig-
uid fluid, and polymeric additives, which make the fluid in fact non-Newtonian
(Lumley, |1977). We are particularly interested in the classic passive techniques,
involving single-phase flow and a simple modification of the wall geometry, but
do not require slots, ducts or internal equipment of any kind. Riblets fall in this
category. They are among the most promising techniques and have already been
produced in the form of adhesive plastic films, laser machining and coatings. Ri-
blets are small. This not only translates into production and maintenance issues,
but becomes a burden whenever one is interested in an accurate numerical simu-
lation to predict their performance in terms of drag reduction. The use of DNS is
mandatory, but each riblet element needs to be properly resolved in the simulation
for quantitatively accurate results. The sharp riblet corner is a further obstacle to
their accurate numerical simulation.

Second, the plane channel flow employed so far is a simplified geometry which
does not exist in practice, and drag reduction techniques must be applied on bodies
that are way more complicated, e.g. transportation vehicles and wind turbines.
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On one hand, relevant flow configurations for which drag reduction techniques
are meant for, are external flows, more computationally demanding to simulate
than internal flows. On the other hand, typical practical applications features
non-planar wall and three-dimensional geometry i.e. large-scale modifications of
the flat wall. Once again, riblets have already been extensively tested covering
the surface of airplanes by seminal experiments by Boeing (McLean et al.,|{1987),
Airbus (Coustols & Savill, [1992; Szodruch,1991) and NASA (Walsh et al., 1989)).
In 2022 and 2023 Boeing installed riblets on the first passenger and first cargo
planes on regular operations.

In this Section we deal with surfaces featuring either small-scale or large-scale
modifications of the flat wall. Thus, the drag reduction definition needs to account
not only for the skin-friction drag, but also for the pressure drag, i.e.:

Cp—Cpyp

R =100 x
Cpo

(3.6)

where Cp is the sum of the skin-friction coefficient Cy and the pressure drag
coefficient C,. The former has been already defined in Chapter §Q as Cy =
21, /(pU?) with 1, the average wall shear stress and the latter is defined as
C, = 2P/ (pU?) with P the average pressure over the surface; the reference
density p and velocity U are typically defined as bulk quantities (pp, Up) for
internal flows (as used so far in this Thesis) or as free-stream quantities (0co, Uco)
for external flows.

3.3.1 A novel immersed-boundary method for non-planar walls

Passive techniques that introduce a micro-scale pattern on an otherwise flat wall in
a sort of organized roughness can be studied numerically via DNS. This requires
sophisticated tools to measure drag reduction with proper quantitative accuracy.
To resolve the geometry of a non-planar surface, the mainstream solution is to
resort to a body-fitted computational grid, where the mesh adapts to the surface’s
shape. This is less than optimal, and an alternative approach exists, where the
discretization is operated on a Cartesian grid, with the solid body being “immersed”
in it: the contour of the body does not generally coincide with the grid points.
Cartesian grids offers significant benefits over body-conforming grids, including
easier structured mesh generation, simpler and more efficient solution algorithms
and parallel processing, as well as reductions in memory usage and computational
time. Given these advantages, we opt for this second approach and introduce an
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original immersed-boundary method (IBM) to simulate the turbulent flow above
a non-planar wall via DNS.

Our novel IBM for the incompressible Navier—Stokes equations employs a
discrete forcing formulation for a sharp discrimination of the solid-fluid interface,
based upon and tightly integrated with a second-order finite difference method
with a staggered grid.

To account for the presence of the solid boundary, the velocity value of the first
point inside the body is linearly extrapolated from the first point in the fluid and
the point on the real boundary (which has null velocity for a still body) only, both
along an arm of the computational stencil. This value is not actually computed nor
stored, but its contribution is accounted for implicitly by modifying the weight of
the central point of the stencil, pictured in the left panel of figure[3.6] The method
stands out for its simplicity and efficiency: only the weight of the center point of
the Laplacian stencil in the momentum equation of the Navier—Stokes equations
is modified, under the assumption that close to the boundary the viscous term is
dominant compared to the temporal and advection terms, and no corrections for
the continuity equation and the pressure are required. The method is implicit,
meaning that the point in the solid which is nearest to the interface is accounted for
implicitly; it is also implicit in time, when applied to time-dependent problems,
benefitting its stability and convergence properties.

The IBM is second-order accurate in space and preserves the temporal accuracy
of the underlying temporal discretization. We verify it by two examples with high
geometrical complexity: the turbulent flow in a channel with a sinusoidal wall, and
the flow in a human nasal cavity. The proof of the spatial second-order accuracy for
the latter example is shown in the right panel of figure[3.6| where the time-averaged
value of the flow rate Q at the trachea of nasal cavity for the fixed pressure drop of
5Pa is observed as the spatial resolution is changed.

3.3.2 Dimples

We exploit the IBM solver described above to study dimples. In their simplest
geometry, dimples are small spherical caps imprinted on a surface with the recess
and the flat surface being smoothly connected to avoid sharp edges. They have
been extensively studied in the past for their ability to enhance the heat transfer
of a surface (Kiknadze ef al., [1984), to influence the separation on bluff bodies
(e.g. golf balls) (Bearman & Harvey, |1976) and more recently to investigate their
possible drag reduction capabilities (Lashkov & Samoilova, 2002)). Over the past
20 years, a few research groups have focused their efforts on the potential use of
dimples to reduce drag, trying to determine the ideal size and shape. Unfortunately,
there is still lack of agreement on the very possibility that dimples can lower skin-
friction drag, and on their working mechanism. Several studies have reported drag
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Figure 3.6: Left: a solid body (gray background) is immersed in a fluid (white
background) with an overlaid computational stencil for the w velocity component
in the x — y plane. Dull colors denote the fully internal/external points, and vivid
colors the points where the immersed-boundary correction is applied. A red dot
denotes the actual boundary intersection. Right: Convergence of the flow rate
for the nose test case. Percentage error 100(Q(®) — Q)/Q(®) of the mean flow
rate versus spatial resolution. The dashed line shows the expected second-order
decrease.
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Figure 3.7: Instantaneous spanwise velocity component w on a wall-parallel plane
at y* = 1.3 from the flat part of the wall. Lengths and velocities are made
dimensionless with 4 and U,. The velocity field is computed by DNS for a
circular dimple, which actually yields drag increase. Taken from |Gattere et al.
(2022D).

reduction, while several others have not. We have revised the whole literature
body on the topic, founding a great variety of results, ranging from 14% of drag
reduction to 20% of drag increase. This ambiguity stems from the absence of a
widely recognized standard for measuring drag and comparing various shapes with
the reference flat wall. There are unavoidable discrepancies between simulations
and experiments, as well as between internal (like plane channels) and external
(like boundary layers) flows. The inconsistent results can also be attributed to our
incomplete knowledge of how dimples impact the surrounding flow field.

Flow visualizations (see fi gure show that, near the wall, streamlines coming
from a flat surface bend towards the dimple centerline in the recess’s upstream
portion, then away from it in the downstream part. This creates a converging-
diverging pattern, leading to an alternating spanwise velocity that resembles the
spanwise-oscillating wall. A minimum spanwise velocity is required for the active
technique to work. The amplitude of the spanwise velocity at the wall, A*, must
be of the same order of the natural spanwise velocity fluctuations in the near-wall
region, so that a threshold value is A* ~ 1.

Figure|3.7|shows an instantaneous flow field over a circular dimple; the values
of the spanwise velocity w are very large, up to 40% of the bulk velocity (or
w* ~ 6). However, in the spanwise forcing case, the spanwise velocity is homo-
geneous in the spanwise direction, different from what happens for the flow over
a dimple, for which patches of positive and negative w are detected. Moreover,
even with spanwise forcing, one should only be concerned with friction drag when
dealing with a flat wall. In contrast, the presence of dimples introduces both
viscous and pressure drag, complicating the measurement of small variations in
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aerodynamic drag, especially within turbulent flow conditions. When assessing
the drag characteristics of a reference flat surface against those of a rough surface,
it is crucial to be aware of the subtlety of the measurement. This includes the
necessity of precisely defining and controlling the Reynolds number, differentiat-
ing between internal and external flows, and accurately establishing the equivalent
“flat wall” flow to compare with.

After accounting for all these issues with precision, our computations at
2700 £ Rep £ 10400 using the most standardized circular dimples configu-
ration (Chen et al., 2012) cannot find any drag reduction for any of the tested
geometry parameters. We are also interested in understanding the scaling of drag
changes caused by circular dimples when their shape is maintained but only their
dimensions are altered. Only the value of the depth (either in inner or outer units)
has been varied independently, and all the other parameters did vary accordingly
to maintain the geometry similar. The findings suggest an outer scaling; this
outcome aligns with expectations, given that the examined dimples are relatively
deep, resembling a form of large-scale d-type roughness (Jiménez, 2004). In this
context, the large cavities effectively disrupt the near-wall layer, which is the only
region where inner scaling would be applicable.

3.3.3 Riblets on a flat plate

Among passive techniques, riblets are most promising, and currently under design
and test to be extensively applied on commercial airplanes. In their simplest con-
figuration, riblets are small two-dimensional streamwise-aligned micro-grooves
on the surface which have a periodic pattern in the spanwise direction. Riblets
have been extensively studied over the last 45 years, starting from the seminal
paper by Walsh & Weinstein! (1979) and have been proven to achieve about 10% of
drag reduction at low Reynolds number. Experiments by |Bechert et al.|(2000) and
studies by Luchini ez al.|(1991) have clarified the essentials of the drag reduction
mechanism.

When riblets are extremely small compared to the characteristic length scales
of the near-wall turbulence, i.e. in the so-called viscous regime, the above flow
does not perceive the local geometry of the rough surface, but only a homogenized
effect of it. The homogenized effect experienced by the mean streamwise flow
is a flat plane where the velocity vanishes, situated at a depth beneath the riblet
tips. The distance between a reference plane (usually the riblet’s tip) and this
virtual wall is called parallel protrusion height . In contrast, the turbulence
encounter a distinct virtual flat boundary; the distance between the reference plane
and the turbulence virtual wall is known as the perpendicular protrusion height
h,. The latter is the virtual origin perceived by the quasi-streamwise vortices,
and it is defined by the plane where the spanwise fluctuations vanish. This lies
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on the assumption that QSV induce a transverse shear over their virtual origin,
but no wall-normal velocity, due to the spanwise velocity varying linearly and the
wall-normal velocity varying quadratically with the distance from the wall, just
above it. Luchini et al.|(1991) proved that the effectiveness of riblets in reducing
drag depends on the difference of the two above mentioned protrusion heights
Ah = hj — h only. Whenever Ah > 0, the turbulence is impeded more than the
mean flow inside the riblets’ valleys, meaning that the quasi-streamwise vortices
are displaced away from the wall, leading to the decrease of the near-wall turbulent
mixing, thus to the reduction of skin-friction drag. The difference in the virtual
origin of the mean flow and the turbulence causes the shift of the logarithmic
portion of the mean velocity profile AB* of Eq.(3.4); due to the linearity of the
viscous regime, AB* o« Ah* (Jimenez, [1994; Luchini, |1996).

More recently, Gomez-de-Segura et al.|(2018) argued that the displacement of
the QSV would ultimately reach a saturation point, unless the shift of the origin
perceived by the spanwise fluctuations was accompanied by a corresponding shift
for the wall-normal fluctuations. In general, when the virtual origins perceived
by the two fluctuations differ, the QSV would experience an intermediate virtual
origin, whose distance from the reference wall is referred to as the turbulence pro-
trusion height A7. If the definition of the protrusion height difference is corrected
as Aht = h|’|r — h}, then AB™ = Ah™ is proved (Ibrahim et al., 2021).

In the viscous regime, the effectiveness of riblets increases linearly with their
dimension, measured as their cross-sectional area A,. However, for riblets larger
than their optimum size (\/A_g ~ 11) (Garcia-Mayoral & Jiménez, 2011), the
proportionality breaks down and riblets show a typical k-type roughness behavior
(Jiménez, 2004), increasing drag.

The IBM code introduced in has been successfully employed (Gattere
et al., 2022a; Gatti et al., 2023; |Cipelli et al., 2024])) for the reliable prediction of
the drag reduction capabilities of two-dimensional riblets. Here the documented
spatio-temporal accuracy near a non-trivial boundary made possible by our IBM
implementation is crucial to obtain reliable measurements of the friction coeffi-
cients and of their differences (i.e. drag reduction). In fact, measuring (small,
sometimes very small) differences in Cy is a challenging task, no less in numerical
simulations than in laboratory experiments. In the past, very few experimental
setups have managed to measure drag reduction reliably enough to give signifi-
cance to figures as small as 0.1 percentage point. A notable example is the Berlin
oil channel (Bechert et al., [1992), where the entire setup was designed around
the goal of measuring a drag difference directly instead than measuring two drag
forces and then taking the difference. Another example is the air channel at KIT
(Gttler,, 2015} Gatti ef al., 2015]), where a combination of unconventional layout,
careful design and extremely controlled experimental procedures allow measuring
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Figure 3.8: Drag reduction curve for riblets of equilateral triangle shape. Triangles
are results from |Cipelli et al| (2024) obtained for two different spanwise grid
resolutions Az*. IBM refers to immersed boundary implementation of
COCO refers to the corner correction activated at geometrical singularity. The
gray area represents the temporal uncertainty. Orange circles are experimental
data from [Bechert et al.| (1997).

ACy within an uncertainty of 0.4%. In DNS, several issues plaguing the experi-
ments do not exist, but we have to deal with the geometric singularity at the sharp
tip of each riblet. Tip sharpness is essential for drag reduction (Garcia-Mayoral
& Jiménez, 2011)), but obviously poses overwhelming requirements in terms of
space-time resolution. We have tackled the problem by following a method, orig-
inally proposed by Luchini| (1991), that has been implemented on top of the IBM
solver. In this method, the local solution close to the singularity is analytically de-
termined and compensated for, so that a reasonable spatial resolution can be used.
The analytical solution hinges upon the observation that near the tip the velocity
gradients become infinitely large, leading to dominating viscous effects and to a
local solution that is well described by the Stokes equations. The IBM augmented
with the corner correction has made possible the results shown in figure[3.8] where
drag reduction data for a given riblet geometry are obtained that not only compare
very well with the high-quality experimental reference, but also are robust with
respect to a large change in size of the computational grid.
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3.3.4 Riblets on a three-dimensional body

The last considered topic is the outcome of friction drag reduction techniques
applied on realistic, non-planar geometries. Applying e.g. a friction-reducing
textured surface to a complex body, such as an aircraft or the blades of a wind
turbine, could bring to light secondary effects compared to the application on a flat
wall. Banchetti et al.| (2020) demonstrated via DNS the beneficial effect of StTW
not only on skin-friction drag but also on pressure drag when applied to a simple
bump over an otherwise flat wall. |(Quadrio ez al.| (2022)) studied by DNS the StTW
applied to a portion of a wing in transonic flight, finding that a localized actuation
has the potential to boost the aerodynamic efficiency of the whole aircraft. These
are very promising results which open up the possibility to effectively install drag
reduction techniques on airplanes not only to reduce skin-friction drag but also to
exploit positive secondary effects.

The use of reliable numerical tools such as DNS is, once again, unavoidable.
However, at the moment, DNS can only be used for simple cases. The simulations
are too costly for complex, high-Reynolds-number aeronautical configurations,
like for an entire aircraft.

Therefore, numerical simulations of complex shapes are usually based on the
Reynolds-averaged Navier—Stokes equations (RANS) equipped with a turbulence
model. Gadda et al.|(2017) simulated the effect of travelling waves on the surface
of a modern transport aircraft at Re = 3% 10° in transonic flight. The forcing could
not be introduced directly, but it was accounted for via a modified wall function
which provides the shift in the mean velocity profile AB. They found a decrease
in the skin-friction drag as expected and also an additional positive effect in the
pressure drag reduction for certain angles of attack. These results lead to two
indirect positive effects, i.e. a delay in the onset of the shock, and a lift increase.

Having considered riblets on a flat wall with DNS in we also test the
effectiveness of riblets on aeronautical configurations with RANS. Aupoix et al.
(2012) modified the Spalart—Allmaras turbulence model to account for riblets by
using smooth-wall geometry, and Koepplin et al.| (2017) extended this model to
describe riblets which are locally misaligned with the mean flow and to account
for mean pressure gradients. Similarly, Mele et al.| (2016) introduced a modified
boundary condition for the k — w turbulence model; it correctly simulates standard
riblets, but fails to account for devices inducing larger drag reduction, such as
spanwise forcing.

More recently, Mele & Tognaccini (2018) developed a new model based on the
slip-length concept, whose application can be extended to model all surfaces with
passive/active treatments that have as a main effect a shift of the mean velocity
profile AB in the turbulent boundary layer. The effect of the shift of the mean
velocity profile can be equally seen as a shift of the wall, which is the place where
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Figure 3.9: Geometry of the UAV. Taken from Cacciatori et al.| (2022).

the velocity vanishes due to the no-slip constraint. A shift of the zero-velocity
plane (y,o—s1ip) implies that the velocity at the geometric wall (y = 0) is different
from zero; therefore, a slip condition should be applied there. The velocity at the
geometric wall can be extrapolated as

out
oy*

u+(y =0) = ”+(y = }’no—slip) + AB”

9
y=0

where u™ (y = Yno-siip) = 0. In the viscous sublayer the velocity is linear with the
distance from the wall, i.e. u* = y*. This implies that Ay* = AB*, where AB™*
is the shift of the mean velocity profile (see §3.1). Knowing that in the viscous
sublayer Ay* = AB* equals the protrusion height difference Ah* (see §3.3.3), we
get

out

ay* |,

which is the partial-slip boundary condition to apply at the geometric wall to
account for the shift of the mean velocity profile due to the manipulation of the
surface with drag reduction control.

We leverage the partial-slip boundary condition to study the effects of riblets on
the surface of a simplified geometric model of an Unmanned Aerial Vehicle (UAV),
depicted in figure at flight Reynolds number Re = UwCpPoo/floo = 5 % 107,
where c is the chord length, employing RANS simulations. We imagine covering
the surface of the UAV with the best performing riblets which can attain roughly
R ~ 10% at low Re which translates through Eq.(3.5) into a shift of AB* ~
1. Fixing the shift in viscous units means assuming riblets are locally optimal
everywhere, thus they change their physical size along the body depending on the
local friction velocity of the flow. The discrete counterpart of the above boundary
condition with derivatives approximated with finite differences reads:

ARt
= uj ,
Ah* + (y1 = yo)

where the subscript 0 and 1 refer to the grid point at the wall and the first grid
point in wall-normal direction, respectively.

ut(y =0) = An*

Uo
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The application of simulated riblets to the UAV has revealed indirect and
beneficial effects that extend beyond merely decreasing friction drag. This makes
the implementation of a friction-reduction mechanism particularly appealing in
low-speed scenarios. Specifically, riblets alter the pressure distribution over the
aircraft’s wing, resulting in a notable decrease in form drag and an increase in lift.
While this increase in lift naturally leads to a rise in lift-induced drag, the necessity
for the aircraft to maintain a specific lift during cruise operations necessitates a
lower angle of attack, which further aids in drag reduction. Ultimately, the use
of riblets can achieve a total drag reduction of up to 3% for the aircraft during
cruise conditions. This result derives from a combination of a friction drag (which
contributes to 32% of the total drag) reduced by 6.1 % and a pressure drag (which
contributes to 68% of the total drag) reduced by 1.5 %.

Cost-effective simulations can elucidate the potential drag reduction associated
with specific extents and placements of riblets coverage on the aircraft’s surface.
To this aim, we have designed a set of simulations to explore partial coverage of
the aircraft surface with riblets. The amount of coverage is quantified by the ratio
[ between the riblets-covered area and the total area, with § = 1 indicating total
coverage. In these simulations, the full aircraft is considered, but riblets coverage
varies. Figure [3.10] illustrates the pressure, friction and total drag reduction for
the various coverage scenarios: (A) the exclusion of riblets from the trailing edge
surface only, (B) from the boom surface only, (C) from the entire surface except
for the wings, and (D) from the entire surface except the wings’ suction side.
Given the significant role of secondary effects in diminishing pressure drag due to
riblets, almost 2/3 of the maximum drag reduction achieved with full coverage can
be achieved with the coverage of the suction side of the wings only, accounting
for 1/3 of the total area. Furthermore, the costs associated with the production,
application, and maintenance of riblets are directly proportional to the surface area
covered. This particular configuration not only yields a favorable cost-benefit ratio
but also preserves the integrity of the UAV fuselage, where various systems such
as sensors, cameras, and transmitters are intended to be installed.
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Figure 3.10: Pressure, friction and total drag reduction contributions for different
configurations of riblets coverage. S = 1: full coverage; g = 0.953: riblets on
the whole aircraft except the wings’ trailing edge; 5 = 0.935: riblets on the whole
aircraft except the booms (B); 8 = 0.524: riblets on the wings only (C); 8 = 0.289:
riblets on the suction side of the wings only (D).
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4 Conclusions and outlook

In this Thesis, we have considered some of the unresolved issues concerning
wall-bounded turbulence and its control for drag reduction. Inhibiting the self-
sustainment of near-wall turbulence, possibly up to a point where the flow becomes
laminar again, requires a comprehensive understanding of the physics involved,
and the ability to alter it effectively.

Some novel, dedicated tools can be profitably used towards this goal. A
rigorous statistical description of the channel flow system via the linear response
function, as well as a somewhat less rigorous spanwise forcing devised irrespective
of its practical realization, have led us to understand a little more of the turbulent
flow, and to put into focus additional interesting questions that motivate further
research.

The linear impulse response function (LIRF), i.e. the linear relationship be-
tween the input and the output of a dynamical system, has been defined and
measured for a turbulent channel flow, with the input being a body force placed
at different distances from the wall. The LIRF contains a large amount of infor-
mation, yet it answers simple questions, and for example identifies the optimal
location and manner to apply volume forces to achieve a desired effects anywhere
in the system. As such, it is of particular interest for the design of feedback control
laws, where a linear model of the plant (the turbulent channel flow) is needed;
within the linear approximation, the LIRF is the best possible plant model.

The conceptual experiments carried out with the extended Stokes layer (ESL)
fully belong to the non-linear regime. It is important to note, once again, that
while the time-dependent spanwise velocity profile was straightforwardly enforced
in the DNS, in principle one could solve the Navier—Stokes equations with a non-
homogeneous boundary condition (made by the conventional oscillating wall in
our case) complemented with a suitable wall-normal distribution of spanwise
body force. Using an ESL has been instrumental to discriminate the effects of
its temporal (7) and spatial () scales. Our findings suggest that the widely
recognized optimal period for minimizing skin-friction drag, namely 7% = 100,
may lack physical significance as a time scale, and simply represents the parameter
combination nearest to the global optimum, that is permissible under the constraints
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of the oscillating wall. Both T and ¢ play a role in the reduction of drag, with
larger performance achieved when their values are inversely related: while a large
frequency is beneficial, the influence of the SL should extend further from the wall
into the bulk flow. The key take-away of this experiment is the finding that we
should think of the oscillating wall not as an actuation strategy, but simply as a
(possibly far from optimal) means to modify the flow to achieve drag reduction.
What is the crucial flow modification needed to achieve the goal is still unclear,
and the search for a feasible actuator should be postponed until such a fundamental
piece of information is obtained.

The two tools mentioned above could also be combined. The LIRF lends
itself to testing flow control ideas in a quick and simple way, dispensing with
the need of lengthy and costly simulations. By aggregating information obtained
from these approaches, linear and non-linear effects can be discriminated, thereby
highlighting the main pathway to drag reduction. This could be interesting also for
near-wall turbulence in general; in fact, generation of the streaks from the vortices
is a linear process, while the regeneration of the vortices from the streaks needs a
non-linear mechanism.

To obtain a complete view of how flow control interacts with turbulence, the
multiscale, inhomogeneous and anisotropic nature of the latter must be properly
represented. To this purpose the anisotropic generalised Kolmogorov equations
(AGKE) seem the perfect tool; they are budget equations for the second-order
structure function tensor, and represent the Reynolds stresses in the compound
space of scales and positions. Since most of active (e.g. oscillating wall) and
passive (e.g. riblets) drag reduction techniques possess a coherent (in time and/or
in space) deterministic component, the AGKE have been extended to their phase-
aware version (¢-AGKE). The ¢-AGKE include, thanks to a triple decomposition,
the mean, coherent and stochastic parts of a flow field, and describe their in-
teraction. In a sense, while tools like LIRF and ESL are made to understand
and optimize the input of the drag reduction process (i.e. the forcing itself), the
¢-AGKE are made to understand the output, i.e. the turbulent flow with drag
reduction.

Although the physical mechanism underlying drag reduction through span-
wise forcing remains partially understood, the effectiveness of spanwise forcing is
empirically evident. Therefore, it makes sense to also consider the applied side
of the problem. Current studies have been conducted mostly in simplified flow
set-ups, such as incompressible channel flows at low Reynolds number, and further
research is needed to determine the advantages of spanwise forcing in practical ap-
plications, especially in aviation, where even a tiny reduction of skin-friction drag
could provide huge environmental and economic benefits, but the configuration
is quite far away from the incompressible, low-Re plane channel flow. We have
verified to what extent the drag reduction rate is still effective at high Reynolds

48



numbers (up to Re; = 6000) and in the supersonic regime (up to M = 1.5).
We have found that the reduction of drag remains comparable to that observed in
incompressible and low-Re conditions, as long as the drag reduction figures are
properly compared. This indicates that: i) the underlying physics of drag reduction
via spanwise forcing is independent of both Reynolds and Mach numbers (under
the tested flow conditions and geometries); ii) spanwise forcing retains its utility
under realistic flow conditions, paving the way for its exploitation in aviation.

From a practical standpoint, the most relevant metric for evaluating the effec-
tiveness of a drag reduction technique is the net power saving, which represents
the trade-oftf between the advantages of actuation (i.e., drag reduction) and the
associated costs (i.e., power required to implement the control law). Our analysis
has revealed that net power saving remains almost constant as Reynolds and Mach
numbers increase; under specific control parameters, significant net power savings
can be realized, thereby enhancing the potential of spanwise forcing.

We have also explored the performance of drag reduction methods in specific
applications. Active techniques, such as spanwise forcing, demonstrate signifi-
cant drag reduction capabilities but, to date, suitable actuators are not available.
Therefore, passive techniques, which do not require actuation while yielding com-
paratively modest reductions in drag, are worth considering. Presently, riblets
stand out as the most promising passive method, having undergone extensive
numerical and experimental testing. They can achieve drag reductions of approxi-
mately 7-10% at low Reynolds numbers and are already in use on aircraft surfaces
during regular operations.

Using a boundary condition that indirectly accounts for the effects of riblets
without the need of describing their geometry, the performance of riblets on an
unmanned aerial vehicle (UAV) has been studied with RANS. This study has led
to the expected local reduction in skin-friction drag, accompanied by additional,
indirect benefits, including decreased pressure drag, increased lift, and an overall
enhancement in aerodynamic efficiency. Although our measurements indicate that
riblets continue to provide drag reduction in complex, realistic configurations, the
most effective riblets can only reduce total drag by up to 3% for the tested UAV at
a chord-based Reo, = 5x 10°. This level of reduction rate may not justify the high
costs associated with their production, application, and maintenance, particularly
given the riblets’ extremely small size (whose optimal dimension scales in viscous
units) and the requirement for a sharp tip to function effectively. This calls for
a further optimization process, that stems from understanding that the benefit
of covering the unit surface area of the aircraft with riblets is not uniform. A
model boundary conditions and the ability to use cheap RANS to simulate various
configurations become essential tools to carry out such optimization.

Of course, the enhancement of the current passive techniques is another road
to explore. To achieve this, insights gained from spanwise forcing techniques,
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which are capable of delivering substantial drag reduction and energy saving also
at high Reynolds and Mach numbers, could be taken advantage of. The obvious
example is three-dimensional riblets, whose tip could vary its spanwise position
along the streamwise direction to mimic spanwise forcing. Sinusoidal riblets has
been already studied numerically with LES (Peet ef al., 2008) and experimentally
(Cafiero & Iusol 2022)), arriving at conflicting conclusions. Current research
efforts are focused on improving the drag reduction capabilities of sinusoidal
riblets in turbulent flows. This involves modifying the riblet tips to accurately
capture the effects of singularities without necessitating an excessively fine mesh
Luchini| (1991)), while also maintaining precision in skin-friction measurements.
Preliminary findings have been reported by Gattere et al.| (2022c); Gatti et al.
(2023)); (Cipelli et al.| (2024) and found a relative improvement of about 30%
with sinusoidal riblets with a streamwise wavelength of about * = 1500 and an
amplitude A* ~ 8. However, only two combinations (4, A) have been tested and
a parametric study could bring up larger performance. While work in this field
is just starting, it is important to stress how the numerical method that has been
developed, with extreme control of its accuracy near the boundary and the ability
of taking care of the geometrical singularity corresponding to the riblet tip, is an
enabling step, without which future numerical experiments would just produce
another data point in a confusing data set.

Different types of surface patterns, such as dimples, may offer a suitable
framework for passive spanwise forcing. Dimples do not present sharp tips, and
therefore are much easier to produce and maintain (and study). After reviewing the
limited and often contradictory literature on this subject, we have concluded that
there is no evidence that circular dimples, the most commonly studied shape, do
yield drag reduction. However, we do not dismiss the possibility that alternative
dimple shapes could produce favorable outcomes. A systematic investigation,
however, is essential to discover an optimal design.

Drag reduction in practical turbulent flows is still quite a far fetched goal,
yet the efforts of the research community are making this goal progressively less
unfeasible. While is difficult to underestimate the tremendous challenge posed by
the development of suitable technologies, the limited understanding of the physics
of turbulence and of the drag-reduced turbulent flows constitutes an even more
important and more fundamental obstacle. I hope that the research effort spent
during this PhD represents a contribution, however minor, in the right direction.
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Impulse Response in Turbulent
Channel Flow

Abstract

The mean linear response of a turbulent channel flow to a small enough, impulsive
(in space and time) body force is defined and measured through direct numerical
simulations, by considering the continuous range of wall distances from the wall to
the centerline. A zero-mean, white-noise body force is used to probe the turbulent
flow, and the response function is obtained efficiently by accumulating the space-
time correlation between the white forcing input and the velocity field obtained
as output. Three different responses are measured, at the same Reynolds number,
for a laminar channel flow, a channel flow where the mean velocity profile has the
turbulent shape but no turbulence is present, and a true turbulent channel flow.
The impulse response analysis leads to confirming and extending some important
results known in literature in the laminar case. However, the amplitude and shape
of the responses to the laminar and turbulent flows are not identical. The mean
effects of the turbulence, including turbulent diffusion, are needed to be consider
to completely characterize the linear behavior of a turbulent flow.

1.1 Introduction

The linear impulse response function (LIRF) is a classic tool for the description of
linear, time-invariant dynamical systems. Its use in relation to physical phenomena
that involve moving fluids is not particularly widespread, as it is well known that
the Navier—Stokes equations which govern the fluid motion are highly non-linear.
However, instances in fluid mechanics exist where the LIRF concept has been used,
including the study of turbulent flows.
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The analysis of the LIRF of the flow to small perturbations is a natural approach
in the (linear) hydrodynamic stability theory. A comprehensive review of the latest
developments in the field has been given by |Schmid| (2007). In this context, the
Navier—Stokes equations are linearized about an equilibrium solution, the base
flow. The non-normal nature of the linearized Navier—Stokes (LNS) operator
in wall-bounded shear flows implies the possibility for a transient growth of the
perturbation energy, which explains how e.g. the Hagen—Poiseuille flow or the
plane Couette flow undergo laminar-to-turbulent transition even though the linear
modal stability theory predicts that the critical Reynolds number for transition is
infinite.

The importance of transient growth in shear flows has been fully appreciated
in recent years, starting with the seminal contribution by Butler & Farrell (1992);
Farrell & Ioannou (1993); [Irefethen et al.|(1993). In this context, Jovanovi¢ &
Bamieh| (2005) examined the input-output properties of the LNS equations for
a plane channel, and described the spatio-temporal response of the flow to an
impulsive body force. They showed that the flow features typically observed
during transition can be interpreted as input-output resonances of the LIRF. Under
the limitation of a linearized setting, they were also able to rank the body force
components in terms of their potential for transient energy amplification, finding
that body forces acting along the spanwise and wall-normal directions entice
the strongest response, with the streamwise velocity component being the most
affected.

The importance of transient growth for the transition to turbulence prompted
researchers to consider whether such linear mechanisms play an important role
also in the dynamics of fully-fledged turbulent flows. Here, the obvious difficulty
is that turbulence is highly non-linear, implying that the stochastic “background”
turbulence can affect the amplified disturbances. In the context of LNS, the effect
of turbulent fluctuations on the disturbances is usually neglected, and turbulence
is simply taken into account (as done e.g. by Hogberg et al., 2003) by linearizing
about the turbulent mean flow, although this is not a solution of the Navier—Stokes
equations. The resolvent analysis for wall bounded turbulent flows introduced by
McKeon & Sharma (2010) relies on this assumption. It interprets the turbulent
velocity field as the output of the Navier—Stokes equations linearised about the
mean turbulent flow profile, with their non-linear terms acting as an external
forcing. The modal analysis of the linear transfer function (the so-called resolvent)
of the system describes the linear amplification mechanisms for each structure
within the turbulent flow. In some cases, the average effect of the Reynolds
stresses is modelled by augmenting the linear governing equations with an eddy
viscosity (Hussain & Reynolds,|1972) defined a priori (see, for instance, del Alamo
& Jiménez, [2006). A recent review by McKeon (2017) summarizes the recent
efforts in the analysis of the LNS, which confirms how transient amplification
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plays an essential role in the self-sustainment of turbulence (Kim & Lim) [2000),
and connects it to properties of some small- and large-scale coherent structures
observed in turbulent flows (see, for instance,|Schoppa & Hussain, 2002; del Alamo
& Jiménez, 2006; McKeon & Sharma, 2010; Davis et al., 2019). However, mean-
flow-based linear analysis is non-unique since the characteristics of the linearised
operator depend on the state variables considered (Karban ef al., 2020).

Recently, |Vadarevu er al.| (2019) considered the evolution of velocity fluctu-
ations due to an isolated spatio-temporal impulse using the LNS equations aug-
mented with eddy viscosity (eLNSE) in a channel flow at a friction Reynolds
number of Re; = 10000. They found that the impulse response evolves into
self-similar coherent structures, which remain attached to the wall and are rem-
iniscent of the so-called attached eddies discussed by [Townsend (1976), which
populate wall-bounded turbulent flows. Such structures could not be observed
when the same experiments was repeated with the same base flow but without
eddy viscosity. Madhusudanan et al.| (2019) confirmed the previous results by
showing that LNS are capable to predict the three-dimensional velocity field given
two-dimensional information obtained from direct numerical simulation (DNS) of
turbulent channels only when eddy viscosity was taken into account.

Provided the disturbances have a small enough amplitude, a linear response of
the flow to an external disturbance can be defined, albeit in a time-averaged sense,
even in a fully non-linear setting. If avoiding to resort to the LNS means that the
influence of non-linear turbulence on the linear response can be fully accounted
for. The importance of accounting for the turbulence effects has been recently
emphasized by the results obtained by Russo & Luchini| (2016)). They measured
the LIRF of a turbulent channel flow to a steady volume force, and compared
their results to the prediction obtained on the basis of the LNS equations. They
found that the two linear responses are significantly different, which implies that
the “background” turbulence has a non-negligible impact on the linear response.
Moreover, they demonstrated that it is impossible to conceive a (positive and finite)
eddy viscosity that makes the results obtained with eLNSE compatible with the
true measurement.

Prompted by the previous studies, the present works aims at measuring the time-
mean response of a turbulent channel flow to a impulsive body force in space and
time, while accounting for the full non-linearity of the system. Beside assessing
the importance of non-linear turbulent transport, the mean impulse response is
of greatest interest, thanks to the aforementioned relevance of linear mechanisms
in turbulent flows and the potential for assisting in the design of control laws for
turbulence. The measurement is carried out numerically, with a fully non-linear
code for the direct numerical simulation (DNS) of the Navier—Stokes equations.

The importance of properly defining and measuring the channel flow LIRF
goes beyond what discussed above. In fact, the response contains full information
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of the linear, time-invariant system and as such could be exploited in flow control
algorithms, where the LIRF is a complete model of the plant. With that, one would
possess the information on where and how a control should be applied to achieve
the desired mean effect. It was suggested (see for example Kim & Lim, 2000) that
linear mechanisms are central to the near-wall turbulence regeneration cycle, and
that linear models of turbulence may suffice for flow control purposes. Among
the several attempts appeared in the literature along this direction (Kim & Bewley,
2007), some used the LIRF concept: Luchini et al.| (2005) and later Martinelli
(2009) established the basis for a Wiener—Hopf feedback controller, where the
observer and the controller could be both designed thanks to the knowledge of the
LIRF.

In a non-linear setting, the linearity of the response is only guaranteed by the
small amplitude of the forcing. In doing so, at least in the turbulent case, the
problem arises that the small forcing allowed by linearity is much smaller that the
natural turbulent fluctuations, leading to an extremely low signal-to-noise ratio.
To circumvent this problem, in this work we resort to the approach introduced by
Quadrio & Luchini/(2002) and|Luchini et al. (2006) when measuring with DNS the
mean linear impulse response of a turbulent channel flow to blowing/suction ap-
plied at the wall. Instead of applying an impulsive forcing, they used a zero-mean,
white-noise signal as an input, and computed the space-time correlation between
the input (blowing/suction at the wall) and the output (the whole flow): since the
input signal is random and therefore uncorrelated to the turbulent fluctuations, the
input-output correlation immediately provides the LIRF, with the advantage of a
much higher signal-to-noise ratio. The same strategy was later applied by Carini
& Quadrio (2010) to measure the LIRF in an homogeneous and isotropic turbulent
flow to an impulsive body force, thus providing direct access to a quantity central
in the Direct Interaction Approximation theory developed by |Kraichnan| (1959).

In the present work, the mean LIRF is properly defined and subsequently
measured with DNS in a channel flow, to provide the complete description of the
relationship between a generic body force input and the resulting velocity field. In
doing so, we will consider: 1) the impulse response in absence of turbulence, i.e. the
laminar impulse reponse; ii) the impulse response when the equations are linearized
about the turbulent mean velocity profile and turbulence is neglected, i.e. with an
approach similar to that of the resolvent analysis; iii) the full impulse response,
which includes the mean diffusive effects of turbulence, and whose linearity only
derives from the small amplitude of the forcing. A detailed comparison of the
three responses is instructive to understand the propagation mechanism of small
perturbations in a turbulent flow, and has a foundational interest for applications
regarding flow control and turbulence modelling.

The structure of the paper is as follows. After this Introduction, section
defines the LIRF and describes how to measure it. The computational details
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Figure 1.1: Sketch of the plane channel with reference system and definition of
quantities related to the response function.

employed in the study are presented in and the validation of the present
approach against existing literature is reported in Sections describes
the characteristics of the impulse response both in wavenumber and physical space
and §1.6|apply it to a test case; finally, a brief concluding discussion is elaborated

in
1.2 The LIRF of the turbulent channel flow

1.2.1 Definition of LIRF

We begin with the definition of the LIRF for a turbulent channel flow, followed
by the approach employed for measuring it via DNS, and by the description of the
discretization choices.

The linear impulse response function H (in the frequency or the time domain)
is defined for a non-linear system, under the condition that the input is small
enough. In the simplest scalar and purely temporal case, H links the input f and
the output g of a system in the time domain through a convolution, i.e.:

q(t) :/_ H(t-71)f(r)dr, (1.1)

or, equivalently, in the frequency domain as §(s) = H(s)f(s), where the hat
indicates Fourier transform in time. By setting the input to a Dirac delta function
6(1), equation (I.1) immediately shows that g (r) = H(t), hence the name LIRF.

The extension to the plane channel flow system is relatively straightforward.
Instead of a generic linear system, we consider an incompressible (laminar or
turbulent) flow in an indefinite channel, bounded by two plane parallel walls,
located at y = 0 and y = 2h. The velocity components u in the streamwise x
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directions, v in the wall-normal y direction and w in the spanwise z direction are
also indicated throughout the paper as u;, with i = 1,2,3. The channel and the
reference system are sketched in figure

The flow is governed by the incompressible Navier—Stokes equations, here
written in dimensionless form:

V-u = 0 (1.2)

(Z—I;+u-Vu = —Vp+éV2u+f (1.3)
and the LIRF now becomes a second-order tensor that links an impulsive body
force input vector f to the output vector u. Besides the increased dimensionality
in comparison to the SISO linear system described by equation (I.1I), two main
differences need to be emphasised. One is that, being the governing equations
non-linear, the linearity of the LIRF tensor is not guaranteed, but is conditional
on the input being sufficiently small. The second is that, in the turbulent case, the
LIRF needs a statistical description, i.e. we seek for the mean LIRF. By assuming
that the external forcing is small enough for linearity to hold, one obtains:

<I/tj(x, Y t)) =

Lx 2h Lz +00
/0 /0 /o [ (Himj(x =& y=n,2-¢,1=7)fi(¢,n, £, 7)) drdf dp dé
(1.4)

where (-) represents the average over time. We define the function H,_,; as the

mean impulse response so it already embed the time average and the forcing is
known a priori so it does not need to be averaged, thus to ease the notation the
symbol (-) is dropped. Eq.(L.2.1]) shows that the LIRF tensor H;_, ; linearly relates
the impulsive input f; to the velocity output (u ;) of the flow.

Further simplifications are possible owing to the symmetries of the plane
channel flow, for which the x and z directions are homogeneous and the flow is
stationary (in the statistical sense in the turbulent case). Hence the above definition
can be simplified, converting the relevant convolutions into products, as:

2h +00
(@) (@, v, o)) = /0 / Flsj ey — 1. Bt = O fi(@.m, Bo0) drdy (L5)

where the hat now indicates quantities spatially Fourier-transformed along the
wall-parallel directions.

The impulsive forcing is localised in the wall-normal direction, hence its
expression can be further specialised as:

fi(a,y,ﬁ,t) :/fi(a’ﬁ’t)d(y_yf) (16)
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where y s is the wall-normal location of the impulsive forcing. If this functional
form is substituted into Eq.(1.5)), one obtains:

<ﬁj(a’y’ﬁ7t)>:[ 72[i—>j(aay_yf’:B7t_T)fi(aaﬂ’T’yf)dT' (L.7)

In the following, to indicate the mean LIRF we will employ the notation
7—A(,-_> j(a, v, 5,1y f) to emphasise that, because of the non-homogeneous wall-
normal direction, the dependence on the forcing position is an important indepen-
dent variable, which we will consider as a parameter.

1.2.2 How to measure the LIRF

As explained by Quadrio & Luchini|(2002), in the present context there are diverse
and equivalent strategies to measure the LIRF. They are briefly described below.

1.2.2.1 Measuring the LIRF in the frequency domain

In this approach, used for example by Hussain & Reynolds| (1972)) in a laboratory
experiment, one measures the frequency response of the system. For the simple
SISO system of equation it means employing the following form for the
forcing:

f(t) = esin(wyt) (1.8)

where € is the amplitude of the forcing, and wy is assigned values of frequency.
Its extension to the MIMO plane channel flow system of equation (1.2.1)) implies
the forcing to be:

fi(x,z,t;y7) = €& sin(ayx) sin(Brz) sin(wyt) (1.9)

where €; is not a scalar but a vector of small enough amplitudes, one for each
direction of the forcing f;, and ar, B and w s are assigned values of wavenumbers
and frequency. In a noiseless system like a laminar flow, this type of forcing leads
to a straightforward and direct observation of the LIRF, and repeated observations
for different values a ¢, B¢ and wy enable the complete characterisation of the
tensor H;_, j- When statistical noise is present, as in the turbulent case where
the natural turbulent fluctuations act as noise, a phase-locked average in principle
enables separating the deterministic part of the response from the random part.
The obvious drawback of this approach is that a single experiment only yields the
LIRF in a single point of the three-dimensional («, 3, w) space.
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1.2.2.2 Measuring the LIRF in the physical domain

An alternative approach that yields the entire LIRF at once consists in using a
Dirac delta function as input, which, for a SISO system, leads to the following
form for the forcing in the physical domain:

f(t) = eo(t —ty).

For a noiseless (laminar) system, this provides the entire LIRF. In fact, substituting
this in Eq.(I.1)), the response reads:

q(t) = [m?{(t—T)ecS(T—tf) dr = eH (t —ty).

so that:
q(t)
ot
The same reasoning holds for the present specific case of plane channel flow,
for which the external forcing in physical domain reads:

7‘{(2‘ - l‘f) =

fi(x,z,t;y5) = €6(x —xp)6(z —2f)5(t — t);

in Fourier space the above forcing becomes f;(a, 3, t ) = €6(t —ty) which substi-
tuted into Eq.(1.7) provides

it = [ Fislay = st - Dasr i), dr - (110)
= &M (a,y, Bt =153 yp),
so that the LIRF is directly proportional to the response of the system:
(a(a,y,B,1))
€

1

%ﬁj(a’y’ﬁ’t_tf;yf): (1.11)

Unfortunately, the obvious advantage of getting the whole LIRF with a single
measurement is overwhelmed by the need to obey linearity constraint, which
mandates extremely small amplitudes ¢;. Although inconsequential in the noiseless
laminar case, this limitation makes the approach highly unpractical in the turbulent
case. Turbulent fluctuations are akin to noise, which can be averaged out by
employing ensemble averaging, or at least an average over periodic repetitions of
the same impulsive forcing over a long enough simulation time. Unfortunately,
the forcing amplitudes required for linearity are much smaller than the natural
turbulent noise, so that the simulation time required to bring down the statistical
noise at a level at which the deterministic part of the response appears is simply
not affordable.
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1.2.2.3 Measuring the LIRF as an input-output correlation

The third approach combines a decent S/N ratio (as in the first approach) with the
ability to carry out a complete measurement in one shot (as in second approach).
The approach, originally introduced by Luchini et al.| (2006), relies on a well-
known result in signal theory: they forced the flow with a zero-mean white-noise
signal as an input, and instead of the actual velocity output they measured the
space-time correlation between input and output. This exploits the well-known
result from signal theory that, when a white noise (i.e., a delta-correlated signal)
is passed through a linear system, the correlation between input and output is
proportional to the impulse response of the system.

The correlation between the input and the output, exploiting the definition of

Eq. (I.1)) reads:
Gse-m) = [ @e-n@re-mar )
Being the system forced with a white-noise signal, i.e.:
f(1) = ew(1), (1.13)
and recalling that (w(#)w(t — 7)) = 6(7), the correlation of Eq. (I.12) becomes:
(q)f(r=T)) = / Oo?-((t ~1)e*8(T)dr = H(t— (r-T))  (1.14)
0

As a result, after redefining 7 = ¢t — (7 — T'), the impulse response function from
time O to time 7 can be computed as the correlation between the output and the

white-noise input, as:
Hir) = WOIE=T),

In the case of plane channel flow, the correlation between the input and the
output, exploiting the definition of Eq. (1.7]) reads:

(1.15)

(;(a,y, B0 (@, B, 7-T)) = /0 Hiej (@, y=y s, B, t=1) (i (@, B, D) (@, B, 7-T)) dr
(1.16)

where (-)* is the conjugate transpose. Forcing the system with a white noise
wi(a, B,1) leads to the correlation of Eq. (I.16) becoming:

<aj(a,y,ﬁ,z)ff(a,,3,r—T)>:/0 Hij(a,y—ys, Bt —7)e8(T) dr, (1.17)

resulting, after defining 7 = t — (7 — T), in the impulse response as a function of
the correlation between the output and the white-noise input, as:

~ <ﬁ'(a’y’ﬁ’t;y )E.k(a/,ﬁ’t_(]')>
Fisj(@.y. B, Tiyy) = — s . (1.18)

€:
i
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1.3 Computational details

1.3.1 Discretization of the DNS

We employ the pseudo-spectral DNS solver introduced by Luchini & Quadrio
(2006), which is based on a mixed discretization where variables in the homoge-
neous directions are represented with Fourier modes, whereas collocation points
are used in the wall-normal direction, and derivatives are discretized with fourth-
order accurate, compact explicit finite-difference schemes. Temporal integration
is partially implicit with a low-storage Runge-Kutta explicit scheme for the con-
vective terms and a Crank-Nicolson implicit scheme for the viscous terms.

Three sets of simulations are carried out: a laminar flow, a fully turbulent flow,
and a pseudo-turbulent flow where turbulence is absent but the base flow is the
mean flow of the turbulent case. In each set of simulations, independent cases are
run where the impulsive forcing is placed at different distances y s from the wall
(see figure [I.T).

A first set of parameters concerns the baseline channel flow DNS simulation.
The Reynolds numberis set at Re, = Uph/v = 2280, where U,, is the bulk velocity,
h the channel half-height and v is the kinematic viscosity of the fluid. It corresponds
to a friction Reynolds number of Re; = u h/v = 150, with u; = 4/7,,/p, being 7,,
the shear stress at the wall and p the density; it is quite low in consideration of the
demanding computational study.

The computational domain has dimensions of Ly = 4xh, L, = 2h and L, =
2mh. The wall-normal direction is resolved with Ny, = 128 points for all the cases.
The homogeneous directions are discretized with N, = N, = 64 modes (further
increased by a factor of 3/2 for dealiasing) for the laminar and pseudo-turbulent
cases. The turbulent case is more demanding in terms of spatial discretization,
and employs N, = N, = 192 modes plus de-aliasing; in terms of viscous units,
the equivalent grid has a spacing of Ax* = 9.8 and Az* = 4.9 (or Ax* = 6.5 and
Az* = 3.3 with dealiasing) and 0.6 < Ay* < 4.

In the turbulent case, the deterministic response emerges progressively av-
eraging out the noise from the turbulent fluctuations while the simulation runs.
Hence, the simulation needs to be run as long as possible and in the present case is
remarkably large at 20000//U), (or, equivalently, 2 X 10° viscous time units). The
temporal discretization uses a fixed time step of At = 0.02k/U,, which keeps the
CFL number far from the stability limit of the Runge—Kutta scheme. The other
simulations, where turbulent fluctuations are absent, do not require averaging, and
are carried out for as long as the response function needs to be observed equal to
7 = 100h/U; convective time units, with a fixed time step Ar = 0.012/U,,.

The forcing amplitude of the forcing is set to €, = € = 0.0001 for both the
laminar and pseudo-turbulent case and €; = € = 0.001 for the turbulent case. The
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choice of the these values is delicate due to the linearity constraint to which this
approach builds on; a brief discussion is presented in

1.3.2 Computation of the response

For the laminar and pseudo-turbulent cases the mean impulse response function is
directly computed in the physical domain as described in

For the fully turbulent case the above approach is unfeasible and the LIRF is
measured by the input-output correlation introduced in §I.2.2.3] The mean LIRF
i1s computed as the correlation between the forcing white-noise input and the output
velocity. The discrete counterpart of Eq.(I.18) reads:

N-1
~ 11 . -
Tl (003, B kAL yg) = 0 D iy, (1+k)AD f (@, B, nt yp) (1.19)

i n=0

with n, k € N, At is the time step on the n-th instant, and 7~ = NAr when constant
At is employed, where N is the maximum number of time steps. A white-noise
input is enforced in the system and reads:

fi(a’, B, nAt; yf) _ 6i€127rrand(nAt) (1.20)

where [ at the superscript is the imaginary unit and rand(nAt,,) is a random number
between 0 and 1 at the time nAt.

Most frequently used algorithm, required the knowledge of the whole time
history of both the correlating elements. This traditional approach is unfeasible in
a DNS simulation, because the memory storage of the whole history of the velocity
field clearly overshoot the limits. Therefore, only the forcing history f; is saved
each updating time step Az sample. It is computed as:

(1.21)

Fit(a,B, 1) = f(a, B,nAt)
Fit(a,B, 1+ 1) =F"a,B,1) for |=2..NAt

Correlation computation simply becomes a sum, between the old term and the
product of the velocity field and the forcing history f;. At the update iteration it,
the LIRF is updated as:

. . 1 . .
7‘(1”_)] (a’, y,ﬁ, kAt) = 7_{;:]1 (a, y,ﬁ, kAt) + ﬁﬁit(aa y’ﬁa 0)7_7[((1, ﬁ» kAt)

l (1.22)
for k = 0..N and for each «,,y. Proceeding this way only the instantaneous
velocity field is required, since the previous fields are implicitly considered in the
LIRF of the previous time-step.
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1.3.3 Discretisation of the response

Peculiar to the present study is the need to discretise the response function. Given
the focus of the present work on the position y ; where the forcing is located, in
the wall-normal direction H;_,; is discretised with the same resolution and on the
same collocation points used for the velocity, and the parameter y ; is varied from
the first inner point to the centreline. However, the statistical symmetry of the
plane channel allows the forcing locations yr to vary only in one channel half,
ie. 0 < ys < 1. Hence, for ech of the three considered cases, 64 independent
simulations have been carried out by varying the parameter y .

The response function, which is known to be significant at relatively large
wavenumbers only, is also truncated spatially with respect to the modes used in
the DNS. Based on previous experience, the response is stored for the highest 64
modes in both streamwise and spanwise direction.

Previous experience has also been useful to decide the temporal extent for
which H is observed. All the measured response functions are truncated after a
delay of 7~ = 100 convective time units #/U,. However, the temporal changes
of the response manifest themselves at a highly variable rate, with fast changes
at short times followed by a slower evolution. Hence, a non-uniform temporal
discretization is useful to minimise storage requirements, by using 100 time instants
non-uniformly distributed to increase resolution where the changes take place at
the highest rates.

Since the phenomenology of the impulse response is more meaningful in
the first transient instants, a finer time discretization should be preferable at the
beginning. In the laminar and pseudo-turbulent case, the time step at which the
response is computed changes as follow:

0.01, k<100
0.05, 100 < k£ <200

At = < (1.23)
0.1, 200 < k <300
1, 300 < k < 384.

In the turbulent case, the response time step changes as follows

0.02, k<24
0.08, 25<k <56

Ar = < (1.24)

0.32, 57 <k <87
5.12, 88 <k <104.
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1.3.4 Visualisation of the response

The impulse response function Hi_, j(a,y,B,7T;yys) of a turbulent channel flow
depends, for a given value of the parameter y ¢, on the wavenumbers a, 8 in the
homogeneous directions, on the position y in the wall-normal direction, and on
the time 7 elapsed after the impulsive forcing.

A sort of aggregation of such a large amount of data is needed to visualise the
response. FollowingJovanovi¢ & Bamieh|(2005)), one can visualise the response in
wavenumber space and quantify which modes are more amplified by a disturbance
after averaging the response in time and wall-normal direction. The temporal and
wall-normal dynamics are thus aggregated by taking the H, norm of H in the time
domain and along y, as:

0 2h
1Pl = 5= [ 5 [ Pl bty 9L (v pursyp drdy
T Jo 2h 0
(1.25)
The linear response can be also aggregated further by averaging over all the forcing
locations y .

The impulse response measure presented by Jovanovi¢ & Bamiehl (2005) is
based on a linearization of the Navier—Stokes equations solved within the state-
space framework. One of the main benefits of the DNS-based measurement
employed in this work, is the possibility to visualize the impulse response not only
in the wavenumber space, but also in the physical space. It can be done either by
taking the absolute maximum over the wavenumbers, the wall-normal positions
and the position of the forcing and analyzing its variation over time:

Himjn(1) = max Hisj (@, 3, 8. 1531, (1.26)

or alternatively by taking the absolute maximum over the wavenumbers, time and
wall-normal position to describe its dependence on the forcing position y r:

Hivojan () = max [Himj(@, v, B, 1:yp)1. (1.27)

Finally, a more complete comparison is performed by looking at the isosurfaces
of the response in three dimensional space.

To fairly compare the laminar and pseudo-turbulent cases to the turbulent case,
the LIRF of the latter is divided by 2, to account for the different time window
for which the forcing is applied, namely Ar = 0.01 for the former regimes and
At = 0.02 for the latter.
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1.4 Validation

Despite the novelty of the LIRF concept in turbulent flows, and of the technique
employed in the present work for its measurement, a validation is possible in the
laminar case. Analogous results exist in the literature, and cross-validation can be
achieved by comparing the outcome of alternative approaches.

In the following, the analogies between this work and the available literature
information are first addressed; the response functions measured in the laminar
flow via direct impulsive forcing and via the input-output correlation are then
compared. Lastly, the linearity constraint is addressed, and the amplitude of the
white-noise forcing is discussed.

1.4.1 Comparison with literature and alternative approaches

Previous works considered the effects of body force perturbations with different
aims, such as: the transient energy growth and input-output analysis (Reddy et al.,
1998; Jovanovi¢ & Bamieh, 2005)), the pseudo-spectral analysis (Trefethen et al.,
1993), and the amplification of stochastic excitations (Farrell & loannou, 1993
Bamieh & Dahleh, 2001)).

In particular, as far as the laminar case is concerned, the present work is closely
related to that by Jovanovi¢ & Bamieh| (2005), who studied the spatio-temporal
response of the linearised Navier—Stokes equations in a laminar channel flow to
an impulsive body force. In their dynamical system formulation, the response is
obtained from the algebraic Lyapunov equation, for an impulsive input which is
white-noise distributed in wavenumber and frequency, while a discretised delta
function centered at y; is employed among the wall normal direction, so that
the compound response function turns out to be H;_, i =Hi-j(a,B,y,t). Their
temporal and wall-normal dynamics are further aggregated by taking the H, norm
of H;_,; in the time domain and along y, according to Eq.(T.23).

More information are provided by the present measurement technique, namely
the description of the response both in the Fourier and in the physical space, the
effect of the forcing wall-normal distance y s on the LIRF and the behaviour of the
LIRF in time.

To compare the results of the reference paper with the H> norm of the full
response computed in the present work, we run two dedicated DNS laminar sim-
ulations to match their Re. = U.h/v = 2000 where U, is the centerline velocity.
Within the linearity constraint (see below for the linearity check), the forc-
ing location y y is made to span all the available wall distances. The laminar cases
are used to validate two alternative measurement techniques: the lack of noise
(i.e. turbulence) allows both the impulsive forcing described in and the
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Figure 1.2: Plot of log,, ||7-A(y_m||2 as a function of the wavenumbers a and f.
Comparison of three measurement techniques: a) the method by Jovanovi¢ &
Bamieh! (2005); b) DNS-based direct impulsive forcing, ¢) DNS-based
measurement of the input-output correlation with white-noise input,

input-ouput correlation described in to be used.

Figure [3.1|compares the three LIRF in terms of its ‘7-A(y_,,, component. (Similar
results are obtained by comparing the other components). The leftmost panel
shows the results by Jovanovi¢c & Bamieh (2005), reproduced by following their
methodology by running the Matlab script (kindly provided to us by M. Jovanovic);
the central and rightmost panels show the output of the present simulations, where
equation is used to compute the norm ||;_, ; ||, for the impulsive forcing and
the statistical white-noise measuring technique, respectively. To match the results
of Jovanovic & Bamieh (2005)), the response is nomalised by the time step of the
forcing and by (Ay.)?, where Ay, is the size of the discretization in wall-normal
direction at the centreline.

The comparison of the three panels demonstrates an excellent qualitative and
quantitative agreement between such diverse measurement methods. In particular,
figure [3.1] shows an extremely good agreement between the response obtained by
impulsive forcing in panel (b) and the response obtained by the white-noise method
in panel (c). The latter appears slightly more noisy than the others, which is to
be expected given the statistical nature of the measurement. In the remainder of
this paper, we use results from the direct impulse when referring to laminar and
pseudo-turbulent case.

1.4.2 Linearity of the impulse response in a non-linear system

The cornerstone of the H;_,; measurement is the linearity hypothesis, which
mandates a careful choice of the forcing amplitude ¢; in equation (I1.9). The forcing
amplitude must be empirically determined as the largest forcing that guarantees
linearity, to maximise the S/N ratio and/or minimise the averaging time.
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Figure 1.3: Temporal evolution of the spatial absolute maximum H,_,,, ,, (¢; y s) of
the laminar (left), pseudo-turbulent (center) (both computed with impulsive forc-
ing, but same results holds for the input-output correlation strategy) and turbulent
(right) response at various forcing amplitudes and forcing positions. Top row: first
near-wall position at y = 0.0042; bottom row: centerline at y s = 1.
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A systematic campaign of tests has been carried out to identify the largest
admissible ¢;, for each forcing direction i and for a subset of forcing locations
yf, for the laminar, pseudo-turbulent and turbulent cases. Indeed, the two former
cases are less critical: the tests themselves are cheaper, and the S/N ratio is not
important as the production simulations are noiseless.

Figure [I.3| reports an example result that we used to determine the forcing
amplitudes for the rest of the study. Laminar, pseudo-turbulent and turbulent
cases are considered, at six values of yr, from the very-near-wall region to the
centerline; however, ﬁgure only reports two values of y ¢, namely y = 0.0042
and yy = 1. Moreover, although figure only concerns the component H,_,,,,
every component of the response tensor was considered.

It can be seen that, for both distances, linearity is guaranteed by all the three
forcing amplitude for the laminar and pseudo-turbulent cases (see the left and
middle columns of figure . However, for the turbulent case, close to the wall
the two amplitudes considered perfectly match until 7 ~ 1. For larger 7 the
smallest forcing amplitude shows a lower bound which represents the background
noise overwhelming the deterministic part of the response. This noise floor is due
to the finite horizon of the response computation and its magnitude changes for
different components of the LIRF tensor.

1.5 Results

1.5.1 The shape and intensity of the LIRF

The impulse response is highly anisotropic, both among different components of
the response tensor and depeding on the wavenumbers. We start with figure
where the H> norm of the nine components of ;_, ; for the laminar case is plotted,
after averaging over the forcing location. This figure emphasises the anisotropy
of the LIRF, and shows that the components with the largest energetic content are
always those related to the streamwise velocity component, and in particular the
components ﬁy_m and 7:{Z_>u, whose maxima are at least one order of magnitude
larger than the maxima of the other components. They also share a similar shape
in the (a, ) plane, with their maximum located at @ = 0. The same features
was noted by Jovanovi¢ & Bamieh (2005), who interpret these responses as the
amplification of the streamwise elongated structures. A similar tendency for a
maximum at @ = 0 is shown by (l:(y_,w and ﬁz_w. Since they involve wall-normal
and spanwise velocities, we connect them to the amplification of the perturbations
that lead to the quasi-streamwise vortices. The components 7-A(x_>v and ﬁx_w
have their maximum at § = 0, and thus their physical space representation re-
calls structures with spanwise elongated shape. Jovanovi¢ & Bamieh (2005) relate
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Figure 1.4: Plot of log,, lH— jll2 for the laminar case averaged among forcing
locations. The contour lines correspond to log; [[Hi— |2 = —4, =3, -2.5, =2, -1.
Axes are in base-10 logarithmic scale. Colormap is between —4.55 and —0.81.
Columns: forcing direction f, fy, f;, rows: response velocity component u, v, w.
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Figure 1.5: Plot of log ||7:(Z_,u ||> for the laminar (left), pseudo-turbulent (centre)
and turbulent (right) case averaged among forcing locations. The contour lines
correspond to logy ||‘7A{i—>j||2 =-5,-4.5,-4,-3.5,-3,-2.5. Axes are in base-10
logarithmic scale. Colormap is between —5.48 and —2.35.

these response components to the amplification of the Tollmien—Schlichting waves.
Similarly 7:{y_,v is slightly preferentially large along the spanwise wavenumbers,
but it presents also non negligible amplification for large values of @. The remain-
ing two components whose energy is equally distributed in @ and g are related
by those authors to the oblique waves. This picture is consistent with
& Bamieh| (2005) showing that the energy in the oblique waves and streamwise
streaks are larger than the TS-wave.

Figure plots the H> norm of 7:(Z_,u for the laminar, pseudo-turbulent and
turbulent case. To make a fair comparison the turbulent case response is halved
to account for the different time for which the forcing is injected in the system
(At = 0.01 for laminar and pseudo-turbulent cases and A¢ = 0.02 for the turbulent
case). First we notice that for all the three regimes 7?1_,,, has a peak for @ = 0
and B ~ 3, although the turbulent case show a larger influence of the streamwise
wavenumber up to one order of magnitude larger intensity compared to the other
tworegimes. Although more intense, the turbulent response is more spreaded in the
wavenumber space and highlights a non-negligile contribution of the streamwise
wavenumber.

The shape and intensity of the impulse response is also investigated in the three-
dimensional physical space, without averaging over the wall-normal direction y.
In figure , the isosurfaces of each component of the turbulent LIRF H;_,; are
plotted for a fixed value y}; = 15 of the forcing position, at the fixed time 7~ = 0.48.

The components H,_,; and H_,; show that the forcing acts on the structures
of the near wall-cycle. The streamwise component of the response yields struc-
tures elongated in the streamwise direction, with alternating positive and negative
sign in the spanwise direction. Such structures are compatible with the amplifica-
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Figure 1.6: Isosurfaces of the response tensor H;_,; at the non dimensional time
7 = 0.48 for the turbulent case. The forcing is at the wall-normal distance
ys = 0.1h or y;f. = 15. All the isosurfaces are at the value +0.5 except for the
diagonal components, H,_,, and H,_,, which are at the value £1. Red is for
positive values, blue for negative ones.
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Figure 1.7: Isosurfaces of the response tensor H,_,, at the non dimensional time
7 = 0.48 for the laminar (left), pseudo-turbulent (centre) and turbulent (right)
case. The forcing is at the wall-normal distance yy = 0.1h or y; = 15. All the
isosurfaces are at the value +1.

tion of the near-wall high- and low-speed streaks. The wall-normal and spanwise
components of the response identify alternated vertical and spanwise fluctuations
typical of the turbulent quasi-streamwise vortices (QSV). The relative position of
H,—,; with j = u,v,w indicate the simultaneous presence of streaks and QSV,
which mutually interact in the cycle for the self-sustainment of turbulence. This
picture is compatible with the peak in the wavenumbers plane. The most ampli-
fied disturbancies of H,_,; and H_,; were found to be either oblique waves or
streamwise perturbations which yields after transition to turbulence to stremwise
streaks and quasi-streawise vortices. Similarly, the relative position of the isosur-
faces of H,_,; suggests that the streamwise forcing acts on the hairpin vortices
(Theodorsen, 1952) near the wall, as highlighted by |Vadarevu et al.| (2019) by
eLLNSE. This agrees with the idea that the Tollmien—Schlichting waves (see H,_,,
and H,_,, in figures evolves into 3D hairpin vortices in the late stage of
transition to turbulence.

Figure[L.7]plots the isosurfaces of H;_,,, for the laminar, pseudo-turbulent and
turbulent case. Again, as mentioned before, the turbulent case response is halved
to be compared to the other two responses obtained at a halved dt.

The shape of the turbulent LIRF reseambles the shape of the structures typical
of the near-wall turbulent cycle such as streamwise streaks, quasi-streamwise
vortices and hairpin vortices. However, even the same response shape is shared
by all the investigated regimes, the shape and intensity of the response have non-
negligible differences. We conclude that the dynamics of the impulse response
in the turbulent regime has a laminar component, yet this is not sufficient for its
complete description.

1.5.2 The LIRF as a function of the forcing location

The results by Jovanovi¢ & Bamieh (2005)) are extended in this work to consider the
effect of the forcing location, that so far has not been considered either averaging
the response across every yr (see figure or fixing a constant value of y (see
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Figure 1.8: Absolute maxima H;_,; »(yr) in the physical space as a function of
the forcing position y s for the laminar, pseudo-turbulent and turbulent cases.
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figure[1.6).

How H;_,; depends upon the forcing distance is shown in figure|1.8| for all the
regimes. Here the maximum over time, wavenumbers and in wall-normal direction
is considered for each component of the LIRF. Even though some components
present a slightly non-monotonic trend, the general picture is that the position
nearest to the wall yields the smallest response, and the centreline yields the
largest.

The diagonal components are the largest. The component H,_,, differs from
the other two, and shows a gradual increase toward the centreline maximum (which
is the lowest of the three); the three LIRF coincide in this representation. The other
two diagonal components H,_,, and H,_,,,, instead, present a weak but noticeable
non-monotonic trend; the latter, in particular, peaks at y s ~ 0.2, with a tendency
for the peak to move slightly off-wall in the turbulent case. For both the components
the laminar and the pseudo-turbulent cases perfecly match, wheres the turbulent
case shows a smaller response at every y .

The off-diagonal components H,_,,,H;_,, and H,_,,, are quite similar, with
a local minimum very close to the wall and then a monotonic increase up to the
centreline. Instead, the component H,_,,, monotonic increases from the wall up
to the centerline.

The component H,_,, is similar to the previously described off-diagonal com-
ponents with a small peak, but the spikes of the three cases are quite different. The
laminar case shows an almost negligible local maximum very close to the wall,
the pseudo-turbulent case has a wider and larger local maximum for y, ~ 0.04
(y% = 6), and the turbulent case has an intermediate behaviour at a y s between the
other two. The three curves then tend to collapse for larger values of y r.

The component with the most interesting behaviour is H,_,,. The three cases
present an evident peak, each at different y . Except for the very first forcing
position close to the wall, the laminar response monotonically increases until its
maximum is reached at y; ~ 0.4, then decreases until y; ~ 0.75 and then stays
constant up to the centreline. In the pseudo-turbulent case, the peak is sharper and
observed at a lower wall-normal forcing position, namely y ; = 0.08 (or y*}; = 12).
Lastly, the turbulent case is qualitatively similar to the pseudo-turbulent one, but
presents a less intense peak closer to the wall at y ; = 0.065 (or y* ~ 10). Position-
wise, the peaks of the pseudo-turbulent and turbulent cases are compatible with
the amplification of the streaks of the near-wall cycle.

Hence, H,_,, and H;_,, being the largest response and peaking for a forcing
placed close to the wall complies with the idea that an external forcing in the buffer
layer directed either in wall-normal direction (e.g. blowing and suction (Mickley
et al., 1954), opposition control |Chot et al. (1994)) or in the spanwise direction
(e.g. spanwise forcing (Akhavan et al.,|1993)), (Quadrio et al., 2009)) are the most
effective techniques to perturb the streamwise velocity field, e.g. with the aim to
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reduce the drag in the turbulent regime.

1.5.3 The LIRF as a function of time

Observing the temporal evolution of the component-wise maxima of the LIRF in
physical space is an effective means to appreciate its anisotropy. Figure[I.9presents
these quantities in comparative form among the laminar, the pseudo-turbulent and
the turbulent LIRF: for each tensor component, the maximum (in absolute value)
in the whole space and across all forcing position ys is tracked, following the
definition of Eq. (1.26).

The largest maxima are invariably those related to the diagonal terms of the
LIRF tensor. At zero time, these components present peak values that are one
order of magnitude larger than those of the other components. For the diagonal
terms, laminar, pseudo-turbulent and turbulent maxima all decrease monotonically
in time; laminar and pseudo-turbulent cases almost perfectly overlap, whereas the
turbulent curves consistently lie below the others, at any time. This behaviour,
which can actually be observed for every component of 7:(,-_>_,-, is the direct man-
ifestation of the (mean) diffusive action of turbulence, entirely neglected in the
laminar and pseudo-turbulent cases. The maxima of both 7:(x_m and ﬁz_,w for the
three cases take place at 7~ = 0, and reduce by 50% quickly, within 7 = 0.5; a
95% reduction requires an elapsed time of 7 ~ 6.5 — 7. The peak value of fly_w
decreases more gently in time.

As far as the off-diagonal terms are concerned, only 7:(Z_W decreases mono-
tonically (in all cases). The off-diagonal components associated to the x forcing
or to the w response are monotonically decreasing for the pseudo-turbulent and
turbulent case, but a local maximum for the laminar case is registered at 7 ~ 2 —3.
The off-diagonal components associated to the u response show a non-monotonic
behaviour for all curves. The laminar LIRF shows a local maximum at 7 = 2.5,
the pseudo-turbulent LIRF presents it earlier at 7 ~ 1 — 2, and turbulent one even
earlier at 7 ~ 0.5 — 0.6. For 7:(y_,u, the growth rate of the maximum over time
is approximately constant across the three LIRF, so that the maxima occurring
later are also the largest. This is clearly not the case for 7:(Z_m, for which the
pseudo-turbulent peak is the largest, but the laminar one occurs last.

The largest non-monotonic behavior, i.e. that of 7—A(y_m, can be explained by
recalling the non-normal property of the eigenvectors of the Orr—Sommerfeld’s
linearized system, as done by [Orr (1907)) and Schmid (2007). Here, however, we
are constrained by linearity, and the relative growth maxes out at 2-3 times. The
turbulent diffusion, which lacks in the laminar and pseudo-turbulent cases damps
the turbulent response faster such that it shows a considerably smaller transient
growth compared to the other two cases.
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Figure 1.9: Absolute maxima H;_,;,,(¢) in the physical space as a function of the
non-dimensional time 7 for the laminar, pseudo-turbulent and turbulent cases.
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Figure 1.10: Isosurfaces of the response component H,_,, at the non-dimensional
time 7 = 0.02 (left column), 0.24 (center column) and 0.48 (right column) for the
forcing locations y s = 0.065h, 0.4h and A for the laminar (top), pseudo-turbulent
(middle) and turbulent (bottom) LIRFs. All the isosurfaces are at the value +1.
Red is for positive values, blue for negative ones.

1.5.4 The LIRF in the whole space-time domain

The whole LIRF, plotted in the form of isosurfaces, already shown in figure
and has also been investigated in their evolution in time and depending on
the forcing location y ;. Figure represents the H,_,, component at different
elapsed time (columns), for three values of y; (namely y, = 0.065, y; = 0.4
and y s = 1.0), in comparative form between the three LIRF (rows). A short time
after the impulsive forcing, namely at 7 = 0.02, the response is symmetric with
respect to the spanwise direction and anti-symmetric with respect to the streamwise
and wall-normal directions. The near-wall response is below the threshold and
therefore not visible for the laminar and pseudo-turbulent cases, while it is small
but visible for the turbulent case. The asymmetry of the response to the impulsive
forcing at yy = 0.065 is due the presence of the solid wall. At larger times, the
response to the forcing at y = 1 remains almost symmetric and only slightly
damped for all the regimes. The convection velocity matches the mean velocity,
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thus the laminar response is convected faster than the turbulent one owing to the
larger centerline velocity of the laminar profile compared to the turbulent one. It
is worth recalling that pseudo-turbulent and turbulent cases share the same mean
velocity profile, thus the same convection velocity of the response. Differently the
response to the forcing at the intermediate position y s = 0.4 changes depending
on the regime: in the turbulent and pseudo-turbulent cases it gets progressively
damped, with the positive part vanishing sooner; however, in the laminar case the
two negative regions merge into one which is surrounded by two smaller positive
regions at both sides at 7~ = 0.48. At y s = 0.4 the structure are convected roughly
at the same speed for all the cases, being the laminar and turbulent mean velocity
profile almost matching. Close to the wall, the response is amplified in time and
show a central negative region with a positive region at each side, resembling the
structure of positive and negative streamwise streaks. The amplification is largest
for the turbulent case and smallest for the laminar case. Turbulent and pseudo-
turbulent cases are advected at larger velocity in this region, owing to the largest
shear and therefore largest near-wall velocity.

1.6 A posteriori validation

The full time-space structure of (mean) linear response computed and measured in
the present work by DNS is the best estimator of the linear dynamics of the laminar,
pseudo-turbulent and turbulent channel flow when a body forcing is impulsively
applied. Once the response function is computed it can be used to predict the
response of the system through direct convolution of the LIRF itself and a given
input forcing, i.e.:

+00
(@) (asy Botsyy)) = /O Ty Bot -7y ) i@y — yp o) dr. (1.28)

This approach is also useful to assess whether the computed LIRF is a good
linear estimator of the system by comparing the output of the direct convolution to
the velocity field computed by a DNS with the same forcing. In the present case,
the channel flow is forced by a periodic body force in the spanwise direction:

fo(x,z,t5y7) = ecos(2nx)cos(2nz)sin(2nt), (1.29)
which, in the wavenumber space reduces to
fula, B, t; yy) = esin(2nt). (1.30)

We set the parameters as @ = 1,8 = 4,yy = 0.1 (corresponding to y} =15in
the turbulent case) and a finite ampitude € = 0.001 for the laminar and pseudo-
turbulent case, whereas € = 0.1 for the turbulent case. The same discretization
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Figure 1.11: Fourier coefficient of the spanwise velocity w(a = 1,8 = 4,y =
0.1,7) as a response to a periodic forcing f.(a = 1,8 = 4,yr = 0.1,1) as a
function of the non-dimensional time 7 for the laminar (left), pseudo-turbulent
(middle) and turbulent (right) cases obtained by convolution with H._,,, (solid
line) and by DNS (dashed line).

used to compute H;_, ; (see is used for the DNS. The time discretization is
set to At = 0.01 for the laminar and pseudo-turbulent cases and to Az = 0.02 for
the fully turbulent case as in To match the same time discretization of the
DNS, the unequally time-spaced LIRF is linearly interpolated in time.

Figure shows the Fourier coefficient of the spanwise velocity w(a =
1,8 =4,y = 0.1,) for the laminar (left), pseudo-turbulent (middle) and turbulent
(right) channel flow as a response to the periodic forcing of Eq. [1.30|both by direct
convolution with H;_,,, and by DNS up to a time of 7~ = 3.

Due to the linearity of H;_,;, we expect the output to be periodic with the
same frequency of the forcing input. For laminar and pseudo-turbulent cases the
response perfectly match the frequency of the input and the results obtained by
convolution and DNS are identical meaning that the LIRF perfectly describes the
behaviour of the channel flow.

The comparison between direct convolution and DNS, which is straighforward
in the laminar and pseudo-turbulent cases becomes challenging when turbulence
plays a role. For the turbulent case the measure are not deterministic but can
only be computed in a statistical sense, with a time average that can be very long
for the statistics to converge. To compute the response by DNS, 250 simulations
of the forced channel are run starting from different uncorrelated initial turbulent
fields; ten equally spaced flow fields are saved for each period of oscillation up
to the desired simulation time and then an ensable average is computed. The
very good match both in terms of frequency and amplitude between the response
obtained through direct convolution and through DNS means that once the LIRF
is computed, it can be leveraged to predict the response of the channel flow to
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whatever forcing at a fraction of the cost of a DNS.

In the present work the diagonal component H;_,,, is chosen to be shown
here for two reasons. First, diagonal components of the LIRF tensor are the ones
showing a smaller noise floor so that we are capable to catch the signal for a longer
response time (see[I.9). Second, diagonal components show a larger amplification
of the input so that in the turbulent cases averaging over 250 simulations is enough
for the response to emerge from the turbulent noise. This highlights the potential
of having a response function which describes the mean linear behaviour of a
turbulent channel flow and after being computed once, it allows to accurately
predict the response to any forcing.

1.7 Conclusions

The present work has introduced the first DNS based measurement of the mean lin-
ear impulse response function (LIRF) for a channel flow, considering the response
to an impulsive body force locate at various wall-normal positions, thus extending
the work of Luchini ef al.|(2006), where an impulsive wall-normal velocity forcing
at the wall was considered.

Our primary interest resides in the fully turbulent case, but for comparison
purposes we have also measured the LIRF of the laminar Poiseuille flow, and what
we call the pseudo-turbulent LIRF, where there is no turbulence but the base flow
is the mean turbulent profile.

The equivalent laminar and pseudo-turbulent LIRF could be computed rather
easily, as the system is noise-less and it is straightforward to literally apply the
impulsive forcing and to examine the outcome via DNS. This approach, however,
becomes unfeasible in the turbulent case, which contains significant turbulent
fluctuations which act as a noise that overcomes the forcing, whose amplitude
must be tiny because of the linearity constraint. Even though the problem can
be solved in principle by resorting to phase averaging, the averaging time needed
for the deterministic response to emerge out of the statistical noise is impractical.
Therefore, we apply here the same workaround exploited by |Luchini ez al.| (2006),
who measured the LIRF of a turbulent channel flow by computing the input-output
correlation between a zero-mean white-noise input signal and the output made by
the DNS-computed flow field.

The measurement approach has been validated in the laminar case, where the
lack of statistical noise allows comparing the impulsive forcing and the input-output
correlation. Moreover, in that case the algebraic Lyapunov equation approach
introduced by Jovanovi¢ & Bamieh! (2005) provides an independent verification.

The LIRF is a four-dimensional tensor with four independent variables, plus
one parameter made by the wall-normal position y  where the forcing is applied. Its
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description is therefore non-trivial. In the Fourier space, the response is visualised
through its H, norm after averaging over time, the wall-normal direction and all
the forcing locations. Examining the wavenumber content of the various LIRF
brings to light their anisotropic character, as every component of the LIRF tensor
differs in terms of both wavenumber distribution and intensity.

The components of the LIRF eventually decay, but some exhibit a transient
amplification at finite times. The laminar and pseudo-turbulent LIRF are nearly
identical in terms of those components which go to zero monotonically. However,
the laminar LIRF shows a local maximum that is not present in the other cases.
The turbulent LIRF is always smaller than the others, reflecting the presence of
turbulent diffusion.

About the forcing location yielding the largest response, the majority of the
cases suggest the best forcing location to be at channel centre. However, most
of the components of the response show a local (or global for the solely ﬁy_m)
maximum for y; closer to the wall; the precise position varies depending on the
LIRF type.

The LIRF can be also observed in the three-dimensional space and in time. Per-
turbations leading to the formation of turbulent structures typical of the near-wall
turbulence cycle, namely the low- and high-speed streaks, the quasi-streamwise
vortices and the hairpin vortices are the most amplified. The three-dimensional
structure of the response is similar across the laminar, pseudo-turbulent and turbu-
lent cases, yet the amplitude is different. The time evolution of the LIRF depends
on the LIRF type; the advection velocity of the structures reflects the different
shape of the base flow profile.

The full time-space structure of mean linear response computed and measured
in the present work by DNS is the best estimator of the linear dynamics of the
turbulent channel flow when a body forcing is impulsively applied. This is of
particular interest for the design of a feedback control for which the model of
the plant (the channel flow in this case) is needed. This study highlights that
relying on the impulse response of a laminar or a pseudo-turbulent (laminar with
a superimposed base mean flow of the turbulent flow) case to model the dynamics
of a turbulent channel flow can be useful to approximate the behaviour of the
response, yet it fails to capture some of its distinctive behaviours. Thus, the
approach presented here paves the way to more reliable estimation of the linear
response of the turbulent flow and consequently a more effective control design.
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Structure function tensor equations
with triple decomposition

Abstract

Exact budget equations are derived for the coherent and stochastic contributions to
the second-order structure function tensor. They extend the anisotropic generalised
Kolmogorov equations (AGKE) by considering the coherent and stochastic parts of
the Reynolds stress tensor, and are useful for the statistical description of turbulent
flows with periodic or quasi-periodic features, like e.g. the alternate shedding
after a bluff body. While the original AGKE describe production, transport, inter-
component redistribution and dissipation of the Reynolds stresses in the combined
space of scales and positions, the new equations, called ¢ AGKE, contain the phase
@ as an additional independent variable, and describe the interplay among the mean,
coherent and stochastic fields at the various phases. The newly derived ¢ AGKE are
then applied to a case where an exactly periodic external forcing drives the flow:
a turbulent plane channel flow modified by harmonic spanwise oscillations of the
wall to reduce drag. The phase-by-phase action of the oscillating transversal Stokes
layer generated by the forcing on the near-wall turbulent structures is observed,
and a detailed description of the scale-space interaction among mean, coherent
and stochastic fields is provided thanks to the 9 AGKE.

2.1 Introduction

Understanding the multiscale nature of turbulence and the sustaining mechanisms
of turbulent fluctuations is a long-standing effort in fluid mechanics, motivated by
the ambition to determine and possibly to manipulate the mean flow. According to
the classic arguments by Richardson and Kolmogorov, at large enough Reynolds
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numbers a clear scale separation is expected between the large energy-containing
scales and the small dissipative ones. Fluctuations of different scales interact
non-linearly, and a cascade mechanism transfers energy (on average) towards the
dissipating scales. The geometrical information embedded in the larger scales
vanishes at smaller ones, so that turbulence becomes locally isotropic below a
small enough scale. However, in turbulent flows with practical interest, the scale
separation is often incomplete, owing to the finite value of the Reynolds number
and to the presence of boundaries; studying such flows is particularly challenging,
because of their strongly anisotropic and inhomogeneous nature, which implies
that the very concept of scale comes to depend on the position in the physical
space.

Among the approaches developed over the years to describe anisotropic and in-
homogeneous flows, the anisotropic generalised Kolmogorov equations, or AGKE,
are well suited to account for the multiscale nature of turbulence. The AGKE (Gatti
et al., [2020) are exact budget equations for each component of the second-order
structure function tensor. They extend the generalised Kolmogorov equation or
GKE (see e.g. Hill, 2001; Danaila et al., 2001), sometimes referred to as Karman—
Howarth—Monin—Hill equation (Alves Portela et al., 2017), which, in turn, is the
exact budget equation for half the trace of the second-order structure function
tensor, i.e. the scale energy. The AGKE, which consider each tensor component
separately, describe the production, inter-component redistribution, transport, and
dissipation of the Reynolds stresses simultaneously across the scales and in the
physical space. Unlike the GKE, they fully account for anisotropy and inhomo-
geneity, and feature a pressure—strain term that plays a central role in redistribution.
Moreover, the AGKE simplify the structural analysis of turbulence, owing to the
direct link of each tensor component to the correlation function (Davidson et al.,
2006; Gatti et al., [2020).

The GKE has been already applied to several flows to describe how inhomo-
geneity changes the Richardson—Kolmogorov scenario, possibly leading to inverse
(from small to large scales) energy transfer: the plane channel flow at different Re
(Cimarelli et al., 2013} 2016), the flow over a bump (Mollicone et al., 2018]), the
wake of a square cylinder (Alves Portela et al., 2017) and the plane jet Cimarelli
et al| (2021). Using GKE, Yao et al.| (2022a) showed that an intense inverse
cascade dominates a boundary layer undergoing bypass transition. Danaila et al.
(2017)) derived the variable-viscosity GKE and proved that, in flows with mixing
of two or more fluids, all scales evolve in a similar fashion only for regions where
viscosity is uniform. |Lai ef al| (2018) derived the variable-density GKE and
studied the multi-material effects on the interscale energy transfers in a turbulent
round jet, finding that the deformation of smaller turbulent eddies into larger ones
accompanies energy transfers. Arun et al.|(2021) derived the budget equation for
the derivative of the two-point velocity correlation for compressible flows, and
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identified the effects of variable density and dilatation on the energy cascades.
The more recent AGKE, instead, have been first demonstrated in a plane channel
flow (Gatti et al., 2020), and then used to investigate the ascending/descending
and direct/inverse cascades of the Reynolds stresses in a turbulent Couette flow
(Chiarini et al.| [2022b]) and to characterise the structure of turbulence in the flow
past a rectangular cylinder (Chiarini et al., 2022d)).

It is not uncommon to encounter turbulent flows in which large scales are rela-
tively organised in space, and follow a temporally repeating pattern. This happens
in presence of an external periodic forcing, or when the flow is quasi-periodic
because of instabilities, as in the turbulent wake of bluff bodies. An example of the
former class, which is considered in the second half of this paper as a simpler test-
bench, is the canonical turbulent channel flow modified by periodic spanwise wall
oscillation to obtain skin-friction drag reduction (Jung et al.,|1992)). The spanwise
forcing creates a coherent periodic velocity field, known as the generalised Stokes
layer (Quadrio & Ricco, 2011), which superimposes on the stochastic turbulent
fluctuations. The latter class includes the quasi-periodic Karmén-like vortices in
the turbulent wake of bluff bodies, forming after the roll-up of the separating shear
layers. Such quasi-periodic structures, usually referred to as coherent motions,
interact with the stochastic fluctuations and affect their organisation.

A complete, multiscale description of the interaction among the mean, the
coherent (e.g. periodic) and the stochastic fields is highly desirable. Indeed, one
can resort to a triple decomposition of the velocity and pressure fields into mean,
coherent and stochastic motions, and use it, together with the single-point Reynolds
stress budget equations, to describe how these large-scale motions interact with
the turbulent fluctuations in the physical space. For the spanwise-oscillating wall,
Agostini et al.|(2014)) found that the phase variation of the stochastic contribution to
the Reynolds stresses is mainly driven by production, and that the dissipation plays
only a marginal role; they concluded that the increase of the dissipation can not be
the cause of drag reduction. For the alternate shedding behind a bluff body, |[Kiya &
Matsumural (1988) experimentally investigated the various frequency components
of the stochastic motions in the wake behind a flat plate perpendicular to the
flow. They found that the frequency of the main contributions to the stochastic
shear stresses is one half of the vortex-shedding frequency, explaining it with the
different spanwise arrangement of consecutive coherent vortices. In both cases,
however, the description was incomplete: a triple decomposition alone does not
capture the interaction between coherent and stochastic motions in the space of
scales.

Alves Portela et al.| (2020) followed Thiesset et al.| (2014) and used the GKE
together with a triple decomposition to describe the interaction between the co-
herent and stochastic motions in the space of scales and positions. They arrived
at two budget equations for the coherent and stochastic parts of the scale energy,
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and applied them to the turbulent wake past a square cylinder. Interestingly, they
found that the mean flow does not feed the stochastic field directly, but it produces
kinetic energy that feeds the large-scale coherent structures shed in the wake. Part
of this energy is then transferred towards the stochastic turbulent fluctuations, at
all scales. Although promising, the approach by |Alves Portela et al.| (2020) is still
affected by limitations, discussed by [Thiesset & Danaila (2020), that prevent a
complete understanding of the interaction among the three fields. This is because
their budget equations are obtained by averaging over the phase of the coherent
motions, and the phase dependence is lost in the process. Furthermore, being
based on the GKE, their procedure considers only the scale energy, and does not
describe the pressure—strain redistribution among the various components of the
Reynolds stress tensor. Finally, |Alves Portela et al. (2020) additionally discard
directional information by taking orientation averages of every term of the budget
equations.

The present work goes one step further to overcome these limitations. We use a
triple decomposition to extend the AGKE, and arrive at two phase-by-phase budget
equations for the coherent and stochastic parts of each component of the structure
function tensor. These equations, named ¢ AGKE, describe the phase-by-phase
mean-coherent-stochastic interaction of each component of the Reynolds stresses
in the combined space of scales and positions. There is no phase-average involved,
so that the description is complete. The paper is structured as follows. After this
introduction, in §2.2| we briefly recall the AGKE for the classic Reynolds decom-
position and introduce the ¢ AGKE for the triple decomposition, discussing the
meaning of the various terms. In the second part of the contribution, in we
provide a relatively simple example, and apply the new budget equations to a turbu-
lent channel flow subjected to an oscillatory spanwise wall motion, chosen because
of the deterministic nature of the periodic component. In §2.4] we demonstrate
how the p AGKE describe the mean-coherent-stochastic interaction, and shed light
into the complex working mechanism of the oscillating wall. The paper closes
with a brief discussion in Appendix contains the detailed derivation
of the ¢y AGKE from the Navier—Stokes equations, followed in Appendix by
their specialization to the plane channel flow with oscillating walls. In Appendix
[2.C the velocity field induced by the ensemble-averaged quasi-streamwise vortex
at different phases is computed and used to support the p AGKE-based analysis of
the channel flow with oscillating walls.

2.2 Mathematical formulation

In this Section we introduce the triple decomposition and recall briefly the standard
AGKE, before presenting the new ¢ AGKE, whose detailed derivation is reported
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in Appendix [2.A]

2.2.1 Triple decomposition of the velocity field

An incompressible turbulent flow, varying in space x and time ¢, is typically
described via its mean and fluctuating velocity and pressure fields, defined after
the classic Reynolds decomposition. Provided the flow exhibits well-defined non-
stochastic (e.g. periodic) features, the fluctuating field can be further decomposed
into a coherent and a stochastic part. Therefore, the velocity field reads:

u=U+a+u”, (2.1)

~——
w

where U, v/, @ and v” indicate the mean, fluctuating, coherent and stochastic
parts of the velocity field w. The mean velocity U is defined as U = (u), with
the operator (-)indicating ensemble averaging, which under the ergodic hypothesis
becomes equivalent to averaging over homogeneous directions and time (if the
flow is statistically stationary). For a single realisation without homogeneous
directions, the mean is simply a temporal average:

U(x)= lim l/Tu(avz,t)dt. (2.2)
0

T—+00 T

Considering a periodic motion with period 7' and phase ¢ € (0, 27|, the overbar
= denotes the phase average operator over an integer number N of periods. Like
(), it includes averaging over the homogeneous directions. Considering again a
single realisation without homogeneous directions, - is defined as:

(z,¢) = lim_ % Iil u (a} (% + n) T) . 2.3)

The coherent field 4 is thus defined as
’ITL(CC, 90) = ﬂ(fB, QD) - U(.’B),

and the stochastic vector field w” is defined after the triple decomposition (2.1)) as
u” = u — U — 4. An analogous triple decomposition is used to decompose the
pressure field p = P+ p + p”, with p + p” = p’.

2.2.2 The anisotropic generalised Kolmogorov equations
(AGKE)

Before presenting the ¢ AGKE, the standard AGKE based on the Reynolds’ de-
composition are recalled. Full details on their derivation from the incompressible
Navier—Stokes equations are provided by Gatti et al.| (2020).
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Figure 2.1: Sketch of two points & and x; involved in the definition of the
second-order structure function tensor. X = (@) + x3)/2 and 7 = x, — x|
indicate their mid-point and separation vector, respectively. ou = uy — u is the
velocity increment between the two points.

Exact budget equations can be written for the components of the second-order
structure function tensor(éuiéuj > where du; = u;(X+r/2,t)—u;(X-r/2,t)isthe
i—th component of the velocity difference between two points | and x», identified
by their midpoint X = (x| + x;)/2 and their separation vector r = (x; — x1),
as shown by the sketch in figure The Reynolds’ decomposition leads to

budget equations for 6U;6U; and 5u;6u; . In general, the time-independent
tensor 6U;6U; depends upon six independent variables, i.e. the six coordinates

of X and r. The tensor <6u:5u;> additionally features time ¢ as an independent
variable if the process is not statistically stationary (e.g. periodic), and is related
to the Reynolds stresses <u;u;> and to the spatial correlation tensor R;; (Davidson
et al., 2006; Agostini & Leschziner, [2017) as

<5u;5u;>(x, 1) = Vil (X, ri ) = Rif(X.r.0) — Rij(X,—r1)  (24)

where

Vi (X, 7 1) = <u;u;>(x + g r) +<u;u;>(x - g t) 2.5)

is the sum of the single-point Reynolds stresses evaluated at the two points X +7/2,
and

Rij(X,7.1) =<u; (X + gt) v, (X - gt)> 2.6)

is the two-points spatial correlation function.

The budget equations for the components of the mean second-order structure
function tensor 6U;6U; are presented here for the first time; they were not reported
by |Gatti et al.| (2020), and the tensor has received little attention so far, owing to
its irrelevance in homogeneous isotropic turbulence, where there is no mean flow.
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The mean AGKE are written compactly as
8<I>’,fl] G‘PZZJ
ory (9Xk

where the repeated index k implies summation. The following notation is adopted.
Uppercase letters (e.g. @, ¥ and E) will be used to denote time-averaged quan-
tities, and lowercase letters (e.g. ¢, ¥ and &) for phase-dependent quantities.
Furthermore, superscripts m, f, ¢ and s are used to label terms in the budget
equations for the mean structure function tensor 6U;0U, the fluctuating structure

=&, 2.7)

function tensor <(5ul’.5u} >, the coherent structure function tensor 6i;6ii; = 01;0il,

and the stochastic structure function tensor ou; 6u’;.
The fluxes d)’" and ‘P’" are the mean scale and physical-space fluxes, i.e.

m -y ) s\, 00UBU;
;= SUSUSU; +8U, (6ujsu) + 6U{ujou )-2v=—"—L k= 1,2,3
~— ——
Mean transport Fluctuating transport Viscous diffusion (28)
and
I I
Wy = UisUisU; + 68U (ulSul)+ SU (i 6u) 4= SPOU 64 + —SPSU;6y, +
X p p
Mean transport Fluctuating transport Pressure transport
y 86U;8U;
—— k=123 (2.9)
2 0Xy
S —

Viscous diffusion

where ¢6;; is the Kronecker delta, v is the kinematic viscosity, and the asterisk
superscript (-)* indicates the arithmetic average of a quantity between the two
points X + 7 /2. The term E i ", instead, is the mean source and reads

E"}:—[—<u;j5u> ( ) —(u ou )5( ) <5 Su >(37U) — (61, 6u )(ZZZ)*]+
Mean-fluctuating production (P )

1 pd8U; 1,05,
+ 8X + (5P 8XJ —4€/”"  +6U;0F; + 6UOF;. (2.10)
i
N——

Dissipation (D7)  Forcing interaction (F[})
Pressure strain (ITY}) i

The standard AGKE, presented by |Gatti ef al.| (2020), pertain to increments of
the fluctuating velocity field, and describe the production, transport, redistribution
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and dissipation of each component, in the physical space X and in the space of
scales . They can be written compactly as:

k,ij

o(susu) oo, o
+ i
ot ory an

f
/. 2.11)

1

The scale-space fluxes @f;.j and physical-space fluxes Tl{,ij are defined as:

9
], =(6Ususu) )+ (suduion;) 2

. ark<5u;5u;> k=123 (212

Mean transport  Fluctuating transport  Viscous diffusion

and

1 1
), =(Uouiou )+ (u; susu)) +;(5p’5u;)5kj+;<5p’5u;.>5,d+

k,ij
Mean transport  Fluctuating transport Pressure transport
v 0
—s o (ousu) k=123, (2.13)
20Xy

Viscous diffusion

The term Elj; in (2.11)) is the source f0r<6u;6u}> and reads:

2] 22 i o[22

Mean-fluctuating productlon(me )

1 oou’ 1 oou’; .
+ —<5p’ ’>+ —<5p'—’> ~aelt w{ouof)+(usfy). 214
——

X, 0X;

) y Dissipation (D,J-;) Forcing interaction(Flf )
Pressure strain (Hij) J

in which e.f. is the pseudo-dissipation tensor<(9u’. / 6xk6‘u’ [ 0xx > The source term
Elf - identifies scales and positions with a net sink (E; f ;< 0) or a net source
(.:lf > 0) for each component of the Reynolds stresses. The separation of = j in
its constituent terms provides insight on mean-fluctuating production Pl.jf (which
also appears in with opposite sign), redistribution Hl]; dissipation D;;. and

interaction with external fluctuating volume forces F£ of turbulent stresses among
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scales and positions (note that the forcing interaction term was missing in the
original AGKE formulated by Gatti et al.| (2020)). The flux vectors describe
the various transfer processes, and their field lines visualise how fluctuations are
transferred among scales and positions, via direct and inverse cascades. It should
be recalled that, as stressed by Gatti ef al. (2020), when interpreting AGKE results
to extract structural turbulence information, local peaks of the structure functions
always need to be connected to local maxima/minima of the correlation functions
whenever a separation along an inhomogeneous direction is involved.

2.2.3 The phase-aware AGKE, or pAGKE

By using the triple decomposition (2.1)), the phase-averaged fluctuating structure
function tensor 6u;6u;.(X ,T, ) can be separated into its coherent and stochastic
parts, i.e.

6u;5u}(X, T, @) = 0i;0i; (X, 7, @) + 6u;’6u;.’(X, T, 0); (2.15)

note that 0i;01; = 0ii;6u; owing to the definition of the phase-average operator.
Two budget equations, called ¢ AGKE, can be written for 6i;6ii; and 6u;’6u}’ ,
which include, unlike the standard AGKE, the interplay among the mean, coherent
and stochastic fields at each phase ¢. These new equations extend in a significant
way the work made by [Thiesset ez al.| (2014) and |Alves Portela et al.| (2020), that
considered the budget equations for (di;0i;) (X, r) and <6ul’.’(5u;’> (X,r). They
applied the triple decomposition to the trace <5 u;o ul’.>of the second-order structure
function tensor, instead of considering the whole tensor. The major difference,
though, is that the dependence on the phase ¢ of the coherent motion (or external
forcing) was lost, because of the use of the (-) operator. On the contrary, the
¢AGKE retain full phase information.

The step-by-step derivation of the p AGKE from the incompressible Navier—
Stokes equations is described in Appendix[2.A] At each phase ¢, they link the phase
variation of each component of the coherent and stochastic structure function ten-
sors, at a given scale  and position X, to the unbalance among inter-component
redistribution, scale-space transport, dissipation and mean-coherent-stochastic in-
teraction. The last term is obviously absent in the classic AGKE.

The equations for the coherent and stochastic parts can be compactly written

as:
2r 06i;a; 09 OV
O R A ey (2.16)
T Oy ory 00Xy J J
and o
2 06ulou’  0¢ ..  OYy .
e R . . R (2.17)
T 0y ory 0Xy &
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where, as above, the repeated index k& implies summation.

The first term in equations and represents the phase variation
of the coherent and stochastic components of the structure function tensor. The
coherent and stochastic scale fluxes ¢i,i]. and ¢i,ij, i.e. the fluxes of 6i;0ii; and

6u;’5u}’ in the space of scales, are defined as:

_ _ 86116l ;
@5 .. = 0UROI;0i; + Oirdii;0ii; +ou;ou)dii; + ou’du’di; y—— k=1,2,3
k,ij J J ki J ko ri
————
Mean transport  Coherent transport Stochastic transport Viscous diffusion
(2.18)
and
douou’;
@) . = oUxouou’! + oiou!du’ + ouwléu’ou] -2v——— k=1,2,3.
k,ij i J i J k=i J 8rk
———
Mean transport ~ Coherent transport  Stochastic transport Viscous diffusion
(2.19)

The coherent and stochastic spatial flux terms ij and v, i i.e. the fluxes of

o0i;0ij and (5u;’6u;’ in the physical space, are defined as:

- - 1
ol % ~ ~ ~ 3k ~ ~ ~ ~ ~ o~
'r/’k,ij = Uyou;ou; + i, 0il;0il; +u}(’*5u;’5uj+u;(’*5u;.’6u,~+ p—dpciu,-ékj +

——— — e
~————
Mean transport  Coherent transport Stochastic transport Pressure transport
1 y 050164,
+—0pou oy —=—— k=123 (2.20)
ol 2 00Xy

Pressure transport Viscous diffusion

. - 1 ] —
‘/’i,ij = UZéu;’(Su;.’ + u,téul’.’éu;.’ + u’k’*éu;’&t;’ + ;5p”6ul’.’5kj + ;6p”5u;.’6k,- +
——— ———— ———
Mean transport  Coherent transport ~ Stochastic transport

Pressure transport
yoouls u}’
20Xy

—————
Viscous diffusion
The differences with the fluxes (2.12) and (2.13) appearing in the standard

AGKE are worth noticing. Two new terms appear here to account for the effect

of the coherent field upon transport in the stochastic field, labelled as coherent

transport in equations (2.19) and (2.21). Vice versa, how the stochastic field
affects transport in the coherent field is reflected by the stochastic transport term

in equations (2.18) and (2.20)).

k=1,2,3. (2.21)
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The coherent and stochastic source terms §C and f denote the scale-space net

production of 6i;6ii; and 6u;’6u}’ . They can be elther positive or negative, and
read:

&6 = —Gii ;00 oui\ sasi, [2Y * siaato (29 —saars (2Y1) &
i;oi — 00ty | — | —diji, 0 | — | — 0, 0 | —
l] / k 6xk k 0xk 7k axk k 8xk

Mean-coherent production ( pZ‘f’)

l/l l/l l/l l/l —ou.u l/t u
(9)6]( axk Jk axk k axk
Coherent-stochastic production ( pfjs)
1 __d6a; 1 __00i; i . o
—5p ox, —6p o, ~4ef  + ;0 f; + Siid f
——
Pressure strain (x ﬁ,’) Dissipation (dfj) Forcing interaction(ffi)
(2.22)

oU;\" —— (9U;\* oU; oU;
S //6 nm| =t —ou”"Su” | —=~ _ 6 // //*6 (5 // //*6 +
f “ ((%ck) ul uk (axk) (8xk) (6xk)

mv)

Mean-stochastic production (p

—(0i;\" ——(0ii;\" ———— (0il;\ —— (0d;
5u”6u;€’ — — ou} ouy L —oulu}"6 —oujuyl*o ||+
Ox Xk 8 Xk J axk (9xk
Coherent-stochastic production ( pfj‘?)
1 651,[’.’ 1 (9(514;’ ;
—_ ” ” _ * ” 17 ” 124
+—0p 9%, 6p X, 4€;; +6uj6fl. + ou; (5fj .
Pressure strain ("fj) Dissipation (d j) Forcing interaction(f;:f)
(2.23)

Among the terms appearing in the source, the mean-coherent and mean-
stochastic productions p"“ and p?]l.s indicate the scales and positions where the
mean flow feeds, or drams energy from, the coherent and stochastic fields: they
are not positive definite, and therefore can be either sources or sinks. They
both contribute to the mean-fluctuating production P;;* in equation (2.10), as

P?}f = < pZ’.C> + < p;?J’.S > The coherent-stochastic production pfjs indicates the ex-
change of stresses between the coherent and stochastic fields, and appears in the
budgets for 6i;6i ; and 5u”5u” with opposite sign dC and dsj denote viscous dis-
sipation, and the pressure- straln terms 7r and 7} i descrlbe the interplay between

pressure and velocity fields. Pressure— straln terms involve neither production nor
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dissipation of energy, and no cross-talk between coherent and fluctuating fields.
Overall, among the source terms, the productions p?}.“, pZ’,s and pl‘JS are the only
ones that connect the mean, coherent and fluctuating budgets, and are essential
to ascertain how the mean, stochastic and coherent fields force each other. The
forcing interactions ffj and f;‘j represent the power injected into the system by the
interaction of a coherent and stochastic external volume forcing with the coherent
and stochastic flow fields, respectively.

Finally, in equation for 61i;0ii; a new term l‘] appears on the right-hand
side. It describes the inter-phase interaction driven by the coherent flow field, and
is defined as:

¢ 0 e\ n o m N om O (/s o\ on ko N om
& = e [((5u,-6uk)6uj +<5uj6uk>6ui] + — [(ukéu,->5uj +<uk6uj>5ul-] +
Ik 0X k
¥ airk (6urouy)oa,; +(suyouy)om| + 6iXk (uoupyoa; +(uyouy Yo | +

N A NN -y o (O] o [ Ol
_<5l/t16uk>(a—x]]() —<6Lt]61/lk>(a—x]() —<6uluk>6 (a—xi) —<6l/£]lxtk>(5 (—) +

Oxy
144 ” al/’z‘] " ” 144 al:it ' 7 1% aﬁ] 17 1% 6l:zl
~(ouisu)| 52 - (6uyouy) o IR ~(6upuy")o -
(2.24)

The terms in the last two rows above resemble a production term, and indicate
the production of 6i7;6ii ; due to the correlation of each phase with all the others.
By averaging equations (2.16) and (2.17)) over the phases, the budget equations

for (861 )(X ) and <5u;'5u;'>(x, r) are obtained. In doing this, the inter-
phase contributions vanish, since by definition they have zero average. The sum of
the equations for the three diagonal components of (6&,-6& j> and <6ul’.’6u}’ > yields
the GKE equations used by Alves Portela et al.| (2020). If the equations for
<6ﬂ,~5ﬂ j> and <6u;’5u}’ > are added together, the standard AGKE for the fluctuating

field <5u;6u} > are recovered.

2.3 Turbulent drag reduction by the spanwise-
oscillating wall

The ¢ AGKE are now applied to a fully developed turbulent channel flow subjected
to a spanwise harmonic oscillation of the walls. This flow is a convenient example
where the deterministic external periodic forcing provides an unambiguous defini-
tion of the phase, yet the physics behind drag reduction is interesting and not fully
understood yet.
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Figure 2.2: Wall-normal profile of the spanwise coherent velocity w* (left) and
shear 0w* /dy (right), plotted at 8 equally spaced phases ¢y, . . . ¢g along the period
T* =250.

The spanwise oscillating wall is a well-known skin-friction drag reduction
technique, intensely studied over the last thirty years (see Ricco et al., 2021,
and references therein). The channel walls periodically move along the spanwise
direction, according to:

wy, (1) = Asin (Z%t) , (2.25)

where A and T are the prescribed amplitude and period of the sinusoidal oscillation,
and w,, is the spanwise velocity of the wall. x, y and z (u, v and w) denote
the streamwise, wall-normal and spanwise directions (velocity components); the
alternative notation x; = x (u; = u), xp = y (up = v) and x3 = z (u3 = w)
is also used. The harmonic oscillation generates a periodic (coherent) spanwise
cross-flow, that even for a turbulent streamwise flow is well described (Quadrio
& Sibilla, 2000) by the analytical laminar solution of the second Stokes problem,
usually referred to as the Stokes layer:

w(y, ) = Aexp (—\/gy) sin (go - %y) , (2.26)

where ¢ is the phase of the oscillation, and w = 2x/T. Figure shows the
coherent spanwise velocity field (the Stokes layer) generated by the harmonic
oscillations, and its derivative in wall-normal direction (the Stokes shear): the
oscillating period is subdivided into eight equally spaced phases ¢1, ¢», ... ¢s3,
where ¢; = in/4. From here on, the + superscript is used to indicate quantities
made dimensionless with the friction velocity u; = +/7,,/p (p is the fluid density,
and 1, is the time-averaged streamwise wall shear stress; the spanwise component
is zero) and the kinematic viscosity v.

The interaction between the coherent Stokes layer and the stochastic near-wall
turbulence influences the main structures of the near-wall cycle, i.e. the low-
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speed streaks and the quasi-streamwise vortices, eventually yielding a reduction
of turbulent friction. When the Reynolds number based on the friction velocity is
Re. = 200, the largest drag reduction rate for a given oscillation amplitude A* = 12
is about 45%, obtained for the optimal actuation period 7+ ~ 100 (Quadrio &
Ricco, |2004). Larger or smaller periods result in smaller drag reduction. Several
authors, for example Yakeno et al.| (2014)), observed that the orientation of near-
wall structures in wall-parallel planes is cyclically altered by the coherent spanwise
shear. [Touber & Leschziner| (2012)) have shown that, provided the timescale of the
spanwise shear oscillation is short enough, the low-speed streaks do not have the
time to fully re-orient during the oscillation, and are thus weakened. Hence, at the
root of drag reduction lies the interaction between the oscillating shear (a coherent
component) and the natural streak regeneration mechanism (seen in the stochastic
component).

Touber & Leschziner (2012)) and later Agostini et al.| (2014) applied a triple
decomposition of the velocity field to the budgets of the single-point Reynolds
stresses; the turbulent (stochastic) fluctuations were isolated and their interaction
with the (coherent) Stokes layer was studied. It was found that the interaction
between coherent and stochastic fields is mediated by the interplay between the
coherent spanwise shear 3w /dy and the vw” component of the Reynolds stress
tensor, induced by the rotation of the vortical structures. For nearly optimal
periods, the interaction between the coherent and stochastic fields is one-way, with
the former altering the latter. This weakens the wall-normal velocity fluctuations
and reduces the turbulent shear, reducing eventually the friction drag. For larger
periods, instead, the interaction becomes two-ways, with coherent and stochastic
fields mutually exchanging energy. In this case, however, the drag reduction effect
is less important. By looking at different phases along the period, they found
that, when large, the Stokes shear 0w /dy changes relatively slowly in time and
allows the structures to become more vigorous and well-established (a process
they referred to as lingering). Conversely, when 0w /dy is small, the structures
appear weak and less tilted.

In this example, we intend to add scale information to the picture. We thus
apply the ¢ AGKE: (i) to describe the influence of the coherent motion on the spatial
arrangement of the near-wall structures during the control period, (ii) to inspect
the mean-coherent-stochastic interaction in the scale space and in the physical
space, and (iii) to characterise the phase dependence of the interaction between
the coherent and stochastic fields.

2.3.1 Database and computational details

The ¢ AGKE terms are computed from two datasets obtained by direct numerical
simulations (DNS). They are described by Gallorini e al.| (2022), where the
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interested reader can find full details.

The simulations are run under a constant pressure gradient (CPG) (Quadrio
et al., 2016a), with a friction Reynolds number of Re; = u;h/v = 200, where
h is the channel half-height. CPG provides a unique value of u, with/without
drag reduction, thus avoiding ambiguities in viscous scaling. The size of the
computational domain is (L, Ly, L;) = (4mh,2h,2rh) in the streamwise, wall-
normal and spanwise directions. The number of Fourier modes is N, = N, = 256
in the two homogeneous (streamwise and spanwise) directions, further increased by
a factor of 3/2 to remove aliasing error. In the wall-normal direction, a hyperbolic
tangent distribution of N, = 192 points provides a finer grid near the wall. The
spatial resolution is Ax* = 6.6 and Az* = 3.3 by considering the extra modes,
while Ay™ varies from Ay* ~ 0.5 close to the wall to Ay* ~ 3.7 at the centreline.

A first simulation of a plane channel with fixed walls is run as a reference,
followed by two others in which wall oscillation according to is enforced.
The oscillation amplitude is fixed at A* = 7: a rather small value, which keeps the
energy cost of the actuation limited, and might even provide a small net energy
saving at optimal periods. As in Agostini & Leschziner (2014)), we consider two
control periods, namely 7% = 75 and T* = 250. The value T* = 75 is nearly
optimal, and yields drag reduction (defined here as a percentage decrease of the
friction coeflicient, determined by the increase in bulk velocity) of 25.2%. The
value 7% = 250 is suboptimal, and yields only 13.2% drag reduction. These figures
are in agreement with existing information (see for example |Gatti & Quadrio,
2016).

Simulations are started from an uncontrolled turbulent flow field. During the
initial, transient phase, the solution is advanced by setting the Courant—Friedrichs—
Lewy number at CFL = 1. After the transient, however, the time step is set to a
fixed value, in order to synchronize data saving with predetermined control phases.
The value of the time step is thus chosen as an integer submultiple of the forcing
period that keeps the maximum CF L below the unit: it is Az* = 0.0938 for the
smaller period, and Ar* = 0.0781 for the longer period. After the transient, 376
complete velocity fields are saved, so that 47 control periods are stored for later
analysis, each of them divided in 8 equally spaced phases.

The ¢ AGKE terms are computed from the database with a post-processing code
derived with modifications from that described by |Gatti et al. (2020). It employs
the same important numerical optimizations described in|Gatti et al.|(2019), which
include the computation of correlations pseudo-spectrally whenever possible. The
code, written in the CPL computer programming language (Luchini, 2020} 2021)
has been validated by checking that the sum of each term of the budget of coherent

and stochastic fields equals the corresponding term of <(5ul’.5u;.> within roundoff.
Statistical convergence of the results is verified by ensuring that the residuals of the
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budgets are negligible compared to the values of the production, pressure—strain
and dissipation.

2.3.2 pAGKE tailored to the channel flow with oscillating walls

The general form (2.16) and of the ¢ AGKE can be simplified for the
problem at hand. Since x and z are homogeneous, in an indefinite plane channel
the ¢ AGKE depend on five independent variables: the three components of the
separation vector (7, y, r;), the wall-normal component of the midpoint ¥ and the
phase ¢. Note that the finite distance between the two walls implies the constraint
ry <2Y.

In an indefinite channel flow, the x direction aligns with the mean flow, hence
U(y) = (U(y),0,0), and the wall-parallel derivatives of the mean velocity are
zero. Moreover, in the specific case of the oscillating wall, the coherent velocity
field is independent on x and z, as the wall control law is a function of
time only, so that dii;/dx = 0ii;/0z = 0. Therefore, incompressibility and no-
penetration at the wall dictate that the wall-normal component of the coherent field
is null everywhere, i.e. ¥(y,#) = 0. The streamwise coherent velocity #, instead,
does not vanish, albeit it is known to be extremely small: (Yakeno et al., 2014)
report it to be two orders of magnitude smaller than the spanwise coherent velocity
w. The non-zero components of the 6i7;0i ; tensor are 0ifdoit, OWow and 6ioW.

The specialised form of the ¢ AGKE for the channel flow with oscillating walls
is reported in Appendix It can be observed that the mean-coherent production
p?}c is zero: in this particular case, there is no exchange of stresses between the
mean and coherent fields, as the coherent field interacts directly with the external
forcing and with the stochastic field only. However, this term does appear in other
flows, and for example is important for the flow past a bluff body (Alves Portela
et al., |2020), where the mean flow supports the coherent vortex shedding, which
in turn supports the stochastic fluctuations. In the budget for the stochastic part,
the productions p?}s and pl.cjs represent the two avenues for the stochastic field
to interact with the mean and coherent fields, involving distinct components of
6u;’(5u}’ . The mean-stochastic production p?}s is non-zero only for du”éu” and

for the off-diagonal components éu”dv” and éu”’dw”. In contrast, the coherent-
stochastic production contributes to all the elements of 6u§’6u}' except for 6v”7ov”,
being p55 = 0.

The flow symmetries and the type of forcing make only certain paths available
for energy exchanges. This is represented graphically in figure which shows
an “energy circle” (Quadrio, 2011)) to describe energy exchanges among the mean,
coherent and stochastic fields after spatial and temporal integration. In the fol-
lowing, thanks to the ¢ AGKE, these global energy exchanges and redistributions
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Figure 2.3: Sketch of the energy exchanges between mean, coherent and stochas-
tic fields for the turbulent channel flow modified by spanwise-oscillating walls.
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introduced by the moving walls.
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are expanded and described in space and among scales, with a phase-by-phase
analysis.

2.4 Effect of the spanwise forcing on the near-wall
cycle

The influence of the oscillating wall on the structural organisation of the stochastic
part of the velocity fluctuations in the near-wall region is considered first, at a single
phase and then in terms of its phase evolution. The energy exchanges among mean,
coherent and stochastic fields are then addressed, followed by the analysis of the
pressure—strain redistribution. Eventually, the influence of the Stokes layer and
the stochastic pressure—strain term 773, on the transfer of the spanwise stochastic
stresses is described.

2.4.1 Near-wall structures
2.4.1.1 Description at a fixed phase

Figure shows the diagonal components of 6u;’6u;’ in the ry, = r, = 0 plane for
the uncontrolled channel (first row), 7* = 75 (second row) and T* = 250 (third
row). For the two controlled cases, only phase ¢4 is shown, but the discussion that
follows is qualitatively valid for all phases.

The local maxima of du”du” and 6v”’6v”, hereafter denoted with the -, sub-
script, are the statistical trace of the structures of the near-wall cycle. In the
ry = ry = 0 space, indeed, they indicate a negative peak of the streamwise and
vertical stochastic correlation functions R, and Ryy; see equation (2.6). The
coordinates Y'* ~ 14— 18 and r} = 55 — 65 of du”ou” , in the (r},Y™) plane indi-
cate the characteristic wall distance and spanwise spacing of low- and high-speed
streaks. The coordinates Y* ~ 43 — 55 and r} ~ 49 — 59 of 6v”5v”,, indicate the
characteristic wall distance and spanwise size of the quasi-streamwise vortices,
which induce at their spanwise sides regions of vertical velocity with negative
correlation.

Figure shows that the oscillating wall leaves ou”6u” and 6v”év” almost
unchanged, indicating that the size and strength of the near-wall structures only
marginally depend on the amount of drag reduction.

This is consistent with the CPG driving strategy, which forces the same level
of wall friction; the large changes observed by various authors under different
driving strategies simply derive trivially from the different friction, as discussed
by [Frohnapfel et al.| (2012). However, the velocity streaks are slightly moved
away from the wall: an upward shift of 6u”déu’”,, can be seen in figure h The
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Figure 2.4: Diagonal components of the stochastic tensor 5u;’6u}’ T at ®4 1n the
(r},Y") plane. From top to bottom: uncontrolled case with A = 0, T7* = 75 and
T* = 250. The contour is set at 95% of each maximum. The coordinates of the
maximum, marked with a cross, can be read on the axes.
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previous observation is confirmed by numerical data: the maximum moves from
Y* = 14.1 in the reference case to Y* = 17.8 for T* = 75 and to Y* = 14.7 for
T* = 250 (at phase ¢4). Both shifts are upwards, and the 7" = 75 case with larger
drag reduction has a larger shift. The quasi-streamwise vortices react differently
to control: §v”6v”,, moves from Y™ = 53 in the reference case to Yt = 55 for
T* =75andtoY* = 43 for T* = 250. These contrasting trends are consistent with
the wall-normal displacement found by |Gallorini ef al.| (2022) for conditionally-
averaged quasi-streamwise vortices, but are extracted from the present analysis
without the need for an (inevitably subjective) procedure for conditional structure
extraction.

In the canonical channel flow, the map of ow”dw” embeds information of
the quasi-streamwise vortices only when the r, # 0 space is considered, which
contains the peak (dw’ow’),, (Gatti et al., 2020). Indeed, the quasi-streamwise
vortices induce negatively correlated regions of w” fluctuations at their vertical
sides only, and the ry, coordinate of the maximum indicates their characteristic wall-
normal size. In the controlled cases, however, a local peak of ow”dw” appears in
the r, = r, = 0 (figure and r, = ry, = 0 (not shown) planes. Interestingly,
the local peak is particularly evident for 7+ = 250, extending for 1 ~ 50 — 100,
ri ~ 85—-270 and Y* ~ 13 — 25, but it is hardly visible for T+ = 75, where
the w” fluctuations are weaker. The next Subsection, which examines how these
quantities vary with ¢, shows that this derives from a combination of the streaks
tilting in the x — z plane and from the interaction of the quasi-streamwise vortices
with the coherent spanwise shear.

2.4.1.2 Evolution during the cycle

Figure shows the phase evolution of du”du”, 6v”6v” and dw”éw” in the
ry = ry = 0 plane, to describe how the organisation of the near-wall stochastic
fluctuations changes during the oscillation cycle, i.e. the very type of information
that the pAGKE are designed to provide. Only the suboptimal 7% = 250 is
considered, as the large period emphasises the phase dependence; moreover, only
one half of the forcing period is shown (from ¢ to ¢4), because of temporal
symmetry. Extra quantitative information is provided by figure which plots
the phase evolution of the maxima éu”éu”,,, 6v”’6v”,, and Sw”ow” .

The streamwise velocity streaks cyclically strengthen and weaken under the
action of the alternating Stokes layer. The maximum éu”du”,, assumes its lowest
value at ¢, and then grows to reach the highest value at ¢4, with an intra-cycle
variation of 27%. The quasi-streamwise vortices, instead, show a much smaller
phase dependence: the intra-cycle variation of 6v”¢6v” is 8% only. This is not
surprising, since the quasi-streamwise vortices reside at larger wall distances,
where the intensity of the Stokes layer is lower; at y* = 14, the average position of
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u’ <0

Figure 2.7: Sketch of the contribution of u” and w” for positively (left) and
negatively (right) tilted low (blue) and high (red) speed streaks induced by a
positively rotating quasi-streamwise vortex (white).

the streaks, the maximum w* is 1.15, while at y* = 50, representative wall-normal
distance of the vortices, it is only 0.2. A different wall distance for streaks and
vortices also implies a phase shift; in fact the intensity of 6v”6v” is minimum at
3 and maximum at ¢, whereas ou”du” and dSw”déw” are minimum at ¢, and
maximum at ¢4. This is consistent with the early observation (Baron & Quadrio,
1996)) that streaks and quasi-streamwise vortices are displaced by the spanwise
Stokes layer differently.

From figure one notices that the phase evolution of 6w”éw”,, resembles
that of du”6u”,,, thus suggesting that part of the stochastic w” fluctuations derives
from a redistribution of the streamwise fluctuations. The near-wall structures are
tilted in the x — z plane and follow the shear vector (dU/dy, 0, 9w /dy) (Yakeno
et all [2014). The tilting causes the streamwise high- and low-speed streaks to
re-orient, thus contributing via pressure—strain redistribution (see below §2.4.3) to
the spanwise stochastic fluctuations. When the tilting angle is positive (negative),
the low- and high-speed streaks contribute to respectively positive (negative) and
negative (positive) w”. This produces regions of w” fluctuations that correlate
negatively for scales r, and r, and position Y compatible with the position of
ow”oéw”,, observed in figure This is shown with a sketch in figure and
confirmed with a phase-by-phase conditional average of events extracted from the
present database in Appendix The picture is also consistent with the lower
ow”ow”,, observed in figure or T* = 75: for periods close to the optimum,
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Figure 2.8: Left: evolution of the tilt angle of the wall streaks during the cycle.
Comparison between present results (blue symbols) and the shear angle introduced
by [Yakeno et al.| (2014)) (red symbols). Right: wall-normal position of the struc-
tures, educed from the wall-normal position Y, of sw”dw”,,.

the oscillation is too fast for the streaks to align with the shear vector (Touber &
Leschziner, [2012)), and this redistribution mechanism becomes weaker.

Similar information is usually extracted (Yakeno et all 2014 from phase-
locked conditional averages. However, such statistics are unavoidably arbitrary
to some degree: e.g. “short” structures have to be excluded from averaging, and
one needs to pre-determine a specific wall distance for the eduction procedure.
Here we obtain information that is equivalent to conditional averaging, but via a
statistical analysis that is free from assumptions and hypotheses.

For example, the scales r,,, and ry, identified by ow”éw”,, can be used to
track the phase evolution of the tilting angle 6 of the flow structures during the

cycle:
rzm (@) )

2.27
rx,m(‘P) ( )

6(¢)| = tan™! (

Similarly, the evolution of the wall-normal position Y;,, of 6w”dw”,, (or, equiva-
lently, of du”du”,,) quantifies the vertical displacement of the streaks during the
cycle. Figure [2.8 compares |6| with the shear angle 6, evaluated at Y, i.e.

(0w /dy
_ 1
6, = tan (dU/dy)’

that is conventionally used to describe the tilting angle of the near-wall structures
(Yakeno et al.,|2014; |Gallorini ef al.,|2022). The two quantities 6 and 6, are quan-
titatively similar and present the same phase dependence, with a nearly constant
difference of about 8°. The right panel of figure also shows that when the
tilting angle of the streaks is maximum, their distance from the wall is minimum
(and vice versa). This implies that a higher coherent spanwise velocity yields a
larger tilting.
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Part of the wall-parallel modulation of 6w”dw” induced by the wall oscillation
derives from the interaction of the quasi-streamwise vortices with the coherent
spanwise shear. When the coherent shear 0w /0y is positive, the quasi-streamwise
vortices move low-spanwise-velocity fluid upwards, and high-spanwise-velocity
fluid downwards. The opposite happens when dw/dy < 0. This creates two
regions with spanwise velocity of opposite sign at the vortex sides, resulting in
negative R33 correlation and a positive peak of dw”ow” at their characteristic span-
wise separation. This process, quantified by the coherent-stochastic production
P5; (see , resembles the ejections and sweeps typical of the near-wall cycle,
where the mean streamwise shear is involved; its description is similar to the expla-
nation provided by |Agostini et al. (2014) for the non-zero(v”w"). Once again, our
interpretation is supported by the velocity field induced by the ensemble-averaged
quasi-streamwise vortex, computed at various phases and shown in Appendix[2.C

2.4.2 Interaction of the mean, coherent, and fluctuating fields

The energy exchanges of the mean field with the stochastic and coherent fields
are described by the two mean production terms p:?]’." and p;’]’.s . However, as
shown in figure , for the present problem pf’}c = 0, and the mean field interacts
directly with the stochastic field only, by feeding (or draining from) streamwise
fluctuations. Moreover, energy is exchanged between the coherent and stochastic

fields via the coherent-stochastic production pfjs, which involves only éu”éu” and

ow”ow” among the diagonal components of the 5u;’6u}’ tensor.

Figure shows how the mean-stochastic production pf7} varies with ¢ for
T* =75 (left) and T* = 250 (right) in the r, = r,, = 0 plane, where the production
terms are maxima. Here p7} reduces to

— (dU

P = —20u”6v” (a) )
The mean-stochastic production is positive everywhere, with a peak in the range
rim=36-42andY, = 13-17forT* =75andr},, =36-3%9andY, = 12~ 14
for T = 250. Hence, the interaction of the near-wall cycle (6u”5v”) with the mean
shear (dU/dy) invariably moves energy from the mean field towards the stochastic
streamwise fluctuations. Note that the smaller Y* for 7F = 250 is consistent
with the reduced thickening of the viscous sublayer for suboptimal periods. The
production intensity is largest at ¢; and lowest at ¢3 for T* = 75, whereas it is
largest at @3 and lowest at ¢; for 7% = 250. Since dU/dy is phase-independent,

this can only descend from 6u”¢v”, which includes the phase evolution of the
streaks and of the quasi-streamwise vortices (see §2.4.1.2/above).
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Figures for T* =75 and for T+‘ = 250 show how pfj and p33 change
with ¢. Like for p7}, the expressions for p{] and p} simplify in the ry = r, =0

plane where their maxima occur, i.e.

cs SIS 4z cs S S ow
Pl = —26u”6v (5) and P33 = —20v"6w (ﬁ_y)

Unlike p'7’, however, these productions can take either sign. Their maps show
evident horizontal stripes of alternating sign, from the wall up to Y* ~ 40: hence,
at a given phase the coherent field feeds the stochastic field at certain wall distances,
but extracts energy from it at others. Itis worth noting that, although p{; and p%; at
a given phase are both positive and negative, after averaging over the phases ( pﬁ)
almost vanishes and < p%) is positive everywhere. This is not entirely new, and
confirms the single-point analysis by Agostini ef al.| (2014) (see their figure 14);
however, scale information is added here so that this mechanism can be related to
the structures of the flow. At every phase, the positive/negative peaks of pi] and
p55 occur at 1} ~ 25 — 50, a spanwise separation which points to the structures of
the near-wall cycle.

The intensity of p{| and p%; at the two periods is comparable, at all scales
and positions. However, for pﬁ the contribution of the shear stresses is dominant,
whereas the opposite occurs for p53, where the coherent spanwise shear dominates.
Indeed, 0w /0y is two orders of magnitude larger than dii/dy, and 6v”ow” is
two orders of magnitude smaller than du”6v”. Note, moreover, that for both
control periods p|}’ > p{|, meaning that the streamwise stochastic fluctuations
are predominantly fed by the mean field.

The alternating positive/negative stripes for p{} and p%; are due to the change

of sign of dii/dy and 0w /dy with y. For pg}, the changing sign of the shear is

also indirectly responsible for the alternating positive/negative 6v”’dw”, due to the
quasi-streamwise vortices-shear interaction described in In contrast, for
p{]> ou”’6v” is entirely due to the interaction of the near-wall structures with the
mean shear dU /dy, which overwhelms dii/dy everywhere.

Comparing figures and highlights that the slower oscillation intro-
duces substantial differences in the coherent-stochastic energy exchange. The
positive/negative maxima of p{} increase, and their position move towards larger
r, and larger Y, but the effect of 7% on P53 1s even more evident. At T+ = 250,
the stripes of negative p5; weaken, while those with p55 > 0 strengthen: overall,
the spanwise contribution to the energy flowing from the coherent to the stochastic
field becomes larger. A larger oscillating period implies a larger thickness of the
Stokes layer, proportional to Vv T, thus stretching outwards the coherent spanwise
shear and, as a consequence, the scale-space map of 6v”ow”, yielding an overall
increase of the positive p53. At ¢ and @3, for example, 0w /dy is negative close
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Figure 2.11: As in figure 2.10} but for T+ = 250.
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to the wall and changes sign only at y* ~ 30 — 50 for T* = 250 (see figure [2.2)),
while it changes sign already at y* ~ 13 — 18 for T* = 75 (not shown). For
T = 250 this results into a large increase of the near-wall positive p43, as high-
lighted by the dark red colour in figure Due to the negative 9w /dy, indeed,
the quasi-streamwise vortices induce on their sides positive/negative v’ and con-
vect upwards/downwards high/low spanwise velocity w”, thus yielding positive
ov”ow” and an intense energy exchange from the coherent to the stochastic field.
The scale-space information of this exchange mechanism is highlighted by the
positive peak of p%; placed at (rf,Y*) ~ (38,9) for the considered ¢, and ¢3
phases.

2.4.3 Pressure-strain redistribution

As seen schematically in figure[2.3] the pressure—strain action partially redistributes
the streamwise energy ou”du” drained from the mean flow towards the cross-
stream fluctuations 6v”6v” and ow”oéw”. The left panels of figure show
that 7}, < 0, 73, > 0 and 73; > 0 at almost all scales and positions: only in
a very thin region close to the wall n{, > 0, 73, < 0 and 7}; > 0, according
to the reorientation of vertical fluctuations into wall-parallel ones because of the
impermeable wall (Mansour et al., |1988). The peaks of m{,, 75, and 7r§3 in the
(r;,Y) plane have Y,; ~ 11 — 27 and r],, ~ 30 — 52, indicating that the energy
redistribution is dominated by the near-wall cycle.

It is known (Touber & Leschziner,|2012;|Yakeno et al.,|2014) that the spanwise
oscillation of the wall enhances the energy redistribution, mainly towards spanwise
fluctuations. Compared to the uncontrolled case, the negative peak of 7}, increases
by 23-67% for T* = 75 and by 36-77% for T* = 250, while the positive peak
of x5, decreases by 2—-11% for T+ = 75 and increases by 4-29% for T+ = 250.
The positive peak of 7r§3, instead, has the largest variation, with and increase of
30-53% for T* = 75 and 40-87% for T* = 250.

The phase evolution of the pressure-mediated energy redistribution is described
in the right panels of figure[2.12]for the T+ = 250 case, by considering the maxima
of the diagonal components of ﬂfj. Only their values are plotted, since their
position remains nearly constant at (Y*,r}) = (20,52) for | e (27, 30) for

n3, , and = (12,46) for n3, . Like 6v”6v"y, n5, , is the component with the
smallest intra-cycle variation, with a 21% excursion during the cycle compared to

30% and 35% for 7ry, , and 73, . In fact, the largest energy redistribution towards

ov”dv” occurs quite far from the wall, where the influence of the Stokes layer is
weak. The phase dependence of 7, is qualitatively different from the others.

The redistribution of 6u”déu” towards the cross-stream components is maximum

at 3 and minimum at ¢, following the absolute value of 7} |m- 1N contrast, ﬂ;z’m
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Figure 2.12: Left: pressure—strain redistribution " from du”éu” towards 5v”6v”
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and 73, . are minima at ¢, and maxima at ¢4 (this is not inconsistent with the

incompressibility constraint 7}, + 73, + 73, = 0, since the three maxima occur

at different scales and positions.) As already mentioned in §2.4.1.2, 73, —and

ow”ow”,, have the same phase dependence, confirming that the tilting of the near-
wall structures is accompanied by a redistribution of the streamwise fluctuations
towards the spanwise ones.

2.4.4 Transfers of the spanwise stresses

A peculiarity of the present flow is the direct connection between the Stokes layer
and the stochastic stresses, described by the coherent-stochastic production P¢*
shown in figure[2.3] It is therefore interesting to examine the variable-phase scale-
space transfers of the stochastic stresses by looking at their fluxes in the scale
and physical spaces. In this analysis, we only consider the transfer of spanwise
stresses dw”ow”, since for the streamwise stresses p{j is negligible compared to
p’lnf. Moreover, only the 7% = 250 case is considered, as the one where the effect
of the Stokes layer on the w” field is larger. For simplicity, the analysis is restricted
to the r, = r, = 0 subspace, where the budget of 6w”dw” can be rewritten by
moving to the r.h.s. the off-plane flux divergence terms d¢7 ,, /Ory, 8¢~y° 3 /ory,
and the phase evolution term, as follows:

8¢§,33 8lﬂ§3 =pS + 5.+ d° _8¢i’33 — a¢;’33 — waéW”(SW” (2 28)
or. T av = P33 T 733 7 d33 ar, ar, oo ’
&

In this way, the L.h.s. features the divergence of the in-plane flux vector, which
provides information on the energetic relevance of the fluxes with its intensity,
and shows their direction via its field lines. Moreover, the off-plane fluxes (i.e.
the last three terms in the equation above) are always very small, and the in-plane
divergence approximates well the full source term &3, everywhere (Gatti er al.,
2020). This descends from a combination of the symmetries owned by the plane
channel flow system, and of the approximate alignment of the dominant vortical
structures with the streamwise direction. Hence, the scale-space properties of the
source term &3, approximate well those of the divergence of the in-plane flux.

Figure plots the map of &3, = p53 + 73, + di; for the uncontrolled case
(where p55 = 0) and the controlled case at T* = 250 for ¢1, @2, @3 and ¢4, with
the field lines of the in-plane flux coloured with its divergence. In the uncontrolled
case, a region with &3, > 0 extends for 5 5 Y* £ 100 and for r] % 15, at scales
and positions where the pressure—strain dominates over dissipation. When control
18 active, instead, §§3 receives the additional contribution from coherent-stochastic
production, and the values of &3, are generally larger. Two regions with &3, > 0
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centered at 0.5: red means 73, > p%3, and blue means 73, < p53.

exist. One is close to the wall at Y™ ~ 10 — 20, and extends for all scales r; 2 15,
with a peak at 7} ~ 40. A second, connected region involves larger wall distances
and scales, inthe 40 £ r} £ 200range. Itis clearly visible in ﬁgure where the
ratio 73, / (€5, — d3;) is plotted to determine the main contribution to these positive
sources at the different phases. When r3,/(&3; — d3;) > 0.5, 735 > p§} meaning
that the pressure—strain is the largest contribution to the positive source. When
n3,/ (€5, — d3;) < 0.5, instead, the main contributor is the coherent-stochastic
production p53. Figure shows that p5; and 73, contribute both to the near-
wall source, but their relative importance changes with the phase. For ¢; and ¢3
P53 1s the main contributor to the intense source peak. For ¢; and ¢4, instead, p%3
weakens (see figure 2.T1): now the (weaker) source is mainly fed by the pressure—
strain. The source at larger Y, instead, is dominated by the pressure—strain at all
phases; this is reasonable, as for y* > 30 the Stokes layer and consequently the
coherent-stochastic production are weak.

As for the sinks, figure [2.13|shows three of them: viscous effects dominate the
very near-wall region (Y — 0), the bulk flow (Y — h), and the smallest scales
(r;, — 0). Extension and intensity of these sinks change with ¢, according to the
evolution of pgg, 7r§3 and d§3. A cut-off scale r; i, (Chiarini et al., [2022a) can
also be plotted to quantify the minimal scale where (spanwise) energy is always
dissipated, regardless of the wall distance.
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The field lines of ow”dw” drawn in figure originate from a singularity
point, i.e. a point near the source peak where the direction of the fluxes is undefined.
Here the lines are energised by the intense positive source and transfer ow”ow”
towards the sinks. Three types of lines are recognised, depending on where they
vanish, and reflect the three sinks described above. Overall, these fluxes indicate
the coexistence of ascending/descending and direct/inverse energy transfers, as
described by [Cimarelli et al.| (2013}, 2016); |Chiarin1 et al. (2022b) in the context
of Poiseuille and Couette turbulent flows.

The three line types possess the same topology in the uncontrolled and con-
trolled cases. For the latter, though, the amount of spanwise energy withdrawn from
the sources and released to the sinks changes with ¢. An estimate of this change
is provided by the phase evolution of the positive peak of the two-dimensional
divergence of the flux vector. Its value is maximum at ¢3 where it is 3.36, 1.56
and 1.29 times larger than at ¢, ¢ and ¢4 respectively. This is consistent with the
phase evolution of the positive peak of p%3 visualised in figure Moreover,
the singularity point lies in the source region dominated by p%3, and its r; position
moves with ¢ following the peak of pS3, being r; = 24, 33, 40 and 45 for ¢y, ¢,
3 and @y; for the uncontrolled case it is 7} = 26.

We therefore conclude that, at least for the 77 = 250 case discussed here, the
phase dependence of the transfers of sw”éw” is governed by the p5; contribution

to &3, rather than by 73,. At all phases, the largest part of the 6w”éw” withdrawn
by the source is released in the near-wall region; a relatively smaller part goes to
the smallest scales, and a minimal part goes towards the channel centre, where the
turbulent activity is low. By comparing the negative peaks of the divergence of the
in-plane flux vector at the wall and at the smallest scales, it is established that in the
uncontrolled case the amount of 6w”ow” released at Y — 0 is 5.67 times larger
than that released at , — 0. The oscillating wall alters the relative importance of
the fluxes: the amount of dw”éw” released at ¥ — 0 is significantly less, being
2.62, 3.85, 2.46 and 2.41 times larger than that released at r, — 0, at phases ¢,
2, @3 and @4 respectively.

2.5 Concluding discussion

We have derived the phase-aware anisotropic generalised Kolmogorov equations
or ¢ AGKE, inferred from the incompressible Navier—Stokes equations, after a
triple decomposition to separate the velocity and pressure fields into their coherent
and stochastic parts.

The ¢ AGKE are exact budget equations for the coherent and stochastic con-
tributions to the second-order structure function tensor, namely 6,6 ; (X,7r,p)

and (‘)‘u;’du}’ (X, 7, ¢). Compared to the standard AGKE, which are based on the
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classic (double) Reynolds decomposition, the ¢ AGKE add extra features. (i) The
transport equations for the coherent and stochastic parts are separated: disentan-
gling their dynamics becomes possible. (ii) The scale-space energy exchanges
among mean, coherent, and stochastic fields can be tracked. In particular, the
mean-coherent production p:.’]’.c and the mean-stochastic production p?j’.s bring out
scales and positions where the mean flow feeds, and/or drains energy from, the
coherent and stochastic fields; the coherent-stochastic production p¢? describes
the exchange between the coherent and stochastic fields. (iii) An extra term in
the budget for 6i7;61i ; represents the mutual interaction of the coherent motions at
different phases. (iv) The ¢ AGKE imply no average over phases, and thus describe
the phase variation of the various terms related to coherent and stochastic motions.
Once a phase average is taken, as in|Alves Portela et al.|(2020), phase information
is obviously lost.

To demonstrate the potential of the p AGKE, we have applied them to a turbulent
plane channel flow in which spanwise wall oscillations reduce the turbulent skin
friction. The ¢ AGKE are perfectly suited for this flow, owing to its deterministic
and periodic external forcing; moreover, the physics of drag reduction remains not
entirely understood and contains interesting inter-phase and multi-scale dynamics.

Thanks to the ¢ AGKE, the phase-dependent modifications of the near-wall
turbulent structures have been observed without the need for somewhat arbitrary
procedures to educe phase-locked and conditionally-averaged structures. The flow
scales involved in the redistribution of fluctuating energy have been described,
together with the process by which streamwise velocity fluctuations are converted
into spanwise ones by the action of pressure—strain. The interaction among the
mean, coherent, and stochastic fields is easily observed with the ¢ AGKE, which
highlight the energy exchanges between the coherent and stochastic fields, driven
by the interaction between the quasi-streamwise vortices and the coherent span-
wise shear. The phase-by-phase, scale-space transfers of the spanwise stochastic
stresses, observed here for the first time, have revealed a significant phase depen-
dency for the spanwise energy fluxes, which present ascending/descending and
direct/inverse energy transfers at all phases.

The ¢ AGKE can be leveraged to arrive at a thorough description of two-
points second-order statistics in cases that reach far beyond the oscillating-wall
problem, used here as a representative example only. Turbulent flows where
an external periodic forcing is present are common: oscillating airfoils, rotors
and turbines are only a few examples. Moreover, the ¢ AGKE can also be used
to tackle turbulent flows without a strictly periodic forcing, in which stochastic
fluctuations coexist with some kind of coherent motion. A non-exhaustive list
includes the turbulent flow past bluff bodies, where large-scale motions typical of
the Karmén-like vortices in the wake coexist with the stochastic motion of smaller
scale (Provansal et al.l [1987); the Taylor—Couette flow, in which Taylor—Gortler
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vortices develop and remain visible well into the turbulent regime (Koschmieder,
1979); the atmospheric boundary layer, rich with quasi-two-dimensional structures
forced at smaller scales (Young et al., 2002). In such cases, though, the period of
the oscillation is not uniquely identified, and attention has to be paid to properly
define a phase reference.

Lastly, it should be realised that the specific triple decomposition behind the
¢AGKE does not matter: alternatives to the temporal triple decomposition could
be used with a different meaning attached to the ~ and -” operators, without
altering the ensuing equations. One example is the spatial triple decomposition
approach adopted for example by Bech & Andersson|(1996) and Gai et al.|(2016) to
decompose the velocity fluctuations into secondary flow and residual fluctuations
in a rotating turbulent plane Couette flow. A further use case for the ¢ AGKE
would be a turbulent flow over a flat wall with a periodic pattern, like e.g. riblets
or dimples, in which the phase average would be again spatially defined. Finally,
another option is to employ a scale-based triple decomposition. For example,
Andreolli ef al.| (2021) used a scale decomposition mutuated from Kawata &
Alfredsson| (2018) to separate the fluctuating velocity field in a Couette flow into
small- and large-scale components, examining the kinetic energy budget of both
components in physical space. This information, compacted by |Andreolli et al.
(2021) through spatial integration into an energy budget without independent
variables, similar to that in figure [2.3] can instead be expanded at will in the
full physical and scale space thanks to the ¢ AGKE, thus providing the ultimate
information about two-points second-order statistics of the flow.

2.A Derivation of the budget equations for 6i;0ii;
and 6u;’6u}’

The derivation of the ¢ AGKE equations via triple decomposition is described
below, by listing the sequence of the main analytical steps.

2.A.1 Budget equation for U;, ii; and u

The starting point is the incompressible Navier—Stokes equations:

01/!,' 814,‘ 1 ap 82141'

— 4t Up— = +
ot uk@xk 0 0x; Vﬁxk(?xk

+ (2.29)
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The triple decomposition (2.1)) for u;, p and f; is introduced to obtain:

di; Ou} 10
=+ (Uy + ity + u] U + ii; + ——— (P+p+
ar * ot Wik der ) oo (Une i+ ) = oo ErPEP
6* »
+van(9Xk(Ui+u,-+ui)+F,-+ﬁ+ﬁ

which can be reorganised as

oi; + au” oU; oil; U au;, + i oU; + i 0il; + i au;l+
u u u

ar ot axy oxr - Foxr  Foxr | Foxr Mok

Wilof oil; ou?! 1P 10p 10p”

+ul — +uf ’+;€’ i o298 _Sop 9P
oxy, oxy, oxy, pox; pox; p Ox;
92U; 82i; o%u” s
AL vt Ly — + Fi+ fi + f.

axkaxk 6xk0xk 8xk6xk
Now the averaging operator(-)is used to arrive at the budget equation for

U oU; Az oi; N , ou 1opP . AU, F
i u =4tV ;.
k@xk k@xk koxy p 0x; 0x;0xk

When, instead, the phase average operator - is used, we get:

0ii; U aU; I oU; U 0i; ti oii; 4 //au;,
u u u =

ot Foxr " Foxr | Foxk | Foxk | K ox

10P 10p 0°U; 9% N

—_—————+ + +Fi+ f;

pox; pOox; V@xkaxk Vﬁxk(?xk i

which can be written differently using the budget equation for U;, i.e.:

%+ﬁ Ui +U Ot + i 6ﬁi+W_ i Ot - u"%
ar  Roxr T Roxr  Roxr T kaxr  \ Foxg

10p 9% i; .
L YT

0 6x, 6xk8xk

k&‘xk

This leads to the budget equation for i;, i.e.

au, 8ul - 6U, 8 - 0 ,, ,, 7" _
o Uk(9 ™ + il o + axe (@i — i) + 8_( —(uju] ) =

10p 0% ~
_lop i, x

+
o Ox; V@xkaxk
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(2.31)

U,', 1.€.

(2.32)

(2.33)

(2.34)

(2.35)



The budget equation for 1! is obtained by subtracting from (2.3T)) the budget
equations for U; (2.32)) and i; (2.35)):

au;’ U (914;’ Yo (914:’ .\ BU,- N 014, 4 0 ( "o m ,,)
_— u l/t Lt u.u Lt u =
o1 Koxe T Foxp | koxg kaxk Axp ik k
o (2.36)
1 ap” a i 7

i -

+v
p ox; Ox;0xy

2.A.2  ©AGKE for 6i6i,

The budget equation for i; in « is subtracted from the one evaluated in ™ = & +r:

oi; oii; oU; o  _ _ -
‘5((9;) 5(Ukax )+6( (m)m(am (uluk—<uluk>>)+

7 ” "o lap 62L~ti ~
+5( (7 (e )) _5(pax)+5(vaxkaxk)+5(ﬁ)'

By recalling that the two reference systems are independent, one may write for

example:
oil O51l; H51l;
6| U — Ur—+U L 2.38
("ak) ot T o, (2.38)

using the same line of reasoning for all the other terms one obtains

(2.37)

001il; 001l; oou; . 0o0U; _ 00U; L 001 001;
+U; +U, +ily + + + +
or | Kaxt T Mox T axr T oy ”ka+ " oy
_0oa;\ [ dsa;\ . 00ul  dsul [, déul\ | ,06u]
- —(dg——)+u + —)- =
"ot | T\ [T T T, T\ e [T\,
_1d6p 196p 9* 9* -
P _ p ( — t ) oi; + 0 f;.
p 8x 0 0x; Oxoxy  OxpOxy
(2.39)
Then one may write for example
06ul 661/7, 65&,
= dil i 2.40
ka ukaxz-'_ukax}: ( )
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and using this expression for all the terms we obtain the budget equation for 6i;

00, 50,290, g (2w 9 s+ 50 22Y s (<2 + 2 suie
5 ST T T T S PSP R
d5ii; a0 s\ [. (6 0.
+0it + i ou; —\ou - + — | ou; )+
e Oxy uk (0xk Bxk) i < ot > <uk (6x;: 6xk) ul>

asu”
+ou!! —

k
0 0 Joou; 0 0
+u! + —|ou’ —({6 —(u) | — + — | ou’
koxt " (Bx;: 8xk) i < Ui ox; > <uk (ax;; 6xk) >
_196p 136p ( 92

82
+
p oxF  p Ox; Y

+ Sii; + O f;.
Ox; 0x;  OxxOxy ) @i+ 0f;
This equation is multiplied by 6ii; to obtain

(2.41)
d6i; di; 9
8ot 4 51 ;U et +5u,Uk(

0 06U;
t it + ka) Ou; + OU jOll ——+

X k oxy
_ ( 9 i
+6ujuk

)5U + o 5”’<66u. + 0l iy (i : )5% S <5uk66ul
8x+ Oxi T ax] Y TR\ axg T oxy / oxt
ol T a2
5M,<5uk 866 +”>_ 5ﬂj<u}<’ (%Z + aiXk) 6u’.’>: _&;j% (% + aixl) S5p+
+vil ( 6x?(29x;: + axf;k) S + 6ii 6 fj.

(2.42)
The same equation is written again by swapping the i and j indices, and the two
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equations are then summed together:
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(2.43)

At this point, after applying the phase average operator = and manipulating the
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equations, one obtains:

0 . ..
Eé‘ul‘(‘)‘l/tj+a—x}:
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(2.44)
We now introduce the new independent variables X and = such that
x;i +xF
X; = 12 ~ =X - X
As a result the x;- and x;"-derivatives are related to the X;- and r;-derivatives by
the following relations:
0 10 o0 9 14 9 02+02 e @
oxi 20X, Or; oxf 20X, O Oxtoxt Oxpoxi  20Xc0Xy  Oredry
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The previous equation (2.44)) becomes:
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(2.45)
where the star (-)* denotes the average of any quantity between x and *. We also

observe that:

{1 0 0 \——— . 0
Olj |z + 7 6ui6uk+6u]~ ka—kéu =

19 0\ —0 0 —
Oil j (Eax 3 ) 6u”6u” + 0l E5e ”5u;’ =
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The viscous term can be simplified as:
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where el.cj is the pseudo-dissipation tensor of the coherent part of the velocity,

defined as:

Moreover we write:

and:

dii; O
e — 2.48
El] V<6xk Oxk> ( )
AoU; oU;\"*
Ol j Ol —— = O jOlly (—) (2.49)
8rk Xk

(2.50)

0 oU;
5aj-a;a—Xk5U,- = §ii;il; 6 (37,(1) :
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Finally, the budget equation for 67;0ii; is obtained:
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(2.51)

2.A.3 ¢AGKE for (5u§’(5u}’

We write the budget equation for u!” twice for the positions « and =¥ = x + 7,
then the first is subtracted from the second:

au// au// au// aU aﬁ
0 o oli S Sl =

( ot ) * (Uk 8xk) ¥ (Mk ébck) ¥ ( 8xk) ¥ (uk 8xk) "
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Following the line of reasoning described above, the equation for ¢u;’ is obtained,
1.e:

oduy ., 08wl 0Swl | 0sul | 0su  douy  dou}
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(2.53)

As above, we first multiply this equation for 6u3.’ , and then we sum to the same
equation with swapped i and j indices. Using again the independence of the x
and x* reference systems and incompressibility, and applying the phase average
operator * we obtain:
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We switch as above to the notation with X and 7 to obtain:
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where _
au’.’ﬁu’,’
€ =y——L— (2.56)

&4 6xk 6xk '
is the pseudo-dissipation tensor of the stochastic part of the velocity. Also in this
case we can write
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so that the budget equation for ou¢ u;.’ is eventually obtained:
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2.B The ¢AGKE for the plane channel flow with
oscillating walls

The special form assumed by the ¢ AGKE under the symmetries of a plane channel
flow with spanwise oscillations is reported below. The coherent part reduces to:
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The ¢ AGKE for the stochastic part (5u§’6u;.’ become:
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Here the mean transport term contributes to ¢}, consistently with a non-zero
streamwise mean velocity U. Similarly, coherent transport appears in ¢; and ¢,
since ## # 0 and w # 0. Since no external volume forcing acts on the flow, the
interaction forcing term is zero for both components.
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2.C Analysis of conditionally-averaged quantities

In this Appendix, the interpretations of the local maxima of 6w”éw” in the r, =
ry = 0 and r; = ry, = 0 planes provided in are supported by inspecting
the velocity field induced by the conditionally-averaged quasi-streamwise vortex
at different phases of the control cycle. The procedure to extract the conditional
average from the DNS database closely resembles that presented by Jeong et al.
(1997); it is described in detail by (Gallorini et al.|(2022) and is not repeated here.

Figure uses velocity isosurfaces to describe the spatial shape of the
conditionally-averaged negative rotating (SN) structure for the case at 7+ = 250 at
the two phases ¢ and ¢3. The extraction procedure is centered at the wall-normal
position of the maxima of dw”ow” for ¢ and ¢3 (see figure : this position is
shown in the shear panel at the bottom of figure At the two chosen phases,
the structures show their maximum negative and positive tilt angle; however, the
discussion below for ¢; can be extended to ¢,, and that for ¢3 extends to ¢4.
Isocontours of streamwise (transparent) and spanwise (solid color) velocities are
shown in a view from above (top) and from upstream (bottom).

Following the discussion in when the tilting angle is negative (see
¢1), the low-speed streak associated with a SN redistributes its energy via pressure
strain and creates negative spanwise velocity fluctuations; the opposite occurs
for the high-speed streak. This is confirmed by the ensemble-averaged structure,
which shows a region of positive (negative) spanwise velocity close to the side
of the high- (low-) speed streak. At 3, instead, the tilt angle of the streak is
positive, and the low- (high-) speed streak induces positive (negative) w” velocity
fluctuations at its side.

Another view of the spanwise velocity contours is displayed in the bottom
panels of figure 2.15] In these images, the streamwise velocity contours are
removed, to focus on the spanwise component only. In the canonical channel flow,
a negatively rotating vortex induces two regions of high and low spanwise velocity
below and above its center, respectively. However, when the wall oscillates, two
additional regions of positive and negative spanwise velocity originate at the sides
of the tilted vortex because of its interaction with the Stokes layer. At phase
@1 (left panel), the peak of dw”éw” occurs at Y* = 25, where the spanwise
shear 9w™*/dy is positive. Therefore, the negatively rotating quasi-streamwise
vortex lifts low spanwise velocity fluid, and displaces high spanwise velocity fluid
downwards. This process explains the appearance of a low w-velocity region at
the right side of the quasi-streamwise vortex, whereas the high spanwise velocity
region is absorbed into the lower-side one. At ¢3 the regions of low/high spanwise
velocity are opposite compared to ¢ owing to the opposite sign of the spanwise
shear at the location of the peak of 6w”ow” at this phase.
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Figure 2.15: Conditionally-averaged structure, extracted at ¢; (left) and ¢3 (right)
at T* = 250. The spatial shape of the structure is shown via isosurfaces of u'*
(transparent color) and w’* (solid color) velocity fluctuations at the level +0.5
(red/blue is positive/negative). The bottom panels also include the spanwise shear
dw*/dy at that phase, and show the wall-normal position where the extraction

procedure is carried out.
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On the optimal period of spanwise
forcing for turbulent drag reduction

Abstract

The most simple active forcing that leads to a reduction of turbulent skin friction
drag is the spanwise wall oscillation. The wall periodically oscillates in the span-
wise direction as a function of time and generates a periodic spanwise cross-flow
that depends on three parameters: the amplitude A, the period of the oscillation
T and the thickness of the spanwise velocity profile 6. The latter two quantities
are not independent and evidences suggest that the maximum drag reduction is
obtained for 7" ~ 100 and 6* =~ 6, although there is no consensus on their physical
interpretation. In this work we ovecome the conventional oscillating wall and get
rid of the 6 — T constraint. We perform a DNS study at Re, = 400 directly enforc-
ing a mean spanwise velocity profile at each time step to a turbulent channel flow,
varying ¢ and 7" independently. We find the optimal parameters for drag reduction
tobe 7% = 30 and 6* = 14 and discuss their possible physical meaning.

3.1 Introduction

Reducing the turbulent skin-friction drag is a long-standing effort in fluid mechan-
ics, driven by environmental and economic reasons. Towards this goal, several
active and passive approaches and technologies have been considered over the
years. Among them, those not requiring feedback from measurements and only
involving a predetermined wall-based actuation deserve special attention, owing
to the combination of their simplicity and effectiveness. In this work, we focus
on spanwise forcing (Ricco et al.,2021), which has been proved to remain effec-
tive at high Reynolds and Mach numbers (Gatti & Quadrio, [2016; |Gattere et al.,
2024)), and provides large energy savings owing to a large drag reduction margin
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combined with relatively small energy requirements.

The simplest and earliest variant of spanwise forcing is the spanwise oscillation
of a plane wall (Jung ez al.,|1992). Although the spatially uniform oscillation is not
among the most efficient implementations, it is considered here as the prototypical
form of spanwise forcing, because its working principle is shared by the other
variants. The wall periodically oscillates in the spanwise direction as a function
of time ¢ according to a prescribed harmonic law

Wy, (1) = Asin (2?71[) , (3.1)

where w,, 1s the spanwise velocity component of the wall (the other components are
set to zero), and A and 7 indicate the amplitude and period of the oscillation. The
harmonic oscillation of the wall generates a spanwise cross-flow that is periodic
after space- and phase-averaging, and that superimposes to and interacts with the
turbulent flow. The phase-averaged spanwise flow coincides with the analytical
laminar solution wgy (v, t) of the second Stokes problem (Quadrio & Sibilla, 2000),
hereafter referred to as the Stokes layer or SL, with small deviations for large 7.
It is a textbook result (Schlichting & Gersten, |2000) that an indefinite plane wall
oscillating harmonically beneath a still fluid generates a time-varying velocity
profile given by

. [(2n
wsr(y,1) = Aexp (—%) sin (7t - %) , (3.2)

where ¢ is the SL thickness. Since the maximum amplitude A of the wall oscillation
only appears as a multiplicative factor because of the linearity of the governing
equations, the SL is shaped by the remaining two parameters 7" and 6. These two
quantities are not independent, and ¢ is determined by the period T and the fluid

kinematic viscosity by
T
§=6sL(T,v) = 1| —. (3.3)
Vs

This is coherent with the wall forcing having only 7 as a tuning parameter
besides the amplitude A. The SL thickness ¢ defined above is the wall distance
where the maximum spanwise velocity during the oscillation reduces to exp(—1)
times the maximum wall velocity A.

The coherent SL cross-flow is at the root of the drag reduction process, yet
no consensus exists regarding the details of how it interacts with the incoming
turbulent flow. However, starting from the early numerical studies of Jung et al.
(1992) and Baron & Quadrio (1996)), the available evidence points to the existence
of an optimal value 7, for the oscillation period, which corresponds to an optimal
SL thickness 6op; = 0s51(Tpps, v), for which drag reduction is maximum. This
statement, however, needs to be better defined by additionally specifying that the
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optimal period is commonly sought by keeping the maximum velocity A constant,
and should be therefore denoted as 7,4 for clarity (Quadrio & Ricco,[2004). This
is reasonable, as drag reduction is proportional to the forcing intensity. However,
the alternative to seek the optimal period while keeping constant the maximum
physical displacement D exists. This approach indeed suits some experimental
devices where a maximum allowed excursion exists (see for example Laadhari
et al.l, 11994; (Choi, 2002; (Gatt1 et al., [2015; [Marusic et al., [2021). Most of the
studies looked for 7,,, 4 (which for simplicity will be referred to in this paper
by dropping the subscript A), and there is broad consensus that To"pt ~ 100 or
T,,; ~ 75 when scales with viscous quantities of the uncontrolled and controlled
flow, respectively, corresponding to a penetration depth of the Stokes layer of
Ogpr ® 5.7 016, ~5.

For example, Choit ef al.|(2002) showed through Direct Numerical Simulations
(DNS) of a turbulent channel flow that 7,,, ~ 100 for different values of A™
and friction Reynolds numbers Re,. For a turbulent channel flow at Re, =
200, |Quadrio & Riccol| (2004) reported by DNS that for a given A* the highest
drag reduction is attained by keeping 7% in the 100 — 125 range. Touber &
Leschziner| (2012) and |Agostini et al.|(2014) numerically found the same optimal
T* ~ 100 at the larger Reynolds numbers of Re; = 500 and Re, = 1000.
Gatti & Quadrio| (2016) confirmed this optimal value through a large DNS study,
considering several amplitudes and increasing the Reynolds number up to Re,; =
1000. Several experimental works, although typically affected by the constant-
displacement limitation discussed above, have indirectly confirmed the value of
T;p, over a range of Reynolds numbers and forcing amplitudes (see for example
Laadhari et al.| [1994; Trujillo et all, 1997; |Gatti et al.l, [2015; Kempaiah et al.,
2020). We refer again the interested reader to Ricco et al.| (2021) for a more
comprehensive review.

Despite the evidence, however, there is not consensus on the physical inter-
pretation of the optimum 7,,, ~ 100 and 67, = 05, (T") ~ 6, and more than
one meaning can be attached to these specific values. For example, T, ,; can be
immediately associated to other time scales of the flow, such as the characteristic
life time of the near-wall coherent structures (Quadrio & Luchini, 2003). Owing
to the convective nature of the flow, 7,,, can be also converted into a longitu-
dinal length scale in terms of a convection length scale, and be compared with
typical lengths of the near-wall coherent structures (Touber & Leschziner, |2012).
Moreover, within the SL the optimal period also defines the maximum lateral
displacement of the moving wall D,,,, = AT, which is another (possibly) relevant
length scale of the flow (Quadrio & Ricco, |2004). The optimal period can also
be interpreted to only determine via equation the optimal penetration depth
0op: Of the Stokes layer, which is indeed a diffusion length scale pertaining to
the wall-normal direction, and a measure of the near-wall mean spanwise shear.
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Our inability to discriminate among the different possible interpretations reflects
our current limited understanding of the whole drag reduction mechanism of the
oscillating wall set up.

The aim of this work is to do a step forward in this direction, and elucidate
the physical meaning of the (7, d,,:) optimum. Based on DNS, we go beyond
the concept of the conventional oscillating wall and get rid of the 6 = 65, (T, v)
constraint: we explore the complete (7', §) two-dimensional space of parameters
and investigate separately the role of 7" and ¢. In other words, instead of imposing
the harmonic spanwise oscillation of the wall to generate the SL, we enforce a
mean spanwise velocity profile of the form (3.2) at each time step, and vary §
and 7 independently. In doing this, our numerical experiments also reveal that
much larger values of drag reduction are possible when removing the 6 = 65 (T, v)
constraint: this highlights the need of developing alternative strategies that produce
near-wall spanwise motion which are not based on the wall oscillation.

The work is organised as follows. After this Introduction, the numerical
approach is described in Then, the numerical results are then presented and
discussed in §3.3] The work closes with §3.4] where conclusions and perspectives
are provided.

3.2 Methods

3.2.1 Problem formulation

Direct numerical simulations (DNS) of the turbulent flow in an indefinite plane
channel are carried out, to study the effect of the Stokes layer generated by the
sinusoidal oscillations of the walls after its period 7" and thickness ¢ are decoupled.
Hereinafter, x,y,z (u,v,w) denote the streamwise, wall-normal and spanwise
directions (velocity components). Capital letters indicate mean quantities, while
small letters are for fluctuation around them.

We remove the link (3.3]) between T and Js;. that exists when a true Stokes
layer is created by the oscillation of the wall. An extended Stokes layer profile
(ESL)

Y

WYn(y,1:6,T) = Aexp (—%) sin (2773 - 5) (3.4)

is indeed enforced directly at each time step, whose thickness ¢ and oscillation
period T are regarded as independent parameters; the operator(-);, indicates spatial
averaging along the homogeneous x and z directions. While enforcing an arbitrary
profile (w),(y, r) may suggest that the present numerical experiments are just one
of those thought experiments that are possible with DNS, it should be remarked
that our procedure is equivalent to solve the Navier—Stokes equations with the
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boundary condition (3.1)) and an additional volume forcing that is practically zero
whenever the extended Stokes layer reduces to the standard Stokes layer. We
measure that the two techniques nearly provide the same drag reduction effect,
with a small deviation only at large T (see §3.2.3). This enables us to explore
the response of the flow to the ESL in the complete two-dimensional space of
parameters of 7" and 9, and investigate separately the role of the two parameters.

3.2.2 Numerical experiments

The simulations are carried out with a proved DNS solver for the incompressible
Navier—Stokes equations, originally introduced by Luchini & Quadrio| (2006) and
written in the CPL Compiler and Programming Language (Luchini, 2021). The
solver is modified to enforce the condition expressed by equation (3.4)) at each time
step. The equations are projected in the divergence-free space and rewritten in
terms of the wall-normal components of the velocity and vorticity vectors. The
solution follows a pseudo-spectral approach (Kim ez al.,|1987). Fourier expansions
are used in the homogeneous directions, so that the wall-parallel spatial mean{-),
is equivalent to the (0, 0) wavenumber in every wall-parallel plane. Fourth-order
compact finite differences discretise the wall-normal direction. Equations are
integrated in time using a third-order Runge—Kutta scheme for the nonlinear terms
combined with a second-order Crank—Nicolson scheme for the viscous term.

Most of the available numerical studies on the oscillating wall have been carried
out at the conveniently low Reynolds number Re; = 200 (Jung et al., 1992; Baron
& Quadriol [1996; Quadrio & Ricco, 2004; Touber & Leschziner, [2012). Here,
however, a preliminary study has revealed that the forcing (3.4)) can be significantly
more effective than the conventional oscillating wall, such that the turbulent flow
is prone to relaminarization. Hence, to obtain a clearer picture, the baseline value
of Re; for the present study is increased to Re, = 400.

The simulations are carried out at Constant Flow Rate (CFR, according to
the definition by Quadrio et al., 2016a), with the bulk Reynolds number set to
Rep, = Uph/v = 7000 for all cases, which corresponds to a friction Reynolds
number of Re; = ush/v ~ 400 in the unforced case. Here U, is the bulk
velocity, and u, = +/7,,/p is the friction velocity expressed in terms of the averaged
wall-shear stress 7, and the fluid density, and % is the channel half-height. The
computational box has a size of (Ly, Ly, L;) = (4rh,2h,2rh); it is discretised
with N, = 400 grid points in the wall-normal direction, and with N, = N, = 512
Fourier modes in the x and z directions, further increased by a factor of 3/2 to
remove the aliasing error. The streamwise and spanwise resolutions after dealiasing
are Ax* ~ 6.5 and Az* = 3.3. In the wall-normal direction an hyperbolic tangent
distribution is used, leading to A} .~ 0.6 at the wall and to A}, ., ~ 3.3 at the

. . . y.min . . max ..
centreline. The simulations are run for a time period of 1000/4/Uy, but statistical
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Figure 3.1: Drag reduction versus oscillation period for the oscillating wall (black)
and the present approach, with 6 = dg;, (green)

measurements are taken only over the last 800 time units, to account for the initial
period where the flow adapts to the new drag-reduced state.

The oscillating period is varied in the 10 < 7% < 200 range, while & varies
between 2 < §* < 20. The amplitude of the forcing is set to A* = 12. Overall, the
study includes 119 direct numerical simulations. The quantity of interest is the
drag reduction rate R, that for CFR simulations is equivalent (Kasagi et al., 2009)
to the percentage change in skin-friction coefficient, i.e.:

Cy
R=100x[1- =], (3.5)
Cro

where Cy = 271,/ (pUg) is the skin-friction coefficient of the controlled flow, and
Cy o is the skin-friction coefficient of the reference uncontrolled case.

3.2.3 Validation

We start validating the numerical approach, by comparing the drag reduction
provided by the extended Stokes layer (3.4) along the 6 = d5..(T, v) line with the
one of the actual oscillating wall set up. To this purpose, two sets of additional
simulations are performed: the former by enforcing the ESL (3.4) for various
values of T and by setting 6 = 85..(T); the latter by letting the SL developing
naturally by imposing Eq. (3.1) at the walls. All other simulation parameters and
procedures are kept identical in the comparison.

Figure 3.1/ compares the two approaches in terms of drag reduction and shows
that very good agreement between the data obtained imposing the ESL profile
and those from the actual oscillation of the wall, thus supporting the present
approach. Minor differences between the two datasets can only be appreciated
at large 7™, up to an absolute deviation of less then 1.3%, confirming previous
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observations (Quadrio & Sibilla, [2000; (Cho1 et al.l 2002} [Touber & Leschziner,
2012)) that the phase-averaged cross-flow mostly coincides with the SL laminar
solution, but shows minor departures at larger oscillation periods.

3.3 Results

3.3.1 The drag reduction map

Figure[3.2]shows the map of the computed drag reduction R in the two-dimensional
(T, ) space of parameters. Each point is the result of one simulation. The colour
map and the contours help in visualising the global behaviour of the changes of
R in the (T, 6) space. They have been computed after linear interpolation of the
simulation points on a Cartesian grid with spacing AT* = 0.19 and Aé* = 0.018.
The black solid line represents the locus of points where § = ds.(T): all the
literature information available so far has been obtained along this line only.
Figure clearly shows that, once ¢ and T are made independent, the maxi-
mum drag reduction on the SL line is not particularly meaningful in view of the
global R map. Along the SL line, a maximum R =~ 30%, shown by the black
symbol, is indeed found at (7T*,5%) =~ (100,5.7), but the position of the actual
maximum in the two-dimensional plane is larger and quite far from it. Indeed,
the global maximum drag reduction obtained with the ESL is R, = 40%, found
for (T*,6%) ~ (30, 14); see the green symbol in figure Hence, the maximum
drag reduction is significantly larger than that on the SL line, and is obtained by
decreasing the oscillating period from 7% = 100 to 7% = 30, while at the same
time increasing the SL thickness from 6" = 5.7 to 6% = 14. Note that, when
moving along the SL line, it is impossible to change 7" and ¢ in opposite directions.
The flow response to the ESL shows a behaviour that is only marginally grasped
by the oscillating wall set up. Figure[3.2]shows that the ESL is effective in reducing
friction for all the considered (7', 6)—pairs. The R map can be divided into different
regions according to the behaviour of the drag reduction at varying parameters 7'
and 0. The area of the global optimum is quite broad, spanning the region of
20 < T* < 50 and 8 < 6* < 14; note that the values of 6 correspond to the
position of the buffer layer, where the near-wall cycle takes place (Schoppa &
Hussain, [2002)), suggesting that the maximum R is gained for the ESL effectively
interacting with the near-wall coherent structures. For oscillating periods close
to the optimal value 7* = 30, R is almost slightly dependent on &, provided
it is not too small. Indeed, when 6 is very small, say §* < 4, R is small and
nearly constant with 7. For these values of 9, the spanwise motion is confined in
the viscous sublayer where the turbulent activity is weak. This confirms that the
laminar Stokes layer must interact with the turbulent structures that populate the

141



Figure 3.2: Drag reduction map in the (7', §) two-dimensional space of parameters.
The black thick line indicates the & = 657 constraint. The green dot identifies the
point of maximum drag reduction, whereas the black dot indicates the maximum
along the line 6 = 657 (T).

buffer layer to achieve drag reduction. Similarly, for small oscillating periods (say
T* < 20), R is relatively small and independent from §. In this case, the ESL
is not effective to achieve drag reduction, as the oscillating period is too small
compared to the flow time scales, and the resulting oscillating motion and the
incoming flow are decoupled. As T increases above T+ > 30, the local optimum
thickness 6+ moves towards smaller values, suggesting that with longer oscillating
period the ESL is more effective when its influence remains confined closer to the
wall. For large T, the optimum ¢ lies in the range 6 < 6 < 10 and R degrades
quickly at larger 6. A possible explanation of the suboptimal R is that for large
value of both 7" and ¢, although the ESL provides reduction of drag, it also largely
perturbs the underlying turbulence in a way that the spanwise velocity can be
instantaneously quite different from the imposed ESL. To quantify the amount
of turbulent perturbation, we define the difference of the integral of the wall-
normal profile of spanwise root mean square fluctuations between the controlled
and reference cases as Aw,s = 100 ((WesLrms (7)) = Wo,rms(0))) /{W0,rms (¥))s
where (-) indicates spatial and time average. Figure [3.3|plots Aw,,, in the (T, §)
parameters space. As expected, for large values of both 7" and 6, Aw,,,s is positive
and large meaning that the turbulence in the spanwise direction is increased by the
control compared to the reference case. This region corresponds to the region of
lower R in figure[3.2] meaning that part of the positive effect of the ESL is eroded
by the higher spanwise turbulence induced by the control itself. It is consist with
Touber & Leschziner (2012) suggesting that sufficiently large oscillation periods
are not able to disrupt the turbulent structures which lingers and regenerates in
the direction of the forcing. At the same time, large 6 means that the control
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Figure 3.3: Relative difference of the spanwise fluctuations Aw,,,; between the
controlled and reference cases. The thick dashed line is for Aw,,,; = 0 and the
black thick line indicates the 6 = 57, constraint. The green dot identifies the point
of maximum drag reduction, whereas the black dot indicates the maximum along
the line § = 65, (T).

penetrates far from the wall, negatively disturbing the bulk of the flow. On the
contrary, negative Aw,,,; means that for those sets of parameters the effects of the
two phenomena sum up and larger R performance are attained.

3.3.2 Physical interpretation of the optimum

We now relate the specific values 6,,, ~ 14 and T,,, ~ 30, which identify the
global maximum of drag reduction in the two-dimensional space of parameters, to
properties of near-wall turbulence and try to shed light on the physical implications
of the optimum. As highlighted in the introduction (see for the SL, the
interpretation is not unique and the different interpretations proposed in literature
are herein presented and discussed in light of the present results; having decoupled
¢ from 7', we add new perspective to the discussion.

The optimal oscillating period T,,; can be compared to other time scales in
the turbulent flow. For example, the (statistically defined) lifetime of the dominant
near-wall coherent structures is not far from 7,,,. Quadrio & Luchini (2003)
introduced and computed for Re, = 180 the integral scale 7 of the space-time
autocorrelation of velocity fluctuations along the path of maximum correlation
in the space-time plane, and interpreted it as the integral lifetime of near-wall
structures. We perform the same analysis at the present Re; = 400 and measure
the integral lifetime. At y* = 15, comparable to d;,, we measure 7," = 75
for the streamwise velocity fluctuations. These value is quite near to the optimal

oscillation period ijt ~ 30, suggesting that the most effective forcing is the one
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that hits the structures a couple of times in their lifetime. However our results of
decreasing T for increasing ¢ are not compatible with this interpretation since the
integral lifetime increases with the distance from the wall, being e.g. 7," = 62 at
yt=5and7,* =75aty" = 15.

A possible alternative is to associate the optimal oscillating period 7, to the
characteristic timescale of the bursting cycle, for which near-wall statistics such
as the space-averaged friction coefficient C; “burst” quasi-periodically over time.
This temporally limited surge is the statistical trace of an intense moment of the
turbulent near-wall cycle that regenerates the near-wall structures. Jiménez/(2013)
measured the bursting period to be T* ~ 400, with the bursting phase lasting
T* ~ 100 followed by a longer phase of quiescence. Half of the bursting phase
(T* ~ 50, comparable to our T(fp, = 30) is taken for the eruption and growth of
the burst and the remaining for its decay. The same time-scale 7% ~ 50 has been
measured by |Blesbois et al. (2013)) and Ricco (2004)) as the regeneration time-scale
of the streaks. Again, our results of decreasing T for increasing ¢ contradict also
this interpretation, being the bursting period proportional to the distance from the
wall of the structures.

Due to the convective nature of the near-wall flow, T;,, can be compared to
the convective time scale 7, of the near-wall structures, which can be estimated
looking at the convection velocity U.. The convection velocity U, is known to
substantially differ from the local mean velocity in the near-wall region (Kim &
Hussain, [1993); it is nearly constant with a value U} =~ 10 in the viscous sublayer,
whereas it increases from the buffer layer upwards approaching the mean flow; see
figure 4 of Quadrio & Luchini| (2003)). The increase of U, with y translates into a
decrease of T, as these two quantities are inversely proportional 7, = L/U,, with
L being a length scale. This is consistent with our data that report a decrease of
the local optimum 75, ,; as ¢ increases; see ﬁgure@

Following the same line of reasoning, the optimum period ijt can be trans-
lated into an equivalent convective streamwise length scale L. by using U,, and
compared with characteristic length scales of the flow. By considering values of
U, in the buffer layer (U ~ 10 — 15), T;},, translates into L ~ 300 — 450, which
is indeed comparable with the characteristic length scale of the structures of the
near wall cycle, being the quasi-streamwise vortices £* ~ 200 and the low-velocity
streaks ¢* ~ 1000 (Jeong et al.,|1997).

Finally, we consider the dominant interpretation of the optimal period for the
SL in terms of the wall-normal diffusion length scale 6. This view is as simple
as appealing, and has been put forward very early by Baron & Quadrio| (1996),
who noticed that the different wall-normal average positions of low-speed streaks
and streamwise vortices in the near-wall turbulence cycle enables an optimally
configured Stokes layer to break their coherency and alter the relative spanwise
position between them. [Riccol (2004) suggested that the effectiveness of the
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oscillations in reducing turbulent drag is due to a relative displacement in the
spanwise direction of the low speed streaks (y+ < 10) and the quasi-streamwise
vortices, typically placed in the 10 < y* < 50 layer (Robinson, [1991). This view
is supported by the link between the value of drag reduction and the thickness
of the generalized Stokes layer which develops over streamwise-travelling waves,
quantified by Quadrio & Ricco (2011). The same view has been also purported by
Touber & Leschziner (2012). The optimum value of 07, ~ 14 is consistent with
this interpretation.

3.4 Conclusion

The present work introduces a new DNS experiment aiming to provide a new
approach to the study of the optimal parameters to reduce the turbulent drag
through the spanwise forcing. Instead of leaving the Stokes layer naturally evolve
by the spanwise harmonic oscillation of the wall, we directly enforce in the flow at
each time step a SL-like spanwise velocity profile. The wall oscillation technique
creates a SL described by the maximum amplitude of the oscillation A, the period
of oscillation T and its thickness ¢; the two latter parameters are obliged to follow
the constraint 557, = +/vT/n. We remove the coupling between 7 and dg;, to
directly impose an extended Stokes layer profile (ESL) where T and 6 can be
varied independently. Our procedure of enforcing a velocity profile is equivalent
to solve the Navier—Stokes equations with the same boundary condition of the
wall oscillation approach and an additional volume forcing that is practically zero
whenever the ESL reduces to the standard SL; our validation highlights a maximum
deviation of 1.3% between the two techniques.

We perform a set of DNS of a fully turbulent channel flow at Re;, = Uph/v =
7000 (corresponding to Re; = 400 in the uncontrolled case) varying the period
in the 10 < T* < 200 range, while the thickness varies between 2 < 6% < 20,
whereas the amplitude of the forcing is kept constant to A* = 12. Once §
and T are decoupled, the maximum drag reduction following the SL constraint
R ~ 30%, found at (7,,,0") ~ (100,6), shifts to the global maximum drag
reduction obtained with the ESL at R ~ 40%, found for much smaller value of
the period and larger value of the thickness, i.e. (T, 6%) ~ (30, 14). The peak
of drag reduction is quite broad and flat, and the value of 6, corresponds to the
position of the buffer layer, where the near-wall cycle takes place, suggesting that
the maximum R is gained for the ESL effectively interacting with the near-wall
coherent structures. Instead, for 6* < 4 and for T* < 20, the characteristic space
and time lengths of the forcing are too small compared to the characteristic lengths
of the turbulent structures of the near-wall cycle, thus they do not successfully
target them. For both 7" and ¢ larger the optimum, the drag reduction performances
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degrade due to the enhanced spanwise turbulent activity. We conclude that the
values of the parameters 7% ~ 100 and 6% ~ 6, well known in literature to provide
the maxmium R with the wall oscillation, do not possess a special meaning; instead
designing a control which allows to decouple 7" and ¢ is able to provide a much
higher R. We discuss the dominant interpretations of the literature about the
physical meaning of the optimum parameters 7j,,; and 6, in light of the present
results, yet without definitely settling the issue.

The information of the optimal (J,7) is crucial when developing alternative
strategies that produce near-wall spanwise motion, without the need of moving the
wall. In this case, indeed, the control gets rid of the 6(T) = +/Tv/n that limits
the maximum DR attainable. Some examples may be the use of plasma actua-
tors (Jukes & Choti, |2012)), the alternation of slip and no-slip stripes (Hasegawa
et al., 2011)), sinusoidal riblets (Peet et al.,|2008), dimples (Gattere et al., 2022b),
elettroactive polymers combined with an electromagnetic actuator (Gouder ef al.,
2013)). Also, the strategy we propose in this work opens the possibility of further
investigating the way the spanwise motion interacts with the near-wall turbulence.
In fact, once one gets rid of the oscillating wall one is not any more limited on
the SL but may investigate the effects of profiles of different shape. However as
highlighted, for profiles which largely disturb the bulk of the flow, e.g. the ESL
with both large 7" and ¢, the higher turbulence induced by the control negatively
affects the drag reduction performances. The optimal control parameters which
target the physical mechanisms of the near-wall turbulent could be larger than
T* ~30and 6* ~ 14, but they might not be able to provide a larger drag reduction
because of the opposed negative effect that increases turbulence.
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Turbulent skin-friction drag
reduction via spanwise forcing at
high Reynolds number

Abstract

We address the Reynolds-number dependence of the turbulent skin-friction drag
reduction induced by streamwise-travelling waves of spanwise wall oscillations.
The study relies on direct numerical simulations of drag-reduced flows in a plane
open channel at friction Reynolds numbers in the range 1000 < Re, < 6000,
which is the widest range considered so far in simulations with spanwise forcing.
Our results corroborate the validity of the predictive model proposed by (Gatti &
Quadrio (2016): regardless of the control parameters, the drag reduction decreases
monotonically with Re, at a rate that depends on the drag reduction itself and on
the skin-friction of the uncontrolled flow. We do not find evidence in support of the
results of Marusic et al.|(2021), which instead report by experiments an increase
of the drag reduction with Re in turbulent boundary layers, for control parameters
that target low-frequency, outer-scaled motions. Possible explanations for this
discrepancy are provided, including obvious differences between open channel
flows and boundary layers, and possible limitations of laboratory experiments.

4.1 Introduction

Transverse near-wall forcing as a means to mitigate skin-friction drag in turbulent
flows has gathered significant attention, owing to its potential for substantial envi-
ronmental and economic benefits (Quadrio, [2011}; Ricco et al.l, 2021). After the
seminal work on spanwise wall oscillations by Jung et al.|(1992), three decades of
research efforts have led to important progress; however, several crucial factors still
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Figure 4.1: Schematic of a turbulent open channel flow actuated with streamwise-
travelling waves of spanwise wall velocity with amplitude A, streamwise wavenum-
ber x and angular frequency w. Here, A is the streamwise wavelength; ¢ is the
wave phase speed; and L,, L, = h and L, are the dimensions of the computational
domain in the streamwise, wall-normal and spanwise direction, respectively.

hinder the deployment of spanwise forcing in technological settings. The major
challenge resides in devising viable and efficient implementations of the typically
idealised near-wall forcing, but other concerns exist, including the decreasing
effectiveness of drag reduction with increasing Reynolds numbers (Re).

To date, the Reynolds dependence of skin-friction drag reduction has mostly
been studied in the context of streamwise-travelling waves of spanwise wall veloc-
ity (StTW, Quadrio et al., 2009), a specific form of transverse forcing characterised
by its comparatively large potential for drag reduction with modest energy expen-
diture. StTW are described by

wy(x,1) = Asin (kx — wt) , 4.1)

where w,, is the spanwise (z) velocity component at the wall, A is the maximum
wall velocity and thus a measure of the amplitude of the spanwise forcing, «
is the streamwise wavenumber, w is the angular frequency, and x and ¢ are the
streamwise coordinate and the time. The forcing, sketched in figure consists
of streamwise-modulated waves of spanwise velocity at the wall, with wavelength
A =2n/k and period T = 27 /w. The waves travel along the streamwise direction
with phase speed ¢ = w/«, either downstream (¢ > 0) or upstream (¢ < 0) with
respect to the mean flow direction. The forcing described by equation (4.T]) includes
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the two special cases of spatially uniform spanwise wall oscillations (Quadrio &
Ricco, [2004)) for k = 0, and steady waves (Viotti et al.,[2009) for w = 0. With the
appropriate set of control parameters, StTTW have been shown to yield considerable
drag reduction in a series of numerical experiments regarding channel and pipe
flows (Quadrio et al.| 2009; Gatti & Quadrio, 2013 Hurst et al., 2014; |Gatti &
Quadrio, 2016} [Liu et al., [2022; [Rouhi et al.l, 2023} |Gallorini & Quadrio, 2024)
and boundary layers (Skote et al., [2015; Skotel, 2022)), as well as in laboratory
experiments (Auteri et al.,[2010; |Bird et al., 2018}, /Chandran et al.,[2023). Besides
canonical flows, including the compressible and supersonic regimes (Gattere et al.,
2024), StTW have been applied to more complex flows ranging from channels
with curved walls (Banchetti ef al., 2020), to rough boundary layers (Deshpande
et al.,[2024, although restricted to spatially uniform spanwise wall oscillation) and
transonic airfoils with shock waves (Quadrio et al.,2022)), showing that local skin-
friction drag reduction can be exploited to also reduce the pressure component of
the aerodynamic drag.

Understanding how the Reynolds number affects drag reduction by StTW is
a particularly challenging goal for three main reasons. First, a sufficiently wide
portion of a huge parameter space must be explored, which even in simple canonical
flows includes the four parameters {A, x, w; Re}, and poses a great challenge to
numerical and laboratory experiments.

A second complication is the choice of an appropriate figure of merit for drag
reduction. Typically, the drag reduction rate R is defined as

R=1-—, (4.2)

i.e. as the control-induced relative change of the skin-friction coefficient Cy
(Kasagi et al,[2009). In equation (#.2) and in the remainder of this manuscript,
the subscript O denotes quantities measured in the reference uncontrolled flow.
Specifically, Cy is defined as Cy = 21,/ (pUZ); T, is the mean streamwise wall
shear stress, Uy, the bulk velocity, and p the fluid density. However, as observed by
Gatti & Quadrio| (2016), the quantity R defined by equation (4.2)) is inherently Re-
dependent, owing to the Re-dependence of Cr and Cy,. This is long known to be
the case for the flow over rough surfaces (Nikuradse,|1933;|Jiménez,[2004), as well
as for other flow control techniques relying on near-wall turbulence manipulation
such as riblets (Luchini, |1996; |Spalart & McLean, 2011). Choosing a figure of
merit which eliminates this trivial dependency on the Reynolds number is crucial
to describe properly the Re-effect on drag reduction.

Third, the wall shear stress generally differs in the reference (7,,) and controlled
(1) channel flows, unless they are driven by the same pressure gradient (as done for
example by Ricco et al., 2012); the viscous scaling, hence, becomes ambiguous.
As noted by |Quadrio| (2011])), this results in two possible viscous normalisations
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of the controlled flow: the first, denoted with the superscript ‘+’, relies on the
reference friction velocity u,, = /7y, /p; the second, denoted with the superscript

‘x’, is based on the actual friction velocity u; = +/7:/p. Similarly, two different
friction Reynolds numbers, Re;, = u.h/v and Re; = u h/v can be defined
depending on the choice of the friction velocity. Here, /& describes the half-height
of a channel or the depth of an open channel, and v is the fluid kinematic viscosity.
While the actual viscous scaling is the only sensible choice for the drag-reduced
flow (Gatti & Quadriol 2016), the reference scaling is necessary when the wall
friction of the drag-reduced flow is not known yet.

Gatti & Quadriol (2016)), indicated also as GQ16 hereinafter, circumvented
these difficulties by designing a campaign of several thousands direct numerical
simulations (DNS) of turbulent channel flows. Inspired by similar studies on rough
walls (see for example Leonardi et al.,[2015)), they limited the otherwise prohibitive
computational cost by choosing relatively small computational domains (Jiménez
& Moin, 1991} Flores & Jiménez, 2010) for most of the study. At the expense of
a residual domain-size dependence of the results, which cancels out in large part
when observing the difference between controlled and uncontrolled flows, GQ16
generated a large dataset, along with a more limited number of simulations in wider
domains to verify the accuracy of the results. This approach enabled not only the
inspection of a large portion of the {A, x, w}-space at Re;, = 200 and 1000, but
also the transfer of the dataset between viscous ‘+’ and ‘+’ units via interpolation,
allowing to assess the results in both scalings. Thanks to their comprehensive
database (available as Supplementary Material to their paper), |Gatti & Quadrio
(2016) challenged the then-current belief that skin-friction drag reduction was
bound to decrease quickly with Re. They demonstrated that the drag reduction
effect by spanwise forcing becomes in fact constant with Re, provided that it is
not expressed via R (equation (4.2)), that is per se Re-dependent, but through the
Reynolds number-invariant parameter AB*. The quantity AB* expresses the main
effect of the StTW, which is to induce a change of the additive constant in the
logarithmic law for the mean velocity profile

1
U'(y") = ¢ Iny" + By + AB", (4.3)

where k is the von Karman constant, BE‘) is the additive constant in the reference
channel flow, and B* = BE‘) + AB* is the additive constant of the controlled flow.
The independency of AB* upon Re is a common feature of all turbulence manip-
ulations whose action is confined to the near-wall region. In these cases the outer
turbulence simply reacts to a wall layer with different drag (Gatti et al., 2018)), as
well known, for instance, in the context of drag-reducing riblets (Luchini, [1996;
Garcia-Mayoral & Jiménez, |2011} Spalart & McLean, [2011)) and drag-increasing
roughness (Clauser, |1954; Hama, [1954).
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Under the assumption that AB* is a function of the control parameters
{A*, k", w*}, but not of the Reynolds number, |Gatti & Quadrio| (2016)) derived
the following modified friction relation (hereinafter called GQ model)

o2 ram o1 - L -
AB* = o [(1-R) 1] 2kln(1 R) , (4.4)

where the Re-dependence is not explicit, but rather embedded in Cy,. Provided
the function AB* (A*, ¥, w*) is measured at a sufficiently large Re for the log law
in equation (4.3)) to hold, the GQ model predicts R at any arbitrary value of Re.
According to equation (4.4)), R is always expected to decrease with Re for any
combination of the control parameters, but at much lower rate than suggested by
previous studies (Touber & Leschziner, 2012} Gatti & Quadrio, 2013} |Hurst et al.,
2014), so that significant drag reduction can be still achieved at Reynolds numbers
typical of technological applications. For instance, for StTW GQ16 estimated
possible drag reduction of 30% with A* = 12 at Re,, = 10°.

The GQ16 study is affected by two limitations. First, Re,, = 1000, the
largest Re considered in their study, may still be not enough for AB* to become
completely Re-independent: GQI16 suggested that at least Re;, = 2000 should
be considered. Second, the small effect of the restricted computational box sizes
on the quantification of R could in principle bias the extrapolation to higher Re.
Nonetheless, the GQ model passed validation tests against previous (Touber &
Leschziner, [2012; Hurst ef al., |2014) and later literature data. For instance, Rouhi
et al.| (2023) employed large eddy simulations (LES) to study drag reduction by
StTW in open channel flows at Re;, = 945 and Re,, = 4000. They explored
the parameter space within the range «* € [0.002,0.02] and w™ € [-0.2,0.2], at
fixed A* = 12. This is to be compared with «* € [0,0.05] and w* € [-0.5, 1]
addressed by |Gatti & Quadrio| (2016]), who also considered various amplitudes
A" € [2,20]. The study of [Rouhi ez al.| (2023) is however limited by the use of
large eddy simulations (LES), in which part of the small-scale turbulence physics
involved in drag reduction is modelled, and by the domain size (L, = 2.04h,
L, = 0.63h at Re, = 4000), which is comparable to the restricted domain size
(Lx = 1.35h, L, = 0.69h at Re,, = 1000) considered by Gatti1 & Quadrio| (2016),
despite the larger Re,. Rouhi et al.|(2023) confirmed that the GQ model predicts
very well their drag reduction data, with deviations in the order of 2%, for all
StTW control parameters sufficiently far from those yielding drag increase.

Marusic et al.| (2021) and Chandran et al.| (2023)) studied drag reduction via
backward-travelling (¢ < 0) StTW. Their experimental study was carried out in
a zero pressure gradient turbulent boundary layer up to the largest values of Re
investigated so far, Re; = 15000. By extending to the plane geometry the actuation
strategy used by Auteri et al. (2010) in a cylindrical pipe, they implemented the
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ideal forcing of equation (#.1I) by dividing a portion of the wall into a series of
forty-eight slats, long 5 cm each, so that each six consecutive slats constitute a
single wavelength with fixed 4 = 0.3 m. The slats move in the spanwise direction
at a fixed half-stroke d, resulting in a frequency-dependent maximum spanwise
velocity A = wd. As aconsequence in those experiments the amplitude and period
of the oscillations could not be varied independently. With d and A constant in
physical units, the range of investigated parameters shifts towards smaller ¥, w*
and A* as Re, increases. The authors observed, for the first time, R to increase
with Re (see figure 3e of Marusic et al., 2021)), and explained it with the particularly
slow timescale T* = 27 /w™ < =350 of their forcing, which was meant to target
the large inertial, outer-scaled structures of turbulence (Deshpande et al., [2023)),
whose importance increases with Re.

Despite the promising results, these studies also have shortcomings. With d
and A constant in physical units, which is unavoidable in laboratory experiments,
the control parameters could not be kept constant in either ‘+’ or ‘*’ viscous units
while varying Re,. In particular, the fixed wavelength leads to a «* that decreases
with Re. Furthermore, the effect of w and A cannot be addressed separately. This
precludes the investigation of the full space of the control parameters: for instance
large values of w* at low A* cannot be tested. Lastly, the key observation that
R increases with Re relies on the joint observation of low-Re LES data by Rouhi
et al.|(2023) obtained in an open channel flow, and high-Re experimental data by
Marusic et al.|(2021) in a boundary layer, thus bringing together different methods
and flow configurations.

The present research fills these gaps in the existing literature by leveraging
a novel DNS dataset of turbulent open channel flow, to accurately quantify the
Reynolds number effects on the drag-reducing performance of StTW. The com-
putational domain adopted in the present simulations is large enough to properly
account for all relevant scales of turbulence, including the large inertial scales.
The considered Reynolds numbers, ranging from Re, = 1000 to Re,, = 6000, are
large enough to minimise the low-Re effects, matching some of the experimental
data points by Chandran et al.|(2023). The dataset is further designed to address
the Reynolds-number scaling of drag reduction in both viscous and outer units
independently, by considering the same flow configuration and by using the same
numerical method for all Re.

The paper is organised as follows. After this Introduction, describes the
computational procedure and the simulation parameters used to produce the DNS
dataset. In the effect of the Reynolds number is analysed in terms of both
drag reduction and power budgets, and compared to existing literature. Finally,
concluding arguments are given in
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Re, Rery,  Neaes Li/h  Ly/h Ny X Ny X N, Symbol
20000  996.7 71 6nh  2mh 2304 x 165 x 1536

43650  1994.1 62  6xh  27xh 4608 x 265 x 3072 v
68600  3008.8 7 6nh  2mh 6912 x 355 x 4608

148000 6012.6 3 6nh  2rh 13312 % 591 x 9216 .

Table 4.1: Details of the direct numerical simulations of open channel flows
(including domain size and discretization) modified by StTW, grouped in sets
of Ncases sSimulations performed at a constant value of bulk Reynolds number
Rep = Uph/v. The last column indicates the color and symbol employed in the
following figures to represent each set of simulations.

4.2 Methods and procedures

A new DNS dataset of incompressible turbulent open-channel flows (see figure[d. 1)
is used to study the effect of the Reynolds number on the reduction of the turbulent
friction drag achieved by StTW. The open channel flow, i.e. half a channel flow
with a symmetry boundary condition at the centreplane, is considered here to
reduce the computational cost without affecting the drag reduction results; indeed,
it was often used in the past, including e.g. the similar studies by |Yao et al.
(2022b), |Pirozzoli| (2023)) and Rouhi et al.| (2023)). The StTW are applied as a
wall boundary condition for the spanwise velocity component after equation (4.1
Periodic boundary conditions are applied in the homogeneous streamwise and
spanwise directions, no-slip and no-penetration boundary conditions are used for
the longitudinal and wall-normal components at the bottom wall; free slip is used
at the top boundary. The computational setup is identical to the study of |Pirozzol1
(2023), in which open-channel flow was studied in the absence of flow control.
The solver relies on the classical fractional step method with second-order finite
differences on a staggered grid (Orlandi, |2006). The Poisson equation resulting
from the divergence-free condition is efficiently solved via Fourier expansion in the
periodic directions (Kim & Moin, 1985). The governing equations are advanced
in time starting from the initial condition of a statistically stationary, uncontrolled
turbulent open channel flow by means of a hybrid third-order, low-storage Runge—
Kutta algorithm, whereby the diffusive terms are handled implicitly. Statistical
averaging, indicated hereinafter as(-), implies averaging in time and along the two
homogeneous directions.

Four sets of simulations, whose details are listed in table are run at
prescribed values of the bulk Reynolds number Re, = Uj,h/v; the bulk velocity
is kept constant at every time step as described in |(Quadrio et al.| (2016a). Each
set comprises one reference simulation, in which the wall is steady, and a variable
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Figure 4.2: Statistics of streamwise velocity fluctuations for the reference simula-
tion at Re, = 6000: (left) spanwise premultiplied spectra k} ¢/, ; (right) stream-
wise variance (uu)™ with its large-scale (uu); and small-scale(uu)§ contributions.
Large scales are defined as those for which 27 /k, > 0.5h.

number of cases with StTW at different values of {A, k, w}. In the following,
we will refer to each simulation set via its (nominal) value of Re,; the actual
values of Re, vary throughout simulations of each set, as a consequence of the
wall actuation at constant Uj,.

All DNS are carried out in a domain with L, = 6zh and L, = 2wh, which is
much larger than what has been adopted by Rouhi ez al.|(2023) and GQ16 at similar
values of Re, but a bit smaller than the domain used by|Yao ez al.|(2022b). Whereas
weak longitudinal eddies may be not resolved, a box sensitivity study carried out
by |Pirozzoli (2023) showed that the practical impact on the leading-order flow
statistics and on the spanwise spectra is extremely small.

Figure [4.2]indeed supports the adequacy of the present computational box by
analysing the streamwise velocity fluctuations of the reference open channel flow
at Re;, = 6000, i.e. the largest Reynolds number considered in the present study.
Figure (left) shows the spanwise pre-multiplied spectrum k7 ¢, where k. is
the spanwise wavenumber and ¢,,, is a component of the velocity spectrum tensor,
with a clear outer peak visible at A, ~ h. Figure {.2] (right) shows the variance
(uu)* of the streamwise velocity, split into the large-scale (uu); and small-scale
(uu)y contributions. The large-scale contribution is obtained by integrating the
spectrum only for wavelengths A, > 0.5/ as suggested by Bernardini & Pirozzoli
(2011),|Dogan et al. (2019) and |Yao et al.|(2022b). With this definition, the large-
scale fluctuations are responsible for 12% of the total variance in the vicinity of the
wall, and for as much as 85% at the free-slip surface. Moreover, it should be noted
that the longest travelling wave that we have tested at the highest Reynolds number
(Res, = 6000) is fourteen times shorter than the domain length, thus allowing
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Figure 4.3: Portion of the parameter space spanned in the present study overlaid to
the drag reduction map by GQ16 computed at A* = 5. Each symbol corresponds
to one simulation at the Reynolds number encoded by its shape/color, as described
by the legend.

subharmonic effects, if present, to be properly resolved.

The spatial resolution of the simulations is designed based on the criteria
discussed by [Pirozzoli & Orlandi (2021). In particular, the collocation points are
distributed in the wall-normal direction y so that approximately thirty points are
placed within y* < 40, with the first grid point at y* < 0.1. The mesh is stretched
in the outer wall layer with the mesh spacing proportional to the local Kolmogorov
length scale, which there varies as n* ~ 0.8(y*)!/* (Jiménez, 2018). A mild
refinement towards the free surface is used in order to resolve the thin layer in
which the top boundary condition dampens the wall-normal velocity fluctuations.
The grid resolution in the wall-parallel directions is set to Ax™ ~ 8.5 and Az* ~ 4.0
for all the flow cases. Note that the resolution is finer in actual viscous units in all
cases with drag reduction.
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Figure[d.3|shows at a glance the range of the StTW parameters addressed in the
present study for the simulation sets at Re,, = {1000, 2000, 3000, 6000}. This is
the broadest range of Re considered so far in numerical simulations with spanwise
wall forcing.

The portion of the {«*, w* }-space spanned in the present study is smaller than
the one addressed in GQ16. In fact, we limit ourselves to considering x* < 0.02
and |w*| < 0.1, which is now known to be the most interesting part of the parameter
space, where the maxima of drag reduction R and net saving S are expected.

The control parameters have been selected according to the following guiding
principles.

(D

(2)

3)

(4)

The intent to further scrutinize the validity of the results by GQ16, obtained
in constrained computational domains, led us to consider a wider portion of
the StTW parameter space at Re, = 1000, the highest value considered in
their study.

GQI16 observed that AB* may still retain residual dependence on Re at their
highest value of Re;, = 1000, and suggested that at least Re;, = 2000
is needed for a Re-independent measure. Therefore, the same region of
the parameter space considered above in point (1) is also considered at
Re4, = 2000.

Marusic et al. (202 1) reported for the first time a drag reduction that increases
with Re for small values of ™ and w™, in particular for «* = 0.0008 (i.e.
At =~ 8000), w* = -0.0105 (i.e. T* ~ —600) and A* ~ 5 (in fact their
A" varies slightly across the Re-number range), as shown in figure 3e of
their paper. We have added this combination of {«*, w*} to all simulations
sets, in order to verify the increase of R with Re. This is one of the two
controlled cases we have carried out at Re;, = 6000. The second case, with
k* =0.0014, w* = -0.009 and A* = 2.5, matches exactly one of the cases
considered experimentally by Chandran et al.| (2023), at the same value of
Re4, = 6000.

All controlled simulations are performed at A* = 5 for two reasons: first,
this value of A" is representative of the amplitude range in the experiments
by Marusic et al.| (2021)) for the case discussed at point (3); second, this value
is close to A* ~ 6 at which GQ16 measured the maximum of net power
saving S. By adopting this value of A™ we can verify whether positive S
can also be achieved at higher Re.

This results in the combination of the control parameters shown in figure 4.3|
and listed in tables from[4.2] and[.5]of appendix[4.5]together with the main
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results. As will be clarified in the following, understanding the Re-dependence of
R and S requires accurate estimation of the mean wall friction, which we guarantee
by monitoring statistical uncertainty via the method described by Russo & Luchini
(2017), as shown in figures 4.6 and Statistics are accumulated for at least
10h/u+, time units after the initial transient, during which the control leads the
flow towards a reduced level of drag.

4.3 Results

The outcomes of the present study are presented following the guiding principles
outlined in First, we present drag reduction maps at Re;, = 1000 and
2000 and use them to provide ultimate validation of the GQ16 results. Second, we
evaluate AB* at Re,, = 2000 and verify the Re-independence of this drag reduction
metric. Third, drag reduction is reported up to Re, = 6000 for the same actuation
parameters for which Marusic ef al.| (2021)) observed drag reduction increase with
Re. Finally, the possibility to achieve net power savings at high Re is discussed.

4.3.1 Maps of R: validity of the results by GQ16

Figure 4.4{ compares the present drag reduction results at Re;, = 1000 and Re,, =
2000 with the data by GQ16, which need to be transferred to the present values of
Re,. The procedure involves starting from their R and Cy, data, then using the
GQ model (equation 4.4 with k£ = 0.39; GQ16 showed that the specific value of
k in the range 0.385-0.4 does not significantly affect the results) to compute AB*.
The resulting cloud of AB* data points at discrete {A™, k*, w*} values is linearly
interpolated on a Cartesian grid spanning the {k*, w*} space at the value of A™ = 5
considered in the present study. Finally, AB* is again converted back to R values
via the GQ model, now with the values of C, corresponding to Re, = 1000 and
Re, = 2000.

The comparison shows excellent agreement between the two datasets. This
finding suggests very weak sensitivity of StTW actuation on the flow geometry
(open channel vs. closed plane channel), and further strengthens the reliability
of the GQ16 data. In fact, due to their limited domain size, GQ16 had no data
for 0 < k™ < 0.005, but even there the new data compare very well with the
GQ16 map. The maximum difference between the present and GQ16 datasets
evaluated across the interpolated maps shown in figure is only 2.5%, and the
standard deviation is 0.8%. The agreement shows that no measurable direct effect
of large-scale turbulent structures on R exists at these values of Re;, other than
their possible contribution to Cr,,, which is already accounted for by the GQ model.
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Figure 4.4: Maps of drag reduction (R) as a function of actuation parameters (w*,
k%), at Req, = 1000 (top) and Re, = 2000 (bottom). The colormap, the contour
lines and symbols colored after table {.1] refer to the present data, whereas the
black contour lines and symbols refer to the data by GQ16, which at Re,, = 2000
are obtained from extrapolation through GQ model (#.4). The contour lines are
every 5% of R, dashed lines mark the R = 0 iso-line.
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Figure 4.5: Maps of AB* as a function of actuation parameters (w*, ™) at Re, =
1000 ( ) and Re, = 2000 (—— ). The symbols are colored after tableand
show the parameters of each simulation underlying the map interpolation shown
in the figure. Contours are shown in unit intevals, the dashed lines marking the
AB* = ( iso-line.

4.3.2 Maps of AB*: validity of the GQ model

The GQ model relies on the hypothesis that, provided Re is high enough for the
logarithmic law to describe well the mean velocity profile, the quantity AB*
is a function of the control parameters only, and thus independent of the Reynolds
number. This hypothesis is here tested using the AB* maps for the DNS set at
Re, = 1000 and 2000. The maps are generated by applying the GQ model with the
corresponding values of Cr, Cyr, and R. The results, reported in figure @ show
maximum change of AB* across Re of only 0.36, with standard deviation 0.10.
These values can be considered quite small, given that the maximum statistical
uncertainty on the change of AB* at 95% confidence level is 0.24 across the map
of figure and the mean absolute value is 0.17. This result thus confirms that
the drag reduction effect barely changes with Re, once it is expressed in terms of
AB*.

This additionally indicates that Re,, = 1000 is sufficient to obtain a reasonably
Re-independent estimate of AB*. This observation is also supported by the good
agreement between the GQ16 data at Re, = 1000 and the results by Rouhi ef al.
(2023)) obtained up to Re, = 4000 in relatively small domains.
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Figure 4.6: Drag reduction rate (R) as function of the reference friction
Reynolds number (Re,,) for backward-travelling wave with parameters A* = 5,
k* =0.00078 and w* = —0.0105, close to the conditions considered by [Marusic
et al|(2021)),i.e. A* ~ 5, k* ~ 0.0008 and w* ~ —0.0105 (in their laboratory ex-
periment the viscous-scaled parameters vary slightly with Re). The present results
are denoted with coloured symbols (see table {.1); experimental data by Marusic
et al.| (2021) are black solid circles, while squares denote their LES numerical
data; the straight line is the prediction of the GQ model (4.4) corresponding to
AB* = 0.51 and to the values of Cy, obtained from the uncontrolled simulations
at the respective value of Re,,. The error bars have been determined as described
in §4.2] corresponding to a 95% confidence level.
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4.3.3 Monotonicity of R with Re

The GQ model predicts that R decreases monotonically with Re, however more
slowly than the power-law decrease assumed in early studies (Choi ef al., 2002;
Quadrio & Ricco, 2004} Touber & Leschziner, 2012). The decrease rate is less at
higher Re and for smaller R. Ample numerical and experimental evidence so far,
including the results of the present study, support the predictions of the GQ model.

Contrasting evidence that R may instead increase with Re has been recently
provided from the combined laboratory and numerical efforts of Marusic et al.
(2021). As shown in figure 3e of their paper, they found that R obtained by
backward-travelling waves at small values of ™ and w™, namely «* = 0.0008 and
w* = —0.0105, increases from 1.6% at Re, ~ 1000, as measured numerically in
large-eddy simulation (LES) of open channel flow, up to 13.1% at Re,, = 12800,
as measured experimentally in a turbulent boundary layer. Since the actuator
employed in their experiments yields a wave with a frequency-dependent amplitude
and constant wavelength in physical units (30 cm), those authors could not exactly
maintain the same value of viscous-scaled control parameters across the considered
Reynolds number range. Specifically, the amplitude increased from A* = 4.6 at
Re; = 9000 to At = 5.7 at Re, = 12800 (see table 1 in |[Chandran et al., 2023).
Furthermore, although the original figure 3e of Marusic et al.| (2021) reports a
constant value of ¥t = 0.0008 at all Re, we cannot reconcile it with the actuator
wavelength being fixed in physical units for the experimental points.

In the present work, we verify this contrasting evidence by studying the Re-
dependence of R across the largest range of Reynolds number tested so far via
DNS. For this purpose, we consider StTW actuation at Re;, = 1000, 2000,
3000 and 6000, with control parameters selected to match as closely as possible
those reported in figure 3e of Marusic et al.| (2021), namely «* = 0.00078 and
w* = —0.0104. The wave amplitude is setto A* = 5, midway between the range of
variation in their experiments. Figure [d.6/compares our numerical results with the
numerical and experimental results of Marusic et al.| (2021). Our measurements
still fit very well the prediction of the GQ model, and confirm an overall decreasing
trend of R with Re.

To verify whether the differences observed in figure [4.6| are due to the dif-
ferent Reynolds number range considered here and by Marusic et al.| (2021)), we
advocate the work of (Chandran et al.| (2023). Those authors extended the ex-
perimental database of Marusic et al.| (2021) with additional data points, some
of which at Re;, = 6000, i.e. the highest Reynolds number considered in the
present study. Hence, we have precisely reproduced their actuated flow case with
{A*, w*, k¥, Reg } = {2.5,-0.009,0.0014, 6000}, the remaining differences be-
ing the flow configuration (open channel vs. boundary layer), as well as actuation
details (ideal harmonic actuation in numerical simulation vs. spatially discretised
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wave in experiment). This case also falls within the range of potential use for
outer-scaled actuation according to |Deshpande et al. (2023), due to the compara-
tively large actuation period 7+ = =700 and wavelength A* ~ 4500, similar to the
case presented in figure A drag reduction of R = 2.3% + 1.1% is measured
here, to be compared with R = 6% measured experimentally by (Chandran et al.
(2023). This finding hints at systematic differences between the present numerical
simulations and the laboratory experiments of Marusic et al. (2021) and (Chandran
et al. (2023). We reiterate that this is possibly due to irreducible differences in the
flow and wall actuation setups, or even to the extreme challenges posed by labo-
ratory experiments targeting such complex drag reduction strategies. We will go
back to this important issue in For the moment, the present data corroborate
the expectation that R decreases with Re at the rate predicted by the GQ model.

4.3.4 Net power savings at large values of Re

Net power saving S derives from the (positive or negative) balance between the
power saved through drag-reducing control and the power required for wall actua-
tion, hence
P.
S=R-—, (4.5)

Po

where P, is the pumping power per unit wetted area in the uncontrolled case,
which for constant U}, reads
P,y = UpTy,, (4.6)

and Pj, is the control input power per unit wetted area, expressed as:

0 d
Pin =(wy, ;)= pv<w—w>| e ww)' , 4.7)
ay w w

where 1, = pv(dw/dy),, is the spanwise wall shear stress.

Similarly to what done for R, the Reynolds-number dependence of S can also
be predicted theoretically. Whereas R is accurately expressed by the GQ model,
the Re-dependence of Pi, /P, can be easily expressed following Ricco & Quadrio
(2008), who noticed that this ratio is equivalent to P / P;O. Since P} is very well
approximated by the power P} required to generate the laminar transverse Stokes
layer (Quadrio & Ricco, 2011; |Gatti & Quadriol 2013)) — which does not depend
on Re if the viscous-scaled parameters are kept constant — the Re-dependence of
Pin/Pp, comes only from P, = U, = 42/Cy,. By using the expression of P} by
Gatti & Quadrio| (2013)), we thus obtain

. Pr +\2(,+)1/3 ) .
Pin P (AT () Re lemmAl (9)] , 4.8)

P, U 2U; Ai(6)
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Figure 4.7: Maps of actuation power (P} ) as a function of the actuation parameters
(w*, k*), at Rey, = 1000 ( ) and Re,, = 2000 (— ). The symbols are
colored after table 4.1/ and show the parameters of each simulation underlying the
map interpolation shown in the figure. Data by GQ16 (—— and black dots), and
P from equation ( ) are also reported.

where 7 is the imaginary unit, Re indicates the real part of a complex num-
ber, Ai is the Airy function of the first kind, Ai’ its derivative and 6 =
—e™/0(k*)'3 (w* /k* + ik*). Equation (#.8)) shows that P! = U;Pin/Pp, = P},
is a Reynolds-independent quantity for StTW parameters sufficiently far from the
region of drag increase, where the approximation P} ~ P; is known to fail. As
a result, it is sufficient to measure P;; at a given Reynolds number, or estimate it
via P/, in order to retrieve Pi,/P), at any Reynolds number, i.e. at any arbitrary

U, = +2/Cy,. Equation (4.8) shows that Pi,/Pp, decreases with Re as 1/U},
so that S can in fact increase with Re, provided the normalised actuation power
decays with Re faster than R.

Figure 4.7| confirms that P} is indeed constant with Re throughout the inves-
tigated parameter space, included the drag-increasing regime, where P; and P}
do differ and the former can only be measured empirically. The GQ16 dataset
well aligns with the present data, the lacking information for 0 < x* < 0.005
notwithstanding.

The net power saving at Re;, = 1000 and 2000 is reported in figure
Overall, the contours of S do not change significantly, since degradation of R is
compensated by reduction of the actuation input power. Larger differences are
observed for nearly optimal S (see the S = 15% iso-line in figure 4.8)), in a region
which shrinks and shifts towards higher «* at higher Re. This can be explained
by the stronger decay of R in this region (as predicted by the GQ model due to
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Figure 4.8: Maps of net power saving (S) as a function of the actuation parameters
(w*, k*), at Rey, = 1000 ( ) and Re,, = 2000 (— ). The symbols are
colored after table 4.1/ and show the parameters of each simulation underlying the
map interpolation shown in the figure. Contour lines are shown in intervals of 5%,
the dashed lines denoting the S = 0 iso-line.

larger R) and by the comparatively small value of P;,/P,,, which causes S to have
similar Re-dependence as R.

GQ16 noticed that at Re;, ~ 1000 and A* = 5.5 the locus of near-optimum
new power saving (S = 15%) extends along the ridge of maximum R between
k* = 0.0085 and 0.04, the maximum being at {w™*, k*} = {0.093,0.026}. This
implies that the point of maximum S might reside outside of the parameter space
considered in figure for both Reynolds numbers under scrutiny here.

As done for the drag reduction in figure the variation of S with Re
is shown in figure for the same parameters considered by Marusic et al.
(2021). Interestingly, S is observed to increase with Re at this combination of
parameters, essentially due to the shrinking of the negative P;,/P,, contribution
and to the relatively constant R. The increase of § is compatible with the theoretical
prediction that can be obtained by combining the GQ model of equation (4.4))
with the prediction for P;,/P), of equation (4.§). The differences between the
present numerical database and the laboratory experiments of Marusic et al. (2021),
previously noted for R, are confirmed here.

The present results enable a better understanding of the available literature
data. For instance, by comparing the numerical data by Rouh1 er al.| (2023),
which consider StTW at small wavelengths (due to the restricted domain size)
and relatively large amplitude A* = 12 and frequencies, with their experimental
data, which consider backward-travelling waves at larger wavelengths but smaller
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Figure 4.9: Net power saving (S) as function of reference friction Reynolds number
(Res,) for backward-travelling waves with the same parameters considered by
Marusic et al.| (2021). The present data are indicated with colored symbols (see
table [4.1)); data by Marusic et al (2021) are black solid circles (experiments) and
squares (LES); the straight line is the theoretical prediction obtained by combining
the GQ model (@.4) for AB* = 0.51 with equation (4.8) for P} = 1.1 and the
values of C, obtained from the uncontrolled simulations at the respective value
of Rex,.

amplitudes of A* ~ 5 and frequencies,|Chandran et al. (2023) conclude that mostly
low-frequency forcing |w*| < 0.018 is capable to achieve positive S, despite the
moderate values of R. This conclusion is observed here to be an artifact of the
comparison between StTW at different amplitudes: according to GQ16 it is known
that already at Re,, = 1000 no positive S can be achieved via StTW for amplitudes
A* % 14. The present data clearly show that the observation of GQ16 is valid also
if smaller values of wavenumbers and frequencies are considered: the locus of
maximum S in the {w, k}-space essentially coincides with the one of maximum
R, and it shifts towards larger {w, x} for increasing values of Re rather than to
smaller ones, if the comparison among various Re is performed at a constant value
of A* close to the optimal A* ~ 6 identified by GQ16.

4.4 Concluding discussion

In the present work we have addressed the Reynolds-number dependence of skin-
friction drag reduction induced by spanwise forcing, in terms of both drag reduction
rate R and net power saving S. In particular, we have focused on streamwise-
travelling waves of spanwise wall velocity (StTW, Quadrio et al., 2009). A new
database of high-fidelity direct numerical simulations (DNS) of turbulent open
channel flow with and without StTW has been generated for Re,, = 1000, 2000,
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3000 and 6000. This is the widest Reynolds-number range considered so far in
numerical experiments with spanwise forcing, and reduces the gap from the highest
value of Re, considered in analogous laboratory experiments (Chandran et al.,
2023)) to a factor of 2.5.

The main outcome of the present study is to confirm the validity of the pre-
dictive model for drag reduction proposed by (Gatti & Quadrio (2016) and its
underlying hypothesis. The present data corroborate the observation that the pa-
rameter AB*, which quantifies the control-induced velocity shift in actual viscous
units “+”” at matched y* with respect to the non-actuated flow, is a Re-independent
measure of drag reduction when the Reynolds number is sufficiently large for the
logarithmic law to apply. We have shown that Re, 1000 is sufficient for AB* to
become nearly Re-independent, since no statistically significant differences have
been measured between the Re,, = 1000 and Re, = 2000 cases, for a wide range
of actuation parameters, and up to Re,, = 6000 for one selected combination of
actuation parameters.

This key result implies that drag reduction induced by StTW at a given com-
bination of {A*, w*, k*} is bound to monotonically decrease with the Reynolds
number, at a rate that depends on R itself and on (the inverse square root of)
the skin-friction coefficient Cr, of the uncontrolled flow, as embodied in the GQ
model; see equation (4.4). Fortunately, the decay rate is less severe than the power
law R ~ Re;oo'2 suggested empirically in early studies on spanwise wall oscilla-
tions (Chot et al., [2002; Touber & Leschziner, 2012), conveying that significant
drag reduction can still be achieved at very high Re.

The increase of drag reduction with the Reynolds number observed
by Marusic et al.| (2021) with actuation parameters corresponding to the
outer-scaled actuation is not confirmed by our numerical experiments with
{A* =5, w*" = -0.0104, k* = 0.00078} in turbulent open channels. On the con-
trary, the present results follow well the prediction of the GQ model, and show a
very mild decrease of R with Re for these specific parameters. While the obser-
vation of R increasing with Re is indeed surprising and unique in literature, we
can only speculate on the reasons behind this discrepancy.

On the one hand, the difference in the flow setup considered here and in Marusic
et al.|(2021) (open channel vs. boundary layer) could affect the Reynolds-number
dependence of R. In this respect, Skote|(2014) applied StTW to numerical turbu-
lent boundary layers at low Re and noted that the Kdrmén constant can increase in
the presence of drag-reduction effects. This could affect the Re-dependency of R,
since the GQ model assumes constancy of k. The experimental data of (Chandran
et al.|(2023)), however, do not support such an effect. On the other hand, [Marusic
et al.|(2021) and later Chandran et al.|(2023) implemented a spatially discrete form
of the StTW, similarly to Auter1 et al.| (2010), and synthesised harmonic waves
by independently moving stripes with finite width. Auteri1 et al.| (2010) and, more
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recently, |Gallorini & Quadrio| (2024) addressed the effects of the wave discretisa-
tion on the achievable drag reduction. Owing to discretization, the turbulent flow
perceives a number of higher Fourier harmonics of the discrete piecewise-constant
wave, as if multiple waves with different parameters were applied. As a result,
quantitative comparison between the ideally continuous and piecewise-constant
forcing is not trivial, and some discrete waves far from the optimal forcing param-
eters can outperform the corresponding ideal sinusoidal waveform, whenever part
of the harmonic content of the discrete wave falls in high-R regions of the drag
reduction map. Finally, the conclusion of Marusic et al.| (2021) that R increases
with Re hinges on comparison of data obtained with different methods. In partic-
ular, the low-Re data were obtained from LES of turbulent open channel flow in
relatively small domains with continuous StTW applied at the wall, whereas the
high-Re data were obtained from boundary layer experiments with discrete StTW.
Differences in numerical and experimental uncertainties can further complicate
the comparison. Whereas the above speculations remain to be verified in future
studies, the present results support the claim that ideal StTW applied in turbulent
open channels are neither expected nor observed to yield an increase of drag re-
duction with increasing Re, for any combination of wave parameters that are kept
constant in viscous units.

Lastly, we also confirm that the Reynolds-number dependence of the net
power saving S = R — P, /P, is in line with theoretical predictions. Whereas
R directly derives from the GQ model, P;,/P,, can be obtained directly from
P = U} Pin/Pp,, which is known to be Re-independent (Gatti & Quadrio, 2013).
Interestingly, we have found that P does not change with Re throughout the
drag-reduction map, not only in those regions where P is known to be well ap-
proximated by P, i.e. the value obtained from the laminar generalised Stokes
layer solution. In other words, the ideal viscous scaling of P;; is retained even
close to the valley of drag increase, where turbulence is known to interact with
the generalised Stokes layer generated by StTW actuation. This result, as already
discussed in Gatt1 & Quadrio (2013, 2016), has two main implications. Firstly, in
the portion of the StTW parameter space where § is maximum, § is dominated
by R and hence exhibits similar Re-dependence; here S decreases with Re at a
rate which is slightly less than R. Secondly, for StTW parameters far from the
optimum, both R and P;, /P, contribute to S. In this case, the normalised control
cost may decrease with Re at a faster rate than R, so that § can actually increase
with Re. However, this can occur only in regions of non-optimal values of S.
Hence, we argue that the observation by Chandran et al.| (2023) that only low-
frequency, low-wavenumber forcing can achieve positive S at high Re may be an
artifact due to the properties of their experimental setup, in which the same region
of the viscous-scaled parameter space cannot be spanned for different values of
Re (see figure[4.10). Indeed, those authors can only achieve the optimal values of
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Figure 4.10: Wavenumber («x*), angular frequency (w™) and amplitude (A*) for
StTW actuation considered by Chandran ez al.|(2023), for different values of Re,.

A™ at the highest values of Re, at which only low w* and «* are possible owing to
the small space- and time-scales of the turbulent flow. The more systematic scan
of the StTW parameter space carried out in the present study shows that the loci
of optimal S and R roughly coincide in the {w*, k*} plane.

4.5 Dataset details

This Appendix reports the combination of the StTW control parameters of the
simulations performed to produce the present dataset, together with the main

quantities of interest. Tables[.2}[4.3] #.4/and[4.5]are for Re, = 1000, Re, = 2000,
Re, = 3000 and Re, = 6000 respectively.

Case A/U, AT wh/Up, o x10°  «h «* x102  R%  S%
1 0.248 5.0 —4.98 -10.03 0 0000 122 -1.6
2 0.248 5.0 —4.98 -10.03 0.67 0.067 127 -12
3 0248 5.0 -4.98 -10.03 1.7 0.167 128 13
4 0248 5.0 -4.98 -10.03 5 0502 126 -1.9
5 0248 5.0 -498 -1003 10 1004 114 -3.6
6 0.248 5.0 —-4.98 -10.03 15 1.506 9.8 -5.8
7 0248 50 3.73 753 0  0.000 133 14
8 0248 50 373 7.53 0.67 0.067 125 08
9 0248 50 373 753 1.7 0.167 105 -1.0
10 0248 5.0 498 10.03 0  0.000 122 -16
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

3.73
3.73
3.73
4.98
4.98
4.98
4.98
4.98
-2.30
-0.82
0.00
0.82
2.30
-2.28
-0.81
-2.28
-0.81
0.00
0.81
2.28
-2.28
-0.81
0.00
0.81
2.28
-2.28
-0.81
0.00
0.81
2.28
2.28
-2.28
-0.81
0.00
0.81
2.28
-2.28
-0.81
0.00
0.81
2.28

7.53
7.53
7.53
10.03
10.03
10.03
10.03
10.03
-4.64
-1.65
-0.00
1.65
4.64
-4.59
-1.63
-4.59
-1.63
-0.00
1.63
4.59
-4.59
-1.63
-0.00
1.63
4.59
-4.59
-1.63
-0.00
1.63
4.59
4.59
-4.59
-1.63
-0.00
1.63
4.59
-4.59
-1.63
-0.00
1.63
4.59
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10

15
0.67
1.7

10

15
7.7
7.7
7.7
7.7
7.7

0.67
0.67
0.67
0.67
0.67
1.7
1.7
1.7
1.7
1.7

W D D D

10
10
10
10
15
15
15
15
15

0.502
1.004
1.506
0.067
0.167
0.502
1.004
1.506
0.770
0.770
0.770
0.770
0.770
0.000
0.000
0.067
0.067
0.067
0.067
0.067
0.167
0.167
0.167
0.167
0.167
0.502
0.502
0.502
0.502
0.502
0.502
1.004
1.004
1.004
1.004
1.004
1.506
1.506
1.506
1.506
1.506

-1.0

6.7
19.3
12.0
12.0

5.4
-1.8
10.0
16.3
19.8
21.6
20.9
10.3
10.2

2.8
11.8

5.3

1.0

0.8

8.0
14.3
10.3

4.7

2.2

3.5
16.6
18.1
17.5
13.5

3.0

3.0
15.6
19.0
20.8
22.5
18.2
14.0
17.4
18.9
20.5
24.3

-11.5
-2.0
12.9
-1.7
-1.5
=75
-13.8
0.1
5.3
11.4
14.8
15.7
4.9
1.2
-3.1
2.5
-0.7
-3.4
-4.8
-0.8
4.8
3.9
-0.1
-2.1
-5.0
6.2
10.5
11.6
9.1
-3.8
-3.8
4.2
10.0
13.3
16.5
13.4
1.8
7.4
10.2
13.0
18.8



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

0.228
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248
0.248

4.6 0.00
5.0 -0.52
5.0 -0.52
5.0 =3.73
5.0 =3.73
5.0 -3.73
5.0 -3.73
5.0 =3.73
5.0 =3.73
5.0 -4.98
5.0 -3.73
5.0 -2.28
5.0 -0.81
5.0 0.00
5.0 0.81
5.0 2.28
5.0 3.73
5.0 4.98
5.0 -0.52

-0.00 10
-1.05 0.67
-1.05 1
-7.53 0
-7.53 0.67
-7.53 1.7
-7.53 5
-7.53 10
-7.53 15
-10.04 20
-7.53 20
-4.59 20
-1.63 20
-0.00 20
1.63 20
4.59 20
7.53 20
10.04 20
-1.05 0.78

1.004
0.067
0.100
0.000
0.067
0.167
0.502
1.004
1.506
2.008
2.008
2.008
2.008
2.008
2.008
2.008
2.008
2.008
0.078

19.7
3.9
5.4

12.3

13.4

13.2

13.8

12.3

11.8
8.5

10.8

13.0

15.6

17.3

19.5

22.9

23.8

19.8
4.5

13.3
-1.0
-0.2

0.4
1.3
1.0
1.0
-1.2
-2.4
=7.7
-4.0
0.1
4.7
7.5

10.9

16.2

17.7

11.8
-1.0

Table 4.2: List of the controlled simulations carried out at Re;, = 1000.

Case A/U, A' wh/U, w* x10? kh k*tx10% R%  S%
1 0.3 6.5 021 023 0.33 0.017 27 2.1
2 0.228 5.0 —=1.50 -1.63 0 0.000 19 =35
3 0.228 5.0 —4.19 -4.56 0 0.000 9.5 1.3
4 0228 5.0 150 1.63 5 0.250 3.6 -04
5 0.228 5.0 —-1.50 -1.63 0.67 0.033 52 0.2
6 0.228 5.0 —4.19 -4.56 0.67 0.033 10.6 2.3
7 0.228 5.0 0.00 -0.00 0.67 0.033 3.6 0.1
8 0228 5.0 4.19 456 0.67 0.033 9.0 0.8
9 0.228 50 150 1.63 0.67 0.033 32 =20
10 0.228 5.0 -1.50 -1.63 5 0.250 12.8 6.6
11 0.228 5.0 —4.19 -4.56 1.7 0.083 13.0 4.5
12 0.228 5.0 0.00 -0.00 1.7 0.083 1.9 -22
13 0228 5.0 4.19 456 1.7 0.083 8.3 0.3
14 0228 5.0 150 1.63 1.7 0.083 -02 =52
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228

5.0 -1.50
5.0 -4.19
5.0 0.00
5.0 4.19
5.0 -1.50
5.0 -4.19
5.0 4.19
5.0 -1.50
5.0 —-4.19
5.0 0.00
5.0 4.19
5.0 1.50
5.0 -0.75
5.0 0.00
5.0 =2.99
5.0 1.50
5.0 0.00
5.0 -0.95
5.0 -0.95
5.0 -4.19
5.0 4.19
5.0 9.24
5.0 9.24
5.0 9.24
5.0 9.24
5.0 9.24
5.0 9.24
5.0 -9.24
5.0 -9.24
5.0 -9.24
5.0 -9.24
5.0 -9.24
5.0 -9.24
5.0 -6.89
5.0 -6.89
5.0 -6.89
5.0 -6.89
5.0 -6.89
5.0 -6.89
5.0 6.89
5.0 6.89

-1.63
-4.56
-0.00
4.56
-1.63
-4.56
4.56
-1.63
-4.56
-0.00
4.56
1.63
-0.81
-0.00
-3.26
1.63
-0.00
-1.05
-1.05
-4.56
4.56
10.06
10.06
10.06
10.06
10.14
10.14
-10.14
-10.14
-10.14
-10.14
-10.14
-10.14
-7.56
-7.56
-7.56
-7.56
-7.56
-7.56
7.56
7.56
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10

1.7
10
10
15
15
15
15
15
10
30
10
10
10

1.7

1.3
30
30

0.67
1.7

10
15

0.67
1.7

10
15

0.67
1.7

10
15

0.67

0.500
0.250
0.250
0.250
0.083
0.500
0.500
0.749
0.749
0.749
0.749
0.749
0.500
1.499
0.500
0.500
0.500
0.084
0.067
1.499
1.499
0.000
0.033
0.083
0.250
0.501
0.752
0.000
0.033
0.084
0.251
0.501
0.752
0.000
0.033
0.084
0.251
0.501
0.752
0.000
0.033

18.2
16.0

9.5

0.7

6.7
16.0

3.2
18.0
15.9
19.7
11.5
19.3
17.4
18.5
17.3
12.8
16.5

4.3

3.1
13.0
22.1
10.9
11.4
11.2
10.0

4.0
-4.0
10.7
10.6
11.1
11.5
10.5
10.4
11.9
11.6
12.0
13.1
12.4
12.5
12.5
11.3

11.3
7.1
4.9

-6.9
1.1
6.6

-3.1

10.4
5.9

13.5
6.5

14.6

11.2

10.5
8.9
8.7

11.2

-0.7
-1.9
1.8
17.0
-1.9
-1.3
-1.4
=24
=7.9
-15.2
-2.3
-2.1
-1.7
-1.5
-2.9
-3.2
0.9
0.6
1.0
1.7
0.7
0.4
1.6
0.4



56 0228 50 689 756 1.7 0.084 10.9 0.1

57 0.228 5.0 6.839 756 5 0.251 7.0 =33
58 0228 50 689 756 10 0.501 -2.1 -11.8
59 0228 50 6.89 756 15 0.752 -0.2  -95
60 0.228 5.0 -6.89 -7.56 30 1.504 1.1 -19
61 0228 50 -0.95 -1.05 1.6  0.078 40 -1.0

Table 4.3: List of the controlled simulations carried out at Re,, = 2000.

Case A/U, A'Y wh/U, w*x10? kh k* x 107 R%  S%

1 0219 50 -2.16 -1.65 0.67 0.022 3.1 =21
2 0219 50 0.00 -0.00 0.67 0.022 1.4 -=-2.1
3 0219 5.0 2.16 1.65 0.67 0.022 1.3 -3.8
4 0.219 5.0 2.16 1.65 1.7 0.056 -0.5 =55
5 0218 50 -1.37 -1.05 23 0.078 44 -04
6 0218 50 -1.37 -1.05 2.7 0.089 4.7 -0.1

Table 4.4: List of the controlled simulations carried out at Re, = 3000.

Case A/U, A* wh/U, o* x10° kh k* x10? R% S%

1 0.203 5.0 -2.55 -1.04 4.7 0.078 3.5 =09
2 0.101 25 -2.19 -0.90 8.3 0.139 23 1.2

Table 4.5: List of the controlled simulations carried out at Re, = 6000.
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Turbulent drag reduction with
streamwise travelling waves in the
compressible regime

Abstract

The ability of streamwise-travelling waves of spanwise velocity to reduce the tur-
bulent skin-friction drag is assessed in the compressible regime. Direct numerical
simulations are carried out to compare drag reduction in subsonic, transonic and
supersonic channel flows. Compressibility improves the benefits of the travelling
waves, in a way that depends on the control parameters: drag reduction becomes
larger than the incompressible one for small frequencies and wavenumbers. How-
ever, the improvement depends on the specific procedure employed for comparison.
When the Mach number is varied and, at the same time, wall friction is changed
by the control, the bulk temperature in the flow can either evolve freely in time
until the aerodynamic heating balances the heat flux at the walls, or be constrained
such that a fixed percentage of kinetic energy is transformed into thermal energy.
Physical arguments suggest that, in the present context, the latter approach should
be preferred. It provides a test condition in which the wall-normal temperature
profile more realistically mimics that in an external flow, and also leads to a much
better scaling of the results, over both the Mach number and the control param-
eters. Under this comparison, drag reduction is only marginally improved by
compressibility.

5.1 Introduction

One of the distinctive features of fluid turbulence is the ability to transport and mix
mass and momentum more effectively than a laminar flow, resulting in more intense

175



wall shear stress and a larger friction drag (Fukagata ef al., [2002). Flow control
for skin-friction drag reduction aims to mitigate the negative effects of turbulence
near the wall, in order to cut energy consumption and to improve cost effectiveness
and environmental footprint. This is of particular interest in aeronautics: nearly
50% of the total drag of a civil aircraft is due to the viscous drag caused by the
interaction of the turbulent boundary layer with the surface (Gad-el-Hak & Pollard,
1998)). An efficient drag reduction technology capable to achieve even a tiny drag
reduction rate would yield enormous economic and environmental benefits.

Drag reduction strategies are often classified as passive or active. The former
do not require extra energy, and usually exploit a non-planar wall (see Foggi Rota
et all 2023, for an exception). Among them, riblets (Bechert et al., |1997) are
the closest to be implemented in practical applications. Laboratory tests show
that they can reduce drag up to 8—10% at low Reynolds numbers; on considering
their requirement of periodical maintenance, though, riblets do not yield enough
economical benefits to be routinely used yet. Active strategies, instead, require
actuation, and external energy to work. Those involving the motion of the wall are
an interesting category, and include spanwise wall oscillations (Jung et al.,[1992),
streamwise-travelling waves of spanwise velocity (Quadrio et al., 2009), spanwise-
travelling waves of spanwise velocity (Du et al.| [2002) and streamwise-travelling
waves of wall deformation (Nakanishi et al., [2012). They are all predetermined
strategies, since the control parameters are set a priori, and enjoy the relative
simplicity resulting from the lack of sensors and feedback laws. However, several
of them do not yield an energetic benefit once the control energy is accounted
for. This work focuses on the streamwise-travelling waves (StTW) of spanwise
velocity introduced by |Quadrio et al.|(2009). StTW are among the most promis-
ing techniques, because of their rather large net savings. This type of forcing,
thoroughly reviewed by Ricco et al.|(2021), is defined by the following space-time
distribution of the spanwise velocity component at the wall:

W(x,t) = Asin(kyx — wt) (5.1)

where x and ¢ are the streamwise direction and time, A is the forcing amplitude, «,
is the wavenumber and w is the frequency (which define the wavelength A, = 27/,
and the oscillation period T = 27 /w). The spatially uniform spanwise-oscillating
wall (Jung et al., 1992)) and the stationary wave (Quadrio ef al.,|2007; Viotti et al.,
2009) are two limit cases of the general forcing (3.1]), obtained for x, = 0 and
w = 0 respectively.

Via a generalized Stokes layer (Quadrio & Ricco, 2011), StTW create an
unsteady near-wall transverse shear which continuously changes the inclination
of the near-wall structures in wall-parallel planes, weakening the regeneration
mechanism of the near-wall cycle (Schoppa & Hussain, 2002)). Once actuation pa-
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rameters are properly tuned, this process can even lead to the complete suppression
of turbulence.

The spatially-uniform wall oscillation, studied in depth by Quadrio & Ricco
(2004) in an incompressible channel flow at a Reynolds number (based on the
friction velocity u, of the uncontrolled flow, the fluid kinematic viscosity v and
the half-channel height) of Re, = 200, yields a drag reduction rate R of 45% (at
A* = A/u; = 12) for the so-called ‘optimal” actuation period T+ = Tu?2 /v ~ 100.
However, the maximum energy saving after the control energy is accounted for
is found at lower forcing intensities, and amounts to 7% only. The spatially-
distributed StTW are a natural generalization of the wall oscillations, and present
substantial advantages in terms of net savings. |Quadrio et al.| (2009) have shown
how drag reduction, power input and total saved power vary with the control
parameters. Depending on the (k,, w) value pair, drag increase or drag reduction
can be achieved. The parameters yielding maximum drag reduction and maximum
energy saving are almost coincident, and correspond (at this Reynolds number)
to low frequencies and low wavenumbers. The largest drag reduction of 48% (at
A" = 12) still yields a positive net power saving of 17%, and smaller forcing
intensities lead to net savings as high as 32%. StTW have been demonstrated in
the lab with a pipe flow experiment (Auteri ef al., 2010), who measured up to 33%
drag reduction, and have been proven to work in boundary layers too (Skote et al.,
2015 Bird et al., 2018)).

A number of practical aspects that need to be considered before declaring
spanwise forcing as a viable strategy for applications has been recently considered.
Gatti & Quadrio (2013, 2016) showed that the expected performance deterioration
at larger Reynolds numbers, which afflicts all drag reduction strategies acting via
near-wall turbulence manipulation, is only marginal for StTW and linked to the
natural variation of the skin-friction coefficient itself with the Reynolds number.
Once the performance of StTW is measured, as it should be, via the upward shift
of the logarithmic portion of the mean velocity profile in the law-of-the-wall form,
it becomes Re-independent, so that at flight Reynolds number 30%—40% friction
drag reduction could be expected. Marusic et al. (2021) hinted at an even better
scenario for StTW at high Re, thanks to the interaction of the near-wall forcing
with the large-scale outer motions of the turbulent boundary layer, although the
energetic consequences of using a spatially discrete forcing recently brought to
light by |Gallorin1 & Quadrio| (2024) were not considered. Banchetti et al.| (2020)
demonstrated the beneficial effect of skin-friction drag reduction via StTW on
pressure drag when applied to bluff bodies of complex shape, and Nguyen et al.
(2021)) used spanwise forcing for separation control.

One parameter that is crucial in aeronautical applications has received limited
attention so far in drag reduction studies: the Mach number M, a parameter which
quantifies the importance of compressibility effects. A few works, numerical
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(Duan & Choudhari, 2012, 2014} Mele et al., 2016) and experimental, both in
wind tunnel (Gaudet,|1989;|Coustols & Cousteix, 1994) and with flight test (Zuniga
et al.,1992), investigated the drag reduction effectiveness of riblets in a turbulent
compressible boundary layer. Fewer studies have been carried out to assess how
compressibility alters the drag reduction capabilities of active techniques: for
example, Chen et al| (2016) examined the uniform blowing or suction in an
hypersonic turbulent boundary layer at free-stream Mach number of 6.

As far as spanwise forcing goes, the large eddy simulation study of Fang
et al.|(2009)) was the first to consider the spanwise oscillating wall in a turbulent
channel flow at M = 0.5, followed by the direct numerical simulation (DNS) study
of N1 et al.| (2016) for a turbulent boundary layer at M = 2.5. However, the first
comprehensive study of compressibility effects in drag reduction via spanwise wall
oscillations was performed by |Yao & Hussain| (2019). They carried out DNS of a
plane channel flow subjected to spanwise oscillating walls at M = 0.3,0.8, 1.5, at
Re; =200, A* = 12 and T™ in the range 25 — 300. R was found to be qualitatively
similar to the incompressible case: for a given period T+, R increases with the
amplitude A™, at a rate that saturates when A* becomes large. For A* = 12, they
reported R increasing from 34.8% at 7" = 100 for M = 0.3 to an outstanding
value of 47.1% at the largest period investigated 7% = 300 for M = 1.5. For
At = 18 and M = 1.5, the flow reached relaminarization. The effect of Re
was also investigated via a few additional cases run at Re; = 500, confirming
the related decline of R. |Yao & Hussain| (2019) did not consider the impact of
the Mach number on the power budget. Both drag reduction and power budget
performance were later discussed in the recent work by Ruby & Foysi (2022) for
a channel flow at M = 0.3,1.5,3 and Re; = 200 — 1000 forced by stationary
waves with A* = 12 and «} = 0.0025 — 0.01. They found the optimum «, and the
maximum net power saving to increase significantly with Mach, thus confirming
the beneficial effect of compressibility.

When applying flow control for drag reduction in duct flows at various M,
the thermodynamical properties of the flow change because of the increased bulk
temperature, owing to the combination of the increased Mach number and the
action of the control. To understand whether changes of drag reduction with M di-
rectly depend on compressibility, rather than indirectly deriving from temperature
changes induced by changes of the skin friction drag, the comparison procedure
between uncontrolled and controlled flows should decouple compressibility from
purely thermodynamical effects. 'Yao & Hussain (2019) examined the effect of M
on R by matching the semi-local Reynolds number (at half-channel height), which
provides a relatively good collapse of R between incompressible and compress-
ible cases. In the present work, we also propose a further, alternative approach:
the value of the bulk temperature is constrained such that the amount of turbu-
lent kinetic energy transformed into thermal energy remains constant, both across
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the variation of M and between uncontrolled and controlled cases. This strategy
presents a significant advantage. The simplified setup of the turbulent channel
flow can be used in configurations where the coupling between the velocity and
thermal fields is closer to that found in external flows, where the application of
the spanwise forcing to reduce drag is more attractive. For example, compressible
boundary layers of practical aeronautical interest are usually characterized by adi-
abatic or moderately cold walls, with a thermal stratification leading to a denser,
colder outer region and a layer of warmer fluid in the near-wall zone.

The present work is the first comprehensive analysis of the StTW technique
in the compressible regime. The only prior work is the single case computed by
Quadrio et al.| (2022), who studied by DNS the StTW applied on a portion of a
wing in transonic flight at M = 0.7 and Re = 3 x 10° (based on the free-stream
velocity and the wing cord), finding that a localized actuation has the potential to
boost the aerodynamic efficiency of the whole aircraft, with an estimate reduction
of 9% of the total drag of the airplane at a negligible energy cost. In this work, we
consider by DNS a compressible turbulent plane channel flow modified by StTW,
and we aim at fully characterizing how R and the power budget depend on the
Mach number.

The paper is organized as follows. After this Introduction, describes
the computational framework used to produce the DNS database, presenting the
governing equations in the DNS solver in and the simulation pa-
rameters in §5.2.3] The parameters used to quantify drag reduction are defined
in and describes two approaches to compare unforced and forced
compressible channel flows at different M. In §5.3|the effects of the Mach number
are discussed, first in terms of drag reduction in and then in terms of power
budgets in Lastly, in the main conclusions are briefly outlined. The
paper is concluded by a brief Appendix where the raw results of the numerical
study are compactly shown.

5.2 Methods

5.2.1 Governing equations

The compressible Navier—Stokes equations for a perfect and heat-conducting gas
are written in conservative form as:

dp Opu;
o1 " o

=0 (5.2)

(9pui + (')puiuj _ _a_p + 80’,']'
ot (')xj 0x; (9)6]'

+ f5,'1 (53)
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dpe Ople+p/plu; doju;  0dq;

ot o, = Tox, o, + fuy + @. (5.4)
Here and throughout the paper, repeated indices imply summation; p is the fluid
density, p is the pressure, u; is the velocity component in the i-th directions, and
i = 1,2, 3 represent the streamwise (x), wall-normal (y) and spanwise (z) direction,
respectively. The total energy per unit mass ¢ = ¢, T + u;u;/2 is the sum of the
internal energy and the kinetic energy, where c, is the specific heat at constant
volume and T the temperature. The viscous stress tensor o7;; for a Newtonian fluid
subjected to the Stokes hypothesis becomes:

Ou; Ouj 20uy
i = - =——0ii |, 5.5
gij = K Ox; * ox;  30xp " (>-5)

where u is the dynamic viscosity and 6;; is Kronecker delta; the dependence of
viscosity on the temperature is accounted for through the Sutherland’s law. The
heat flux vector g is modelled after the Fourier law:

oT
qj = ax;’ (5.6)
where k = ¢, u/ Pr is the thermal conductivity, with c,, the specific heat at constant
pressure and Pr the Prandtl number, set to Pr = 0.72. We consider the turbulent
channel configuration, where the flow between two isothermal walls is driven in the
streamwise direction by the time-dependent body force f in Eq.(5.3)), evaluated at
each time step to maintain a constant mass flow-rate. The corresponding power is
included in Eq.(5.4), where the additional term @ represents a uniformly distributed
heat source which controls the value of the bulk flow temperature (Yu et al.,2019).

5.2.2 Solver

The flow solver employed for the analysis is STREAmMS (Supersonic TuRbulEnt
Accelerated Navier—Stokes Solver), a high-fidelity code designed for large-scale
simulations of compressible turbulent wall-bounded flows that runs in parallel on
CPU and GPU architectures.

The code, developed by Bernardini ez al.| (2021), incorporates state-of-the-art
numerical algorithms, specifically designed for the solution of compressible tur-
bulent flows, with a focus on the high-speed regime. The distinctive feature of the
solver is the methodology adopted for the discretization of the convective terms
of the Navier—Stokes equations with hybrid, high-order, energy-consistent/shock-
capturing schemes in locally conservative form. An energy-preserving discretiza-
tion, based on sixth-order central approximations, is applied where the solution is
smooth, and guarantees discrete conservation of the total kinetic energy in the limit
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case of inviscid, low-speed flows. This is the case of interest for all the simula-
tions presented in this study, where shock waves do not occur. The Navier—Stokes
equations are reduced to a semi-discrete system of ordinary differential equations,
integrated in time using a three-stages third-order Runge—Kutta scheme. The solver
is written in Fortran, and uses the MPI paradigm with a double domain decompo-
sition; in its current version (Bernardini et al.,[2023)), it can be run on modern HPC
architectures based on GPU acceleration. All the computations reported in this
work have been performed using the CUDA Fortran backend, capable of taking
advantage of the Volta NVIDIA GPUs available on Marconi 100 of the Italian
CINECA supercomputing center.

5.2.3 Parameters and computational setup

A wall-bounded turbulent flow in the compressible regime is described by three
independent parameters: the Reynolds number, the Mach number and a third
parameter that specifies the thermal condition of the wall. For the channel flow
configuration, relevant parameters are usually defined using bulk quantities, i.e.
the bulk density pj, the bulk velocity Uj and the bulk temperature 7j,:

1 h 1 h 1 h
pb = E</—h (pydy, Up= pr[h (owydy, Tp = Sionlh [h (puT) dy.
(5.7)
The operator (-) computes a mean value by averaging over time and homogeneous
directions.

The main goal of this work is to understand the effect of Mach number. Since
the control is wall-based and the control parameters are known (Gatti & Quadrio,
2016)) to scale in viscous units, i.e. with the friction and density at the wall, it is
convenient (Coleman et al.,1995)) to define the Mach number as Mf; = Up/cy, in
which the superscript and subscript emphasize that the velocity scale is Up, and the
speed of sound ¢,, = VyRT,, is evaluated at the (reference) wall temperature 7,,.
Three sets of simulations are performed, at Mf; = 0.3,0.8, 1.5. These values are
identical to those used by [Yao & Hussain (2019) in their study of the oscillating
wall. The simulations are run at a constant flow rate or CFR (Quadrio ef al.|
2016a): the pressure gradient evolves in time to keep a constant Uj,. For all
cases, the bulk Reynolds number Re, = ppUph/u,, is chosen in such a way that
the corresponding friction Reynolds number is fixed to the target value for the
uncontrolled simulations. Although most of the incompressible information on
StTW is available at Re; = 200, in our study the target value is set at the higher
Re, = 400. This choice brings in extra computational costs, but avoids issues
with relaminarization, that is expected to become significant at lower Re in view
of the expected increased effectiveness of StTW in the compressible regime.
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M2 Re; Re, At* Ny XNy XN,  Ax* Ay* Az*
ZBC 0.3 404 7115 0.007 768 x258x528 9.8 0.51-6.35 4.8
ZBC 0.8 400 6691 0.017 768x258x528 9.8 0.51-6.28 4.8
ZBC 1.5 394 5751 0.025 1024x258x512 74 0.50-6.19 4.9
CBC 0.3 403 7250 0.007 768x258x528 9.8 0.51-6.35 4.8
CBC 0.8 399 7602 0.017 768x258x528 9.8 0.51-6.28 4.8
CBC 1.5 387 8597 0.025 1024x258x512 74 0.50-6.19 49

Table 5.1: Parameters of the six uncontrolled simulations: Mach number M2,
friction Reynolds number Re, bulk Reynolds number Rej,, time step, mesh size

and spatial resolution in each direction.

For each case (defined by a pair of values for M2 and Re.), two distinct sim-
ulations are carried out, which differ in the way the system is thermally managed.
In one, dubbed Zero Bulk Cooling (ZBC), the bulk heating term ® in Eq.(5.4)) is
set to zero, and the bulk temperature 7}, is left free to evolve until the aerodynamic
heating rate and the heat flux at the wall are in balance. In the other, named
Constrained Bulk Cooling (CBC), the heat produced within the flow is balanced
not only by the wall heat flux, but also by a cooling source term @ (Yu ez al., 2019),
which evolves to keep a constant 7. A detailed description of the two strategies
is provided later in where the different implications of comparing at ZBC
or CBC are discussed.

For each of the three values of MY, a single uncontrolled and 42 cases with
spanwise forcing are considered; each case is carried out twice, with ZBC and
CBC. Hence, the computational study consists of 258 simulations. Table [5.1]
summarizes the parameters for the 6 uncontrolled simulations.

Periodic boundary conditions in the wall-parallel directions and no-slip and
no-penetration conditions at the solid walls are applied for the velocity vector, and
isothermal boundary conditions are used for the temperature. In the cases with
control, the no-slip condition for the spanwise velocity component is modified to
apply the travelling wave (5.1). The wave amplitude is fixed at A* = 12, and 42
different combinations of wavelength «; and frequency w™* are considered. Here
and throughout the paper, the + superscript denotes quantities expressed in wall
units of the uncontrolled case.

Figure [5.1|plots the incompressible drag reduction map, with dots identifying
the present simulations. The incompressible drag reduction map resembles the
original one computed by Quadrio et al.| (2009) at Re; = 200. Since the present
study considers Re; = 400, the map is obtained via interpolation from the two
datasets at Re; = 200 and Re,; = 1000 produced by Gatti & Quadrio| (2016) (see
for details). The simulations sample the parameter space along five lines,
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Figure 5.1: Incompressible drag reduction versus «} and w*, at A* = 12 and
Re; = 400. The map is obtained from |[Gatti & Quadrio| (2016) via interpolation
of their datasets at Re, = 200 and Re, = 1000. The dots on the dashed lines
correspond to the present compressible simulations.

all visible in figure In particular, the oscillating-wall case (dashed line 1 in
figure at k¥ = 0 is chosen to replicate data by [Yao & Hussain| (2019), and
sampled with 7 simulations (all with positive frequency, since negative frequencies
at k, = 0 can be obtained by symmetry). The steady wave at w* = 0 is scanned by
5 simulations along line 2; line 3 at constant x; = 0.005 contains 20 points, crosses
the low-Re incompressible maximum drag reduction, and also cuts through the
region of drag increase. Five simulations along line 4 explore the area of low drag
reduction at large negative frequencies. Lastly, line 5 with 5 points analyses the
ridge of maximum drag reduction.

The size of the computational domain is (Ly, Ly, L;) = (6rrh,2h,2rch) in the
streamwise, wall-normal and spanwise direction for the uncontrolled cases. For the
controlled cases with k, # 0, L, is slightly adjusted on a case-by-case basis to fit
the nearest integer multiple of the streamwise wavelength A,. In the case of longest
forcing wavelength, two waves are contained by the computational domains.

Although the discretization parameters have been chosen to replicate or im-
prove upon those used in related studies, we have explicitly checked for the effect
of wall-normal discretization and spanwise size of the computational domain.
One specific case which yielded one of the largest drag reductions (namely the
CBC case at «7 = 0.005 and w* = 0.0251) has been repeated by independently
doubling N, and L,. Starting from a baseline value for the friction coefficient of
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Cr = 3.41402 x 1073, we have measured C; = 3.41347 x 1073 with doubled N,
and Cy = 3.41733 X 1073 with doubled L. In both cases, the difference is below
0.1%.

Statistics are computed with a temporal average of no less than T,,, =
700 h/Uy, after discarding the initial transient. The statistical time averaging
error on the skin friction coefficient is estimated via the procedure introduced by
Russo & Luchini| (2017). After propagating the error on the drag reduction, the
corresponding uncertainties are found to be so small that the error bars are smaller
than the symbols used in the figures in

5.2.4 Performance indicators

The control performance is evaluated in terms of the dimensionless indicators
drag reduction rate R%, input power P;,% and net power saving P.;%. These
definitions, introduced by Kasagi et al.| (2009), are suitable for CFR studies. The
drag reduction rate describes the relative reduction of (dimensional) pumping
power P* per unit channel area:

% _ p*

- 1002
R% 00 P(*)

(5.8)

where the subscript O refers to the uncontrolled flow. Since all the simulations
run at CFR, R is equivalent to the reduction of the skin-friction coefficient Cy =
2TW/(pr£), and (5.8) can be expressed in terms of C; as:

Cy
R% = 1001 - —]. (5.9)
Cf,o

The time-averaged pumping power per unit channel area is computed as:

Ub [f Ly Lz
P = —/ / / T dx dz dt (5.10)
TaveLxLz t; 0 0

where 7, is the streamwise component of the instantaneous wall-shear stress, and
Tave = ty —t; is the interval for time averaging, defined by the final time 7/ and
the time #; at which the initial transient is elapsed and a meaningful average can
be taken. The control power P.% is the power required to create the wall forcing
while neglecting the losses of the actuation device, and is expressed as a fraction
of the pumping power P;. When the CBC strategy is employed, the power Pg
required to cool the bulk flow should also be accounted for. Hence, the complete
expression for the input power P, is:
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P;,% =P.% + Pp% =

1 100 ifofla ple 100 [ @
:_*—/ / / W 1, dx dz dt + / —dt  (5.11)
PO TaveLxL; ti 0 0 Tave t q)()

where 7, is the spanwise component of the instantaneous wall-shear stress, W the
enforced spanwise wall velocity, and @ the cooling power of the reference case.
Finally, to compare benefits and costs of the control, the net energy saving rate
P,.; 1s defined as:

Pret% = R% — P, %. (5.12)

5.2.5 On the comparison strategy

As mentioned above in §5.2.3] we consider two strategies to run the compressible
channel flow, once Mf; and Re, are fixed.

The first one, denominated Zero Bulk Cooling (ZBC), sets to zero the bulk
heating/cooling term @ in Eq.(5.4): the bulk temperature is thus free to increase
until, at equilibrium, the heat produced within the flow is balanced by the heat flux
at the walls. This setup corresponds to the one originally adopted by Coleman et al.
(1995)) for the plane channel, and employed in all previous compressible studies of
drag reduction by spanwise wall motion (Fang et al., 2009; |Yao & Hussain, 2019;
Ruby & Foys1,[2022). ZBC simulations indicate that compressibility leads to larger
drag reduction achieved by spanwise forcing. However, with ZBC the spanwise
forcing causes T, to increase above the value of the uncontrolled flow, in a way that
depends on the control parameters; the different heat transfer rates make it difficult
to discern the specific effects of compressibility and wall cooling. Furthermore,
the equilibrium thermal condition achieved when the bulk temperature is free to
evolve corresponds to extremely cold walls; the consequent large heat transfer rates
are not representative of typical external flows, for which active techniques like
spanwise forcing are primarily attractive.

To overcome these issues, a second strategy is considered, that is expected to
provide more insight on the performance of flow control. With this strategy, named
Constrained Bulk Cooling (CBC), the heat produced within the flow is balanced
not only by the heat flux through the walls, but also by a cooling source term ®,
that is computed at each time step to keep the bulk temperature constant.

Following|Zhang et al.| (2014), we specify the thermal condition of the system
by using the diabatic parameter ®, also named dimensionless temperature:

_Tw_Tb

C) ,
T.—T,

(5.13)
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Figure 5.2: Temperature (top left), density (top right), dynamic viscosity (bottom
left) and semi-local Reynolds number (bottom right) profiles in the wall region of a
canonical compressible channel flow at Mfi =0.3,0.8 and 1.5, with ZBC (dashed
lines) and CBC (continuous lines).

where 7, is the recovery temperature:

T, = (1 + VT_lr (Mf;)z) T, (5.14)

with y = ¢, /c, the heat capacity ratio, and r the recovery factor, a coefficient that,
according to [Shapiro| (1953), for a turbulent flow over a flat surface is r = Pr!'/3.

Recent studies (Cogo et al.,|2023)) have shown that a constant diabatic param-
eter, or equivalently a constant Eckert number (Wenzel et al., 2022)), is the proper
condition under which compressible flows at different Mach numbers should be
compared. The parameter O represents the fraction of the available kinetic energy
transformed into thermal energy at the wall (Modesti et al., 2022), and the impor-
tance of wall cooling increases when ® decreases. In this study we set ©® = 0.75,
which corresponds to a moderately cold wall.

The main differences arising from the two channel configurations, ZBC and
CBC, can be appreciated in figure where temperature, density and dynamic
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viscosity profiles across the channel are shown for the uncontrolled flow cases. In
ZBC, at equilibrium the mean temperature profile monotonically increases from
its minimum at the wall to its maximum at the channel centreline; the same trend
is shared by the viscosity, whereas the opposite trend is observed for the density.
Since T}, grows with M?, the profile of T/T,, across the channel, shown in the
top left panel of figure [5.2] gets progressively steeper at the wall with increasing
M?P. While T/T,, ~ 1 for the subsonic M, at the channel centre for M? = 1.5 (not
shown) the mean temperature is about 39% higher than at the wall. The significant
changes (especially for M2 = 1.5) of thermodynamic properties across the buffer
layer imply that the local properties are quite different from the wall properties.
In particular, the friction-velocity based Reynolds number Re; is intended to be
constant across the comparison while M2 varies. However, in the buffer layer
the semi-local Reynolds number Re; = Re.+/(puyw)/(pwi) (Huang et al., |1995)
is far from constant (see bottom right panel of [5.2)), and varies significantly as a
function of M2.

With CBC, instead, Re; across the channel is such that its value in the buffer
layer is still similar to the one at the wall (with a maximum observed increase of
2% for M? = 1.5 at y* = 10) with a variation of less than 1.5% around the mean
value of Re} at y* = 10, for the three values of Mf;. Moreover, the profile of T'/T,,
across the channel qualitatively resembles the temperature distribution of a typical
compressible boundary layer. In fact, at supersonic speeds the wall temperature can
be considered for practical purposes to be very close to the recovery temperature of
the flow, implying a very low heat exchange at the wall. Smaller values of ® imply
a cooler wall, and a local maximum of 7'/T,, further from the wall. For ® = 0.75,
the local peak is minor and located right within the buffer layer, as shown in the
top left panel of figure

The difference between ZBC and CBC can be visually appreciated by looking
at the near-wall turbulent structures in the uncontrolled flow, shown in figure @
It is known (Coleman et al.,{1995) that by increasing M? the low-velocity streaks
become longer, less wavy and more widely spaced. This is indeed confirmed in the
top row of figure[5.3] where color contours of an instantaneous field of streamwise
velocity fluctuations computed with ZBC at y* = 10 is plotted for Mfﬁ = 0.3 (left)
and Mfz = 1.5 (right). However, when switching to CBC (bottom row), the streaks
appear not to differ significantly between the subsonic and the supersonic cases.
This suggests that a matching diabatic parameter allows to discriminate those
changes of the near-wall structures that directly derive from compressibility effects
from those linked to a change in the wall-normal temperature profile. In fact, a non-
uniform temperature across the channel implies changes to other thermodynamic
properties (i.e. density and viscosity), and their wall values become not fully
representative of the physics in the buffer layer. This observation is essential when
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Figure 5.3: Streamwise velocity fluctuations u* in a wall-parallel portion of the
x — z plane at y* = 10 for ZBC (top) and CBC (bottom) at Mfz = 0.3 (left) and
M?P = 1.5 (right) for the uncontrolled case. The blue-to-red colorscale ranges
from —10 to +10; the black line is for the zero contour level.
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0.004

Figure 5.4: Frequency @, wavenumber &} and amplitude A* of the control forcing
for the travelling waves at x; = 0.005 (line 3 of figure made dimensionless
with the thermodynamic properties of the actuated flow at y* = 10.

the purpose of the study is to assess skin-friction drag changes induced by spanwise
forcing, whose physical mechanism is not fully uncovered yet, but certainly resides
within the thin transversal Stokes layer which interacts with the near-wall cycle
occurring in the buffer layer. When the actuation parameters scale in viscous wall
units, their effects in the buffer layer are not easily comparable in the ZBC case.

As an example, figure [5.4| plots the control parameters &*, &7 and A* of the
simulations taken along line 3 of figure The parameters are still scaled in
wall units, but the tilde indicates that viscous units are built with density and
viscosity measured in the actuated flow at y* = 10, for the ZCB (left) and CBC
(right) comparison strategy. Figure|5.4{is effective at showing that with ZBC the
buffer layer experiences a forcing whose set of parameters changes with the Mach
number, whereas with CBC the simulation parameters match at the various ij,
and enable the comparison of compressibility effects for a given control.

5.3 Drag reduction and power savings

The database produced in the present work is used for a comprehensive analysis of
the effect of compressibility on the drag reduction and power budget performance
of StTW. The reference Reynolds number of choice is Re, = 400, i.e. higher than
Re. =200, where most of the incompressible information is available, to avoid full
or partial relaminarization. Data at Re, = 400 are also relatively free from the low-
Re effects that plague results obtained at Re, = 200. Obviously, the downsides are
a larger computational cost, and a limited number of incompressible data to directly
compare with. Results at M2 = (.3 are compared to those of Hurst et al.[(2014) for
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Figure 5.5: Drag reduction rate and power budget as a function of the period T*
for the oscillating wall (line 1 of figure [5.1] see inset), for ZBC (left) and CBC
(right).

the oscillating wall, stationary waves and the travelling waves at fixed wavenumber.
For the oscillating wall, a few data points from Ricco & Quadrio| (2008) are also
available. For the other control cases, the main incompressible comparison data
are the StTW results of |Gatti & Quadrio| (2016). Their comprehensive datasets at
Re; =200 and Re,; = 1000, available as Supplementary Material to their paper,
are interpolated to obtain drag reduction for arbitrary combinations of the control
parameters. As suggested in that paper, drag reduction data is expressed in terms
of the vertical shift AB* of the streamwise mean velocity profile in its logarithmic
region, which minimizes the effect of the small computational domain and reduces
the Re effect on R. In fact, AB* becomes a Re-independent measure of drag
reduction, once Re is sufficiently large (they tentatively suggested Re; > 2000)
for the mean profile to feature a well-defined logarithmic layer. Since AB* is
still Re-dependent at the present values of Re, we interpolate linearly the AB*
data by |Gatti & Quadrio| (2016) between Re; = 200 and Re; = 1000 to retrieve
AB* at Re; = 400. Note that, owing to the small computational domain, the
Re: = 200 data by Gatti & Quadrio (2016) slightly overestimate drag reduction,
particularly at small frequencies and wavelengths. The incompressible control
power is interpolated at Re; = 400 from data of |Gatti & Quadrio (2016)), by
assuming a power law dependence with Re, as stated by Ricco & Quadrio| (2008)
and |Gatti & Quadrio| (2013)).

The few available compressible data are from Yao & Hussain (2019), who
considered the oscillating wall only, at the slightly higher Re, = 466 for M? = 0.8
and Re, = 506 for M? = 1.5. Moreover, the datapoints computed by Ruby & Foysi
(2022) for a stationary wave are at Mf; = 0.3, Re; = 396 and Mf; = 1.5, Re; = 604.
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Figure 5.6: Drag reduction rate versus period 7+ for the oscillating wall (line 1
of figure see inset), for ZBC (left) and CBC (right). Incompressible data are
in green: solid line without symbols from Gatti & Quadrio| (2016), solid symbols
fromHurst et al.|(2014), and open symbols from|Ricco & Quadrio|(2008). The blue
and black open symbols are from |Yao & Hussain (2019) at M2 = 0.8, Re, = 466
and MY = 1.5, Re; = 506. Solid lines indicate interpolation. Dashed lines on the
right panel are results for ZBC.

A combined view of the raw results of the simulations, in terms of drag
reduction and power budget, is shown first in figure for the oscillating-wall
case (line 1 of figure |5.1). The left panel plots the data collected with ZBC,
and the right panel illustrates CBC. The scaling of the data computed with CBC
appears to improve significantly. Since the different range of variation for drag
and powers makes the details difficult to appreciate, in the following we consider
them separately, providing in §5.3.1]and §5.3.2]a detailed comparison with existing
literature data, and studying the power cost in terms of control power and cooling
power. For completeness, Appendix 1 contains the remaining raw data, computed
on the remaining four lines of figure plotted together as in figure[5.5]

5.3.1 Drag reduction

Figure [5.6] shows the drag reduction rate obtained for the temporally oscillating
wall, i.e. along line 1 of figure as a function of the oscillating period 7.

We first consider the ZBC case on the left. For M2 = 0.3, R grows with
T up to a maximum at about 7" = 100, and then monotonically shrinks. This
is in agreement with the incompressible results of Hurst et al.| (2014), Ricco &
Quadrio (2008) and|Gatti & Quadrio|(2016), whose interpolated data, as expected,
slightly overpredict R, especially at large periods. This is due to the combined
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effect of low Re and small computational domain employed in that study, which
— particularly for the oscillating wall, where only one forcing phase is present at a
particular time — leads to partial relaminarization during the cycle. The curves at
higher M? are qualitatively similar, but tend to remain below the incompressible
data at small periods, and to go above them at large ones. Near the optimal period,
compressibility makes the maximum R% grow, and shift towards larger periods:
for Mfﬁ = (.3 the maximum drag reduction is R(’)’g = 30.3% at T+ = 100, whereas
Rgfs = 30.6% at 7T = 100, and for Mf; = 1.5 it becomes R'l’fs = 35.9% at
T* = 150. This picture confirms the compressible results at Re; = 200 discussed
by |Yao & Hussain| (2019), except for the supersonic case, where they reported a
monotonic increase of R% with 7. This is ascribed to the partial relaminarization
occurring at Re; = 200 when drag reduction is large; the present study, owing to its
higher Re, = 400, is able to identify a well defined R% peak even in the supersonic
regime. Figure|5.6|also includes results at higher Re, from Yao & Hussain (2019)
for the transonic and supersonic cases. Again, qualitative agreement is observed;
quantitative differences are due to their slightly different Reynolds number, which
is Re, = 466 for M2 = 0.8 and Re, = 506 for MY = 1.5.

The right panel of figure plots the results computed under CBC, and
compares them with those under ZBC. The M’ = 0.3 cases are almost identical;
at this low M’ compressibility effects are minor, and the difference between
ZBC and CBC negligible. At larger M2, however, with CBC the results show a
much better collapse over the three values of M. The maximum drag reduction
consistently occurs at 7* = 100, and is nearly unchanged across the three cases.

Overall, the favorable effect of compressibility in terms of maximum drag
reduction of the oscillating wall is confirmed. However, the significant increase of
the maximum drag reduction reported by |Yao & Hussain|(2019) is only confirmed
when the comparison is carried out with ZBC, whereas for CBC this increment is
very limited.

Figure shows results for the stationary waves, i.e. along line 2 of figure
plotted as a function of the streamwise wavenumber «,. The trend resem-
bles that of the temporal oscillation. Again, at MY = 0.3 differences from the
incompressible limit are minor. Once M’ grows, a significant dependency on the
wavenumber is observed: at large «, R% slightly decreases, but at small «, it
increases significantly.

For the ZBC dataset (left), a significant shift of the R% peak towards smaller
wavenumbers is observed, with a peak value of Rgg = 40.4% for x} = 0.005,
Rog = 42.5% for ki =0.005, and Rq”_s = 47.1% for k} = 0.0017. However, once
the CBC comparison is considered (right), the overshoot at small «; disappears;
data at M2 = 0.3 and M”, = 0.8 collapse, and the supersonic case still presents its
maximum at «} = 0.005.
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Figure 5.7: Drag reduction rate versus wavenumber «; for the steady waves (line 2
of figure[5.1] see inset), for ZBC (left) and CBC (right). Incompressible data are in
green and dashed lines are for ZBC, as in figure[5.6] Red and black open symbols
are from |Ruby & Foysi/(2022) at M2 = 0.3, Re, = 396 and MY = 1.5, Re, = 604,

Open symbols in the left panel of figure are the results of Ruby & Foysi
(2022), computed with ZBC. One immediately notices their different trend com-
pared to the present data. In fact, in their numerical experiments the value of
the semi-local Reynolds number evaluated at the centreline was kept fixed at
Re? . = 400: this implies a variation of Re. between 396 and 604 while moving
from the subsonic to the supersonic case. In the present simulations, instead,
Re. = 400 at all M. Additionally, in their study the forcing wavelength was scaled
with semi-local quantities, so that a direct comparison is problematic. Red and
black open symbols represent their results at M2 = 0.3 and M? = 1.5, rescaled in
viscous units: these rescaled data present the same trend observed here with CBC,
with the supersonic case lacking the R% peak at the smallest «;, and suggest a
qualitative similarity between a comparison based on a semi-local scaling and the
present CBC strategy.

We now move on to consider a travelling wave, and plot in figure|5.8 how R %
varies as a function of the frequency w* for a travelling wave at fixed x} = 0.005,
i.e. along line 3 of figure Once again, data for M2 = 0.3 do not differ from
the incompressible ones. At higher M2, with ZBC the maximum drag reduction
increases above the incompressible value, but, far from the peak, drag reduction
levels are generally lower. The boost in maximum drag reduction grows with M2,
and is accompanied by a slight shift towards higher frequencies. At MY = 1.5,
the peak is at w*™ = 0.025, and reaches the outstanding value of R’f’j = 51.6%.

Increasing M? also intensifies the drag increase in the range 0.05 < «} < 0.1,
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Figure 5.8: Drag reduction rate versus frequency w™ for the streamwise-travelling
waves at k7 = 0.005 (line 3 of figure see inset), for ZBC (left) and CBC
(right). Incompressible data are in green and dashed lines data are for ZBC, as in

figure

with a maximum of 12.2% for M’ = 1.5.

Once again, if the comparison is carried out with the CBC criterion, the
compressibility effects remain generally favourable, but become much smaller.
The extra gain is extremely small, and the curves at varying M’ nearly collapse.

Figure reports the results computed for the points on the vertical line
4 of figure at fixed w* = —0.21, where the incompressible R% is nearly
constant with x}. As for lines 1 and 3, compressibility is found to deteriorate the
control performances at large (positive and negative) frequencies. However, this
is emphasized by the ZBC comparisons, whereas CBC results show a much better
collapse.

Finally, results from simulations on line 5 in figure drawn along the ridge
of optimal R% in the (w — k) plane of parameters, are depicted in figure
It is worth recalling that, according to (Gatti & Quadrio| (2016), this ridge and
in particular its portion near the origin of the plane is where the largest changes
with Re are expected. Indeed, the subsonic points do not fully overlap with
incompressible data, which inherit the low-Re nature of the reference through
the interpolation, and show a rather uniform value of R%. The supersonic data
lie below the subsonic ones at large frequencies, but outperform them at small
frequencies. Once CBC is used, the collapse of the curves at different M” improves
significantly, while the general changes remain qualitatively the same.
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Figure 5.11: Input power for the travelling waves with x} = 0.005 (line 3 of figure
see inset) for ZBC (left) and CBC (right). For CBC the two contributions
to P;;,%, i.e. the control power P.% and the cooling power Pe% are plotted
separately. Incompressible data are in green, and dashed lines are for ZBC.

5.3.2 Power budgets

Since StTW is an active form of flow control, quantifying the energy consumption
of the control system is key to assess the overall efficiency: one needs to compare
costs, 1.e. the control energy, and benefits, i.e. the energy savings made possible
by a reduction of the skin-friction drag.

Figure plots, as one example, the input power P;,% on line 3 of figure
A similar scenario holds in the entire plane. For the ZBC comparison (left
panel), the input power, which depends significantly on the control parameters,
shows a decrease (in absolute value) with M”, especially at large frequencies.
With CBC, P;,% features two contributions: the control power and the cooling
power. They turn out to be roughly of the same order of magnitude, and both have
a minor dependence on M2, yet the dependence of the latter on control parameters
resembles the one of R%. The extra cost to cool the flow is an effect of the
additional term in the energy equation, which serves the purpose of yielding an
internal flow with a temperature profile that resembles an external flow. In a true
external flow, however, cooling would occur naturally: P;,% would reduce to the
control power P.%. Since the control contribution to P;,% in StTW is a rather
simple quantity that can be analytically predicted under the hypothesis of a laminar
generalized Stokes layer (Quadrio & Riccol 2011)), the perfect collapse of P %
under CBC witnesses how the controlled cases are being properly compared.

Figure[5.12]plots the net power saving P, % for the temporal wall oscillations,
i.e. along line 1 of figure[5.1] The left panel is computed with ZBC; in agreement

196



=50 DR% — Pc%
_50 -

—100+

Pnet%
Pnet%

—100 | 8 =150 Pret%
b —
e mb =03
m vb=0.8 —200 | 1
v Mb =15 T ,
—150 . . r
GQ 2016 L - ]
—250 ,
Il Il Il Il Il Il Il Il Il Il Il Il
50 100 150 200 250 300 50 100 150 200 250 300
T+ T+

Figure 5.12: Net power saving for the oscillating wall (line 1 of figure see
inset), for ZBC (left) and CBC (right). Incompressible data are in green. The right
panel also plots R% — P % (top set of curves), where dashed lines are for ZBC.

with the incompressible case, for A* = 12 no net saving is obtained. However,
the power budget improves with the Mach number, and at M2 = 1.5 it approaches
zero. This is due to the combined effect of increasing R% (for T+ > 100, see figure
[5.6), and decreasing P;,% (especially for small T'). The right panel of figure
plots P,.;% under CBC (lower set of curves), and the net power saving without
accounting for the cooling power, namely R% — P.%. Since P.% and P¢% are
of the same order of magnitude, P,.;% becomes largely negative: the interesting
outcome of the ZBC case vanishes. However, when only P.% is considered, P,,;%
becomes comparable with the ZBC case (upper set of curves), albeit the positive
compressibility effect decreases substantially.

Examining data along line 2 of figure|5.1|(stationary waves), which passes near
the absolute maximum of drag reduction, is instructive. The plot is shown in figure
For a ZBC comparison (left), the net saving increases substantially with M?
for k¥ < 0.012, such that the maximum shows a 5-fold increase, from 5% in the
incompressible case to 25.8% for M2 = 1.5 The peak is also observed to shift
towards smaller k. Under CBC, however, much of the improvement disappears,
and the curves almost collapse, with only a small residual effect for the supersonic
curve. When P, % takes into account the cooling power, the outcome is negative
regardless of the control parameters.

Results from Ruby & Foysi| (2022) at ZBC and at fixed Re; . are also plotted
in the left panel of figure They are computed at rather small wavenumbers,
and overlap to the present data for M2 = 0.3, but indicate much larger savings at
Mfz = 1.5. Nevertheless, their trend resembles the one obtained here at CBC, and
indicate the presence of a local maximum, and the lack of explosive savings at
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Figure 5.13: Net power saving for the steady waves (line 2 of figure see inset),
for ZBC (left) and CBC (right). Incompressible data are in green. The right panel
also plots DR% — P.% (top set of curves) where dashed lines are for ZBC. Red
and black open symbols are from Ruby & Foysi (2022) at M” = 0.3, Re, = 396
and M" = 1.5, Re, = 604.

vanishing wavenumbers.

Figure[5.14|plots the net power saving for travelling waves at fixed «} = 0.005
(line 3 of figure[5.1)). The ZBC comparison shows a large increase of P,¢;%, up to
31.4 % for the largest M; the peaks shift towards larger positive w. Interestingly,
the peaks of R% and P;,% occur around the same frequency, and they are both
enhanced by compressibility. When the comparison is carried out at CBC, however,
once again the curves show a tendency to overlap, and the maximum saving shrinks
to 17.8% for R% — P;,%, which remains an interesting figure, but in line with the
incompressible case. If both contributions to P;,% are included, P,,;% is largely
negative at every w.

5.4 Concluding discussion

We have studied how spanwise forcing implemented via streamwise-travelling
waves of spanwise velocity at the wall alters the skin-friction drag in compressible
flows. A set of 258 direct numerical simulations for a turbulent plane channel flow
are carried out, for subsonic (Mfz = 0.3), transonic (va = 0.8) and supersonic
(Mf; = 1.5) speeds, at the baseline friction Reynolds number of Re, = 400.
The available literature information, which includes only few such studies for
compressible flows, is significantly extended; in particular, travelling waves are
considered here for the first time. The study considers the control performance for

198



50 T T 50

GQ 2016 L DR% —Pc%

-50

—100 .z

Pnet%

—150

—200

-0.2 0.1 0 0.1 0.2 0.3

wt wt

Figure 5.14: Net power saving for the travelling waves with x} = 0.005 (line 3 of
figure see inset) for ZBC (left) and CBC (right). Incompressible data are in
green. The right panel also plots DR% — P % (top set of curves) where dashed
lines are for ZBC.

the temporally oscillating wall (k, = 0), the steady wave (w = 0), travelling waves
at fixed wavenumber x; = 0.005 and at fixed frequency w* = —0.21, and the ridge
of maximum drag reduction corresponding to waves travelling with a slow forward
speed. All the simulations are run by keeping the bulk velocity constant in time as
well as between unforced and forced cases.

In addition to the bulk velocity, in the compressible setting a further quantity
related to the energy equation must be kept constant to enable a proper comparison.
Since its choice impacts the qualitative outcome of the study, we employ and
compare two different strategies. The first, that we indicate with Zero Bulk
Cooling or ZBC, is commonly used for duct flows, and lets the bulk temperature
evolve freely until an asymptotic value is reached at which the heat produced within
the flow is balanced by the heat flux through the isothermal walls. Unfortunately,
ZBC leads to different bulk temperatures for each simulation, and in the present
context it hinders the physical interpretation of results.

In a second approach, named Constrained Bulk Cooling or CBC, the value of
the bulk temperature is kept constant during the simulations, by means of a bulk
cooling term in the energy equation. To do so, the value of the diabatic parameter
O is fixed across both the values of the Mach number and the control parameters
of the StTW, implying that a fixed portion of bulk flow kinetic energy is converted
into thermal energy, and that extra energy is spent for the cooling process. Using
the diabatic parameter (or, equivalently, the Eckert number) has been recently
considered by Cogo et al.| (2023) as a means to achieve a similar wall cooling
across different values of the Mach number. Extending a ®-based comparison
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Figure 5.15: Drag reduction for the streamwise-travelling waves at «7 = 0.005
measured in the compressible regime versus drag reduction of the incompressible
regime when the control parameters are scaled with the thermodynamic properties
of each different case at y* = 10.

to account for different values of ® with flow control and drag reduction is an
interesting future development of the present study.

Results of the simulations show that StTW remain fully effective in transonic
and supersonic flows, thus extending available results for the oscillating wall and
the steady waves. In fact, drag reduction can be higher in compressible flows than
in incompressible ones, when frequency and wavenumber of the forcing are small.
However, the improvement appears to be substantial only when the comparison is
carried out at ZBC. When CBC is used, only marginal improvements are detected;
curves at various M2, tend to collapse and to replicate the incompressible behaviour.
Figure[5.15|shows for the controlled flow at x = 0.005 (line 3 of the map of figure
the drag reduction measured by the simulations of the present work plotted
against the drag reduction of the incompressible case. The control parameters are
made dimensionless with the thermodynamic properties of each case at y* = 10
(see §5.2.5). Most points lie on the diagonal line: drag reduction becomes constant
with the Mach number, once the effect of the changed thermodynamics is removed.
The few outliers are points of the map where drag reduction gradients are extremely
large, and the limited number of available incompressible data leads to a poor
interpolation, as already pointed out in §5.3] This picture demonstrates that, once
spurious thermodynamic changes are factored out, compressibility has little to no
effect on the drag reduction performance of the travelling waves.

Similar results hold for the power budget: StTW yield large net energy savings,
even in the compressible regime, but the impressive improvements observed with
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ZBC against the incompressible reference do not carry over to the CBC compar-
ison, which broadly replicates the incompressible results. The last statement is
only valid as long as the extra cooling power implied by CBC is neglected, on the
basis that it represents an artefact to obtain an internal flow with a temperature
profile that resembles that of an external flow.

Hence, choosing the comparison strategy is key to properly describe how
drag reduction and power savings of an active drag reduction technique change
in the compressible regime. In a way, this reminds of the incompressible case,
where early studies for the oscillating wall claimed “disruption of turbulence” only
because comparing at the same bulk velocity implies an important reduction of
Re; when drag reduction is achieved. While ZBC is certainly apt to describe
internal flows, the observed drag reduction figures are significantly larger than
their incompressible counterpart primarily because the control parameters affect
the terms of the comparison. A CBC comparison, in which the dimensionless
temperature remains constant with M and across the controlled cases, seems more
appropriate, and in fact yields data that overlap well when the Mach number is
varied. With CBC, only a small, albeit non negligible, extra drag reduction and
net power saving are found in comparison to the incompressible case.

5.A A compact representation of the dataset

This Appendix uses the format of figure|5.5|to report, for completeness, the entire
dataset with figures where drag and power changes are plotted together. After line

1 of figure already described in figure [5.5] the following figures
and [5.19|respectively concern lines 2, 3, 4 and 5.
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Figure 5.16: Drag reduction rate and power budget versus wavenumber «; for the
steady waves (line 2 of figure see inset), for ZBC (left) and CBC (right).
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A simple and efficient
immersed-boundary method for the
incompressible Navier—Stokes
equations

Abstract

A novel immersed-boundary method for the incompressible Navier—Stokes equa-
tions is presented. It employs a discrete forcing for a sharp discrimination of the
solid-fluid interface, and achieves a second-order accuracy that is demonstrated
in examples with highly complex three-dimensional geometries. The method is
implicit, meaning that the point in the solid which is nearest to the interface is ac-
counted for implicitly; it is also implicit in time, when applied to time-dependent
problems, which benefits its stability and convergence properties. The method
stands out for its simplicity and efficiency: only the weight of the center point of
the Laplacian stencil in the momentum equation is modified, and no corrections for
the continuity equation and the pressure are required. Its computational efficiency
derives from its tight integration with the underlying second-order finite difference
method. The immersed-boundary method, its performance and its second-order
accuracy are first verified on simple problems, and then tested on two different
flows: the turbulent flow in a channel with a sinusoidal wall, and the flow in a
human nasal cavity, whose extreme anatomical complexity mandates an accurate
treatment of the boundary.
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6.1 Introduction

Immersed-boundary methods (IBMs) have seen their popularity increasing over
the last two decades, and are nowadays often employed in the numerical simulation
of fluid flows around complex geometries. They represent an interesting alternative
to the classic methods which discretize the fluid equations on a body-conforming
grid, and are particularly well suited to situations where the solid bodies have a
complex shape. An IBM relies on a Cartesian grid, where grid points generally
do not coincide with the contours of the bodies. The use of a Cartesian grid
brings along substantial advantages compared to body-conforming grids: easier
generation of a structured mesh, simpler and more efficient solution algorithms and
parallelisation, savings in memory requirements and computing time. IBMs may
render problems affordable in complex and/or moving geometries which would
otherwise be prohibitively expensive from the point of view of the computational
complexity, typical examples being those involving fluid-structure interactions
and/or bio-medical applications (de Tullio & Pascaziol 2016; Griffith & Patankar,
2020), or particles-laden flows (Uhlmann, 2005} Zhu et al., 2024). The obvious
drawback is that the boundary conditions on the body are defined at locations that
in general do not coincide with grid points; they are therefore enforced at grid
points, by either altering the volume forces or interpolating velocity values near
the boundary, which can be thought of as being “immersed” in the fluid.

IBMs can be traced back to the seminal work of [Peskin| (1972), and were
extended over the years, in particular starting from Fadlun et al.| (2000). Compre-
hensive reviews are provided in Peskin|(1972)); laccarino & Verzicco (2003)); Mittal
& laccarino| (2005); Sotiropoulos & Yang (2014) and in the very recent contribu-
tions of |Verzicco| (2023)); Mittal & Seo (2023). IBMs are generally categorised
into two classes (Mittal & laccarino, [2005), depending on whether they are based
on a continuous or discrete forcing. The continuous-forcing (or direct-forcing)
IBM adds a volume forcing term to the continuous Navier—Stokes equations be-
fore discretization. Examples of this class of IBM are described in Peskin| (1972);
Goldstein et al. (1993); Saiki & Biringen (1996). Such IBMs have been used in
different biological and engineering applications (Fauci & Peskin, 1988}; Zhu & Pe-
skinl, 2002; Kim & Peskin, 2007} |[Kim & Lai, |2010), and various forcing functions
have been proposed. The continuous-forcing IBM, however, unavoidably suffers
from the actual boundary being smeared over several nearby grid points because
of the forcing function, and from the need to derive ad hoc forcing parameters.
Moreover, the governing equations need to be solved in the whole domain, includ-
ing within the solid body, which leads to an aggravation of their computational
cost. The second class of methods, referred to as the discrete-forcing IBM, applies
the forcing (either explicitly or implicitly) to the already discretised Navier—Stokes
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equations; examples can be found in|Ye et al.| (1999); Fadlun et al.|(2000); Balaras
(2004)); Orlandi & Leonardi (2006); |Chi et al.| (2017). A sharp representation of
the boundary, which should lead to the same accuracy as a body-conforming grid
(Mittal & Seo, [2023)), becomes possible with the discrete-forcing IBM; however,
since the forcing is only introduced after discretization, such IBMs are tightly
linked to the underlying spatial and temporal discretization of the flow solver.

The present work introduces a discrete-forcing IBM. In early attempts, e.g.
Fadlun et al.|(2000), the discrete forcing in the momentum equation was computed
on the body surface and inside the body as well, while an additional explicit source
term needed to restore mass conservation near the boundaries was computed in
a later step. An alternative approach, called ghost-node IBM, was introduced in
Fedkiw|(2002) and further extended over the years (Tseng & Ferziger, 2003; |Ghias
et al., 2007; Mittal et al., 2008; L1 ef al., 2023)). Ghost nodes are those grid nodes
that lie in the solid but at the same time belong to the stencil used to compute
differential operators appearing in the governing equations at fluid points. With
ghost nodes, the forcing can be introduced implicitly in the momentum equations
by means of the discrete stencil operators. Therefore, the number of ghost node
layers depends on the discretisation. The general idea of a ghost-node IBM is to
enforce the boundary conditions by means of the values of the variables at the
ghost nodes; these are extrapolated from values at the internal points and from
those at the boundary, known from the boundary conditions. Typically, a single
value of each flow variable is associated to each ghost node, and is extrapolated
along the direction normal to the boundary. Over the years several extrapolation
schemes have been proposed. Mittal et al.| (2008) and |Ghias et al.| (2007) used
linear extrapolation to obtain a second-order convergence. The same convergence
was obtained by Tseng & Ferziger|(2003)), who employed a quadratic extrapolation,
and by Gao et al. |Gao et al.| (2007) via a second-order Taylor series expansion.
Employing a wider stencil near the boundary leads to a higher order of convergence
(see e.g. |Seo & Mittal/(2011)). Recently, however, |Chi et al. (2020) have observed
that, regardless of the reconstruction method, boundary conditions in the various
directions cannot be accurately and simultaneously represented by a single ghost-
node value; in their IBM they define and compute multiple ghost-node values, one
for each direction.

In a conventional ghost-node IBM, multiple points are used to extrapolate the
ghost-node value (Tseng & Ferziger, 2003; Gao et al.l, 2007). In Pan & Shen
(2009), (Cht et al. (2017) and (Chi et al. (2020), a single fluid point is considered;
however, this is chosen as the second fluid point instead of the closest to the
boundary, in order to avoid numerical instability issues arising when the distance
between the first point and the boundary tends to zero. This is because most
existing implementations deal with the forcing term explicitly, and require the
computation of the ghost-node values at each iteration, thereby increasing the
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overall computational cost. The equivalent implicit treatment is typically not
pursued, because it involves a matrix inversion. A further drawback brought about
by a wide interpolation stencil arises when the thickness of the body is locally
less than the size of the local grid spacing, or when two surfaces are separated
by a number of points which is less than the stencil width. Interpolating over a
wider stencil also entails delivering a worse approximation of the solution near the
boundary.

This paper introduces a new, simple and computationally efficient, implicit
in space and time, second-order accurate IBM for the incompressible Navier—
Stokes equations, based upon and tightly integrated with a second-order finite
difference method. Its peculiarity is that implicitness is achieved without any
matrix inversion, because the boundary conditions are enforced implicitly by
modifying only the weight of the midpoint of the Laplacian stencil, under the
assumption that close to the boundaries the viscous term is dominant. Similarly
to what done in |Gibou ef al.|(2002) when solving the variable-coefficients Poisson
equation with Dirichlet boundary conditions on the immersed boundaries, the
ghost-node values are extrapolated via a linear formula that only features the
boundary point and the first fluid point. Different ghost-node values are considered
for each discretisation direction, as also done in |Chi ef al.| (2020) but there in an
explicit way. The present method differs from a classic ghost-node approach since
it dispenses with explicitly computing and storing the solution at the ghost node,
with substantial advantages in terms of simplicity and efficiency. Modifying only
the coefficient of the Laplacian close to the boundary, as well as computing multiple
values of the coefficients, one for each direction, was already suggested by |(Orlandi
& Leonardi (2006). However, in their approach velocity at the ghost nodes was set
to zero, and the weights of both the centre point and the external point of the stencil
were corrected. Since our IBM treats the forcing term implicitly, numerical issues
associated with a small distance between the first fluid point and the boundary do
not arise. Moreover, differently from several discrete-forcing IBMs, a boundary
condition for pressure is not required.

The paper is organised as follows. After this Introduction, Sec. [6.2]thoroughly
describes our IBM, in its general design and then in its implementation into a
Navier—Stokes finite-difference solver, with a discussion dealing first with the
steady and then with the unsteady case. A critical discussion of the IBM and of
its advantages and drawbacks is offered in Sec. Finally, Sec. provides
an exhaustive discussion of accuracy and performance of the method as applied
to two examples: the turbulent flow over a non-planar, sinusoidally shaped wall,
and the flow in the complex anatomy of a human nasal cavity. Both examples, and
in particular the latter, involve geometric boundaries of extremely complex shape,
which challenge the accuracy of the IBM. In each and every instance second-order
accuracy is numerically demonstrated through a convergence plot. The paper
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concludes with some final remarks drawn in Sec.

6.2 The immersed-boundary method

This Section describes the IBM, starting with elementary, linear flow problems: a
steady flow example is used first to illustrate the spatial accuracy features of the
method, followed by a time-dependent example, where the temporal accuracy of
the method is discussed.

Our IBM starts from a basic “staircase” approximation of the boundary, in
which each point is defined as “internal” (in the fluid region) or “external” (in
the solid region), and improves upon this first-order representation via the IBM
correction, which gets applied only to those stencils of the discretised equations
which cross the solid boundary. In fact, the method can be alternately interpreted as
a deferred correction, a sometimes helpful viewpoint. The correction exploits the
fact that, near the boundary, viscous terms dominate over convective and pressure
terms. Therefore, the presence of the boundary can be properly accounted for
by simply altering the weight of the central point of the star-shaped stencil of the
Laplacian at the first internal point: no additional corrections of the convective
terms are required. In addition, as in some other IBMs, no correction of the pressure
or of the continuity equation needs to be expressly introduced; the absence of such
need can be explained by the lack of a boundary condition for pressure in the
continuous Navier—Stokes problem, since when there is no boundary condition
there is no position where to impose it; while IBMs without an express pressure
boundary correction have been used before, to the best of out knowledge this is
the first time that the validity of such choice is a posteriori confirmed through
convergence tests (see Sec. [8.4).

6.2.1 Equations of motion and discretization

The IBM is implemented inside a solver for the direct numerical simulation of the
incompressible Navier—Stokes equations, written in their primitive variables and
with suitable initial and boundary conditions:

ou 1 _,
E+(u-V)u—§V u+Vp=g

V-u=0

where ¢ is the time, w is the velocity, p is the reduced pressure, and g is a possible
body force. Re = U,crLrcr/v is a Reynolds number built with the reference
velocity U, r, the reference length L, r and the kinematic viscosity v of the fluid.

6.1)
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Figure 6.1: Two-dimensional view of a solid body (gray background) immersed
in a fluid (white background), with an overlaid staggered Cartesian grid. The
collocation points for the velocity components in the x, y and z directions are
drawn in green, red and blue. Dull colors denote the fully internal/external points,
and vivid colors the points where the immersed-boundary correction is applied.

In a Cartesian frame, the spatial directions are denoted as x,y and z, and the
corresponding velocity components as u, v and w.

The Navier—Stokes equations are advanced in time using a standard incremen-
tal pressure-correction scheme coupled with a fully explicit time scheme. The
momentum equation is first advanced in time without accounting for the incom-
pressibility constraint, that is enforced later during the so-called projection step.
The velocity field gets projected onto a solenoidal vector field and the required
pressure increment is found by (exactly or approximately) solving a Poisson equa-
tion and then used to update the pressure field.

The spatial discretization takes place on a Cartesian grid that is staggered in
the three directions, as sketched in figure Pressure is defined at the center
of each cell, whereas each velocity component is defined at the relative interface.
Uniform as well as non-uniform spacing is possible in each direction.

The discretisation relies on centered second-order central finite differences in
every direction, with a stencil made of three points. To introduce the notation used
in the rest of the paper, let us consider a two-dimensional case for simplicity. A
generic grid point of coordinates (x, y) is identified by the pair of integers (i, j),
such that x = x; and y = y;. Taking the first derivative as an example, for a scalar
function f the first derivative along the x direction at the (Z, j) position is written
as:

af

ool = dl) (=) firy+dy) (0 fij+dy) (D iy +O(AD) . (62)

LJ

In the expression above, the symbols d)(cll) () indicate the three finite-differences
coefficients for the centered first derivative along the x direction, evaluated at point
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Figure 6.2: Computational stencil for the w velocity component in the x — y plane.
As in figure vivid blue highlights the point where the immersed-boundary
correction is applied. A red dot denotes the actual boundary intersection.

(@, J)-

6.2.2 The steady case

We start by considering the steady case, and in particular the Laplacian operator:
since our IBM relies on the Laplacian being the dominant term near the solid
boundary, this simple example is particularly significant. At a generic (i, j)
position the Laplacian of, e.g., the z velocity component is discretised by second-
order central finite differences, which in the notation just introduced above read:

Viw ~d) (=Dwiiyj +dy) ()i +d5) (Dwierj+ (6.3)
2 2 2
dﬁ;g,j(—l)wi,j_l + d}(,;z,j(o)wi,j + d;;g,j(l)wi,jﬂ-

Let us assume, as shown in figure that point (i, j) is located close to the
boundary; the solid boundary crosses the left arm of the computational stencil,
and the left neighbor of point (i, j), i.e. point (i — 1, j), lies within the solid.
The simplest description of the boundary is achieved by setting the velocity at the
external point to zero, i.e. w;_,; = 0. This amounts to a staircase, i.e. piecewise
parallel to the axes, approximation of the boundary, whose maximum error in the
position of the contour of the body is proportional to Ax = x; ; — x;_1 ;, i.e. one of
first-order accuracy.

To increase the accuracy of the description and to avoid deteriorating the overall
second-order accuracy of the underlying numerical method, the representation of
the boundary needs to be improved to a piecewise-linear approximation. To this
aim, instead of setting w;_; ; to zero, we set to zero a linear interpolation between
w;_1,; and w; ;, evaluated at the true boundary whose x position is denoted as
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xp = x; — 0x . The linear function that fits velocity between the position (7, j) and
the true boundary at x; reads:

Xp — Xi

lin(x,) = (1 + ) Wi (6.4)
which satisfies lin(x;) = w; ; and lin(x; — 6x) = 0.

The same function can be used to linearly extrapolate the non-zero value w;_y ;,
corresponding to the ghost point that falls inside the boundary and that is needed
for building the stencil of the discretised Laplacian (??) in the first fluid point in
the neighborhood of the boundary. The extrapolated value reads:

ox — Ax
Wii.
ox J

lin(x;—1) = ( (6.5)

The above would be essentially identical to other implementations of the IBM.
Crucial to ours is the observation that the extrapolated value for w;_; ; does not
need to be stored explicitly as a ghost value, but can be substituted back into
equation (??) and accounted for implicitly (and the same will remain true in
unsteady problems). Doing so not only will be seen to eliminate the numerical
instabilities that plague explicit extrapolation, but in addition concentrates the
modification in the coeflicient of the central point of the stencil, leading to a single
value to be stored even when this correction needs to be applied along multiple
directions. The updated coefficient a?izl)] (0) reads:

- Ax — O0x
a2 0) = (a2)(0) - al) (-1) (6.6)
where the term Ar— 6
(2 —oX
d) /(=)= 6.7)

embodies the immersed-boundary correction, referred to in the following as A.
It is worth noting that, owing to the opposite signs of d)(f;zl).’j(O) and d)(c;zgyj(—l),
the updated coefficient cfi;zl.)’j(O) is always of the same sign; its absolute value
monotonically increases for Ax > éx > 0, and can not be zero. This leads to an
increased diagonal dominance, more and more so when 6x — O.

The extension to the multi-dimensional case is straightforward, as the correc-
tions to the central point of the stencil ensuing from the derivatives in different
directions are just additive. What changes is that the local linear solution be-
comes a plane in two dimensions, or a hyperplane in three dimensions; for the
three-dimensional case, for example:

x — . — . —
b=Xi YbT Vi Zh T %k
ox oy 0z

lin(xb,yb,zb) =11+ Wi jk (6-8)
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Figure 6.3: Laminar Hagen—Poiseuille flow, equation (6.9). Left: value of fRe,
as computed on an N X N Cartesian grid (exact value is the horizontal line). Right:
percentage error against the exact value fRe;, = 64; comparison between the
staircase approximation (black) and the improved approximation yielded by the
IBM (red).

but this is easily seen to be equivalent to an independent linear extrapolation along
each arm of the star-shaped stencil followed by a simple sum of all the contributions
into a global correction that will be denoted in the following as A, ; k-

6.2.3 The steady case: example

The potential of the IBM is illustrated through a simple example. We consider the
laminar parallel flow in a circular pipe in the absence of external volume forces. If
the pipe’s axis (or, generally, the axis of any straight duct with arbitrarily shaped
cross section) is aligned with the z direction of the Cartesian reference system, the
problem is homogeneous along z, and reduces to a two-dimensional and steady
problem in the (x,y) plane, where the only differential operator is a Laplacian.
The governing equations in fact simplify to the following Poisson equation:

Lo, _9p

_ — , 6.
Rey, v 0z 6.9)

where w is the streamwise velocity component, which does not depend on the
streamwise coordinate, Rej, is the Reynolds number, and on the right-hand side
the pressure gradient dp/dz = I1 is uniform.

We consider in particular the case of a circular pipe of radius R, where the
solution is known analytically, and is given by the Hagen—Poiseuille parabolic
velocity profile: hence, the relationship between the pipe radius R, the bulk
velocity Uy, the fluid kinematic viscosity v, and the wall friction is in closed form.
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Namely, the friction factor f = 4I1R/ pUg is known to depend on the Reynolds
number Re, = Up2R /v as f = 64/Re,. We thus solve numerically equation (6.9)
after discretization on a square domain, of edge length 2.5R, where a Cartesian
mesh with N X N grid points is defined. Thanks to the lack of time dependency,
the solution can be computed easily by direct matrix inversion.

The improvement provided by the IBM over the staircase approximation is
shown in figure [6.3] where the product fRe; is computed and compared to its
analytical constant value, for the staircase approximation of the contour and for
the IBM. The percentage error for fRej is reported in figure [6.3| as a function
of the number of the grid points N. As expected, the staircase approximation
is confirmed to only be first-order accurate, whereas the IBM is second-order
accurate: with N = 104, the error with respect to the exact solution is still 3% for
the staircase approximation, whereas it drops to 0.01% for the IBM. The Python
code used for this example is available as Additional Material.

6.2.4 The unsteady case

Since the IBM approach described above acts by adding a correcting weight to
the central point of the Laplacian operator, extending it to the Navier—Stokes
equations only requires the additional step of considering the time dependence
of the solution. Let us write the time-dependent, incompressible Navier—Stokes
equations after spatial discretisation via second-order central finite-differences on
a staggered grid; as an example we take again their z component solved on an
(x, y) plane, and emphasize the second derivative coming from the viscous terms,
as:

dw,-,j _
e

i =dCL (=Dwiiyj+dS) (O wig+dS (Dwij +... (6.10)
where f; ; is a shorthand form for the right-hand side of the discrete equation, which
includes the Laplacian involved in the viscous term, as well as the convective and
pressure terms. All these terms will be treated with an explicit temporal integration
and are thus known from the previous timestep. While the explicit treatment of the
right-hand side is not necessary for introducing the present IBM, it is adopted here
because it will provide the overall numerical method with interesting properties,
which will be discussed in the following. Recall that, evenif f; ; is treated explicitly
in the momentum predictor equation (6.10), a pressure correction step is still
required. For simplicity, equation (6.10) explicitly shows the second derivatives in
the x-direction, while all other explicitly-treated terms are grouped in the reminder
indicated by . . ..

With reference to the previous example discussed in Sec. [6.2.2] we assume
again that the solid boundary crosses the left arm of the computational stencil,
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with the body surface lying between the central point (i, j), located within the
fluid, and its left neighbor (i — 1, j), located within the solid. The value w;_; ; in
equation (6.10) is replaced by its linear extrapolation (6.3), to yield:

dw,-,j
dr

= —/lw;i,jwi,j + d)(c;z?’j(o)wi,j + d)(c;zgyj(l)WHl,j +..., (6.11)
where A,,; ; is the IBM corrective coeflicient arising from the linear extrapolation.
The IBM correction has thus removed from the Laplacian the terms involving the
neighboring point within the body, by substituting it with the coefficient 4,,,; ; that
multiplies w; ;. In practice, as long as w;_; ; in the solid is zero and the right-hand
side is evaluated explicitly, there is no need to modify the discrete Laplacian, since
the related term vanishes automatically. In this way the effect of the IBM is to
add a term to the right-hand side of equation (6.10), which can thus be rewritten
compactly as:
dW,', j
dr
If equation is discretised in time with a fully explicit approach, for instance
via an explicit Euler scheme, the well-known explicit extrapolation-based IBMs
are obtained. These possess poor stability properties, as they require vanishingly
small timesteps whenever the central point (7, j) happens to be very close to the
body surface. In this particularly stiff condition, in fact, the ratio (Ax — dx) /ox
contained in A,,;; ;, tends to infinity.
Instead, in the following, we keep the explicit treatment of f; ;, but allow the
IBM term to be treated differently. The simplest choice, useful for showcasing the
method, is to opt for the implicit Euler method, which leads to:

= —/IW;,-,J-W,-,J- + fi,j . (612)

n n
o+ Atf
*n+l _ wl,] tf;,J

wntl _ R 6.13
i T T Ay (6.13)

where At is the time step, and wf".’” is the intermediate velocity of the frac-

tional step method, which needs to be later corrected by an appropriate projection
scheme. The implicit treatment of the IBM term has the crucial advantage of not
deteriorating (and actually improving) the stability properties of the underlying
temporal scheme. This is easily observed by considering the two limiting cases of
Aw:i,j = 0, 1i.e. no IBM correction is applied, and A,,;;, ; — oo, i.e. the point (i, )
is on the body surface. In the first case, we simply recover the unmodified Navier—
Stokes equation; in the second, instead, the exact boundary condition w;.",’;’” =0
is enforced.

Second-order accuracy in time can be achieved without compromising stability
by integrating the IBM correction term exactly (or more precisely, in a way that
would be exact if the r.h.s. were independent of the solution), as explained in the
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following. Let us first consider equation (6.12)): this is an ordinary differential
equation with a particular solution depending on f; ;, assumed here to be constant
within a timestep accordingly with the considered explicit temporal scheme, and
a homogeneous solution w; ; = e~twis! . which can be retrieved by analytical
integration for f; ; = 0. In fact, —A,,; ; is the eigenvalue of equation (6.12) when
fi,j 1s a constant. Without any loss of generality, if we consider a generic explicit
method for temporal integration, we can rewrite equation as follows (while
dropping superscript * and the subscripts to simplify the notation):

Aw™! - Bw" = CF" (6.14)

where F" is typically a linear combination of f; ; evaluated at different time levels,
as determined by the temporal scheme of choice. Equation (6.14)) reduces to
equation for A = (1 + Ay A1), B = 1 and C = At, with F" = T
for instance, when the underlying scheme is a first-order explicit Euler, or the
corresponding expression for a higher-order (say, Runge—Kutta) scheme.

The coefficients A, B and C can now be chosen by requesting that equation
(i) possesses the same eigenvalue as the semi-discrete equation (6.12]), and
(ii) reduces to the exact steady problem when dw /df = 0, and thus w"*! = w".

Constraint (i) can be satisfied by observing that equation for F" = 0
yields w"*! /%" = B/A, and by substituting the exact homogenenous solution of
equation (6.12)), thereby obtaining B/A = e w4,

Constraint (i) can be enforced by plugging w"*! = w" into equation (6.14)),
which yields w" (A — B) /C = F", and prescribing that this equation shall equal
equation for dw/dr = 0. This occurs for (A — B) /C = A, ;, from which
C = (A - B)/A,. ;. The consistency of the underlying temporal scheme already
provides F" = f" at steady state. The three coeflicients are now known up to a
multiplicative constant, since the problem is linear. By choosing e.g. C = At, one
obtains

/lw;,',jAt
B = T ] (6.15)
and A = A,,;; jAr + B. Thus, equation (6.14) becomes
(Awyi jAL + B) W™ — Bw" = AtF™. (6.16)

We note that the function B(A,,; ;jAt) of equation (6.15) can in practice be
approximated by the reciprocal of a Taylor expansion around A,,,; ;Ar = 0 to a
desired order, without destroying its essential stability property that 1 > B > 0
for all At; this may be useful to avoid the evaluation of a transcendental function
and a singular limit, and thus improve performance when computing on graphics
accelerators.
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In the following applications, second-order global temporal accuracy is
achieved by adopting the three-stage, third-order Runge—Kutta (RK) method of
Rai & Moin (1991) to express F”", owing to its low memory requirements and
excellent stability properties which are not affected by the IBM. The RK method
is combined with the IBM in the same way it is typically combined with Crank-
Nicolson for the implicit integration of the viscous term, as in |[Kim et al.| (1987).
This choice results in the following scheme:

,,H_k—l k-1 }’l+k;2

=2 n+
S = At akf;-’j 3 +bkf.

ensk
(/lw;i,jCkAt + B) w s —Bw

¥ i fork=1,...,3,

(6.17)
n+k . n+k . .
where w; ; 7 is the velocity at the k-th RK stage, whereas i ; 7 is the right-hand

side evaluated with w?jé and other variables at the same RK stage. We also recall
that the intermediate velocity (denoted via the additional superscript *) is not
divergence-free and an additional projection step is required after each substage
to obtain the solenoidal velocity field. According to Rai & Moin| (1991), the
coefficients in equation (6.17) are:

_ |64 50 950}, _ g 34 50
% =1120°120° 120 [ ° “F17 71200 120

}; cr =ag+by. (6.18)

6.2.5 The unsteady case: example

The simple example of the laminar parallel flow in a circular pipe of radius R,
already considered in Sec. [6.2.3] is extended here to demonstrate the present
IBM in a time-dependent flow. By discretizing the problem on a fine 200 x 200
Cartesian grid, we ensure that the spatial discretization error is not dominant. The
flow is governed by the unsteady version of equation (6.9)), i.e.
ow I _,

i T+ Rev w, (6.19)
where the imposed uniform pressure gradient I1(7) can now vary with time. We
opt for the time dependency I1(¢) = sin(2x ft), where frequency f enables the def-
inition of a Reynolds number Re = R%f /v, i.e. the ratio between the characteristic
diffusion time R?/v and the characteristic time of the forcing 1/ f.

For a given temporal integration scheme, such as the Runge—Kutta method
described above, the accuracy of the numerical solution of equation depends
on how well the temporal evolution of IT and of the diffusive effects are represented.
This is quantified by two nondimensional numbers: the nondimensional timestep
fAt, and the grid Péclet number Pe = vAt/Ax?. By selecting Re = 50 we make
sure that even for the lower values of At tested below, the main source of error will
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Figure 6.4: Unsteady laminar pipe flow, equation (6.19)), spatially discretized on a
square domain with 200x200 grid points. Left: evolution of the difference Q—Q(©)
with the temporal resolution, expressed via the Péclet number Pe = vAt/sz;
the asymptotic flow rate value is obtained via Richardson extrapolation. Right:
percentage error 100|Q — Q(©)|/Q(®). Black symbols and dashed line refer to the
first-order method; red symbols and dashed line indicate the second-order method
(see text).

not be the temporal evolution of I but rather the temporal accuracy of the viscous
effects and of the IBM method.

Starting from an initial condition of quiescent flow, equation (6.19)) is integrated
intime up to ¢ = 0.5/ f, and at that time the flow rate Q in the pipe is measured; the
numerical experiment is repeated for several values of fAf ranging between 0.002
and 1.5625 x 107>. Note that the largest value of the time step corresponds, for the
employed spatial discretization, to Pe = 0.256, which is less than half the critical
Péclet number for the temporal stability of the underlying RK method. Equation
is solved by the second-order method presented in equation (6.17)), as well
as by the first-order method obtained from the combination of the RK method
with an implicit Euler scheme for the IBM term, i.e. A = 1 + AcyAt, B =1 and
C = At. Results are displayed in figure together with the error with respect to
the estimate of exact flow rate Q(e), obtained via Richardson extrapolation. The
figure shows both that the expected order of temporal convergence is achieved and
that the error is generally extremely low.

As a final remark, it is interesting to note that a classic explicit treatment
of the IBM term yields a stable integration only for the smallest timestep tested
above. The poor stability of the explicit IBM could be even worse if any grid point
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happens to be very close to the body surface, making the method unconditionally
unstable. Crucially, the present implicit treatment removes this issue, and averts
deteriorating the stability properties of the underlying numerical method.

6.3 Discussion

6.3.1 Advantages and drawbacks

The greatest novelty of the approach outlined above consists in the implicit nature,
in both space and time, of the correction introduced to account for the presence of
the boundary; the ability to concentrate the correction in the central point of the
stencil allows such implicitness to be achieved at no cost.

In the stationary case described in Sec. the term “implicit” refers to
the fact that the value w,_; ; in a point within the body is not actually computed
by using equation (6.5]), but gets hard-coded instead into the expression of the
discretised Laplacian and in particular into Ji?j(O) through coeflicient A, ;.
Doing so avoids the numerical stability problems that plague “explicit” methods:
when the boundary point approaches a discretisation node (i.e. dx — 0), such
formulations imply that w;_; — oo. If, however, the correction is imposed
implicitly as in the present case, 6x — 0 makes the denominator of equation
tend to infinity, and the value of w; ; is gradually driven towards zero, which
is the desired result. Thanks to this correction, the discretization matrix becomes
more and more diagonally dominant, see equation (6.6, and the convergence of
any iterative method used to solve the discretised equations is improved rather
than reduced. This property becomes apparent when one considers that d)(czl)J (-1)

and d)(c;zl.)j(O) are of opposite signs, and thus cf)(c;zi)j(O) monotonically increases for

Ax > 6x > 0 and is prevented from approaching O.

In the time-dependent case of Sec. [6.2.4] “implicit” additionally means that
the linear extrapolation of equation is evaluated at time ¢ + At, as in equation
(6.13), which is again desirable to avoid numerical instabilities. For 6x = 0,

equat}on (6.13) can be shown to equal the exact implicit boundary condition

AR ()

wIn conclusion, the implicit character of the IBM ensures convergence and
stability of the numerical method; moreover, since only the central point of the
Laplacian stencil is modified, this improvement is obtained at no computational
and memory cost, since the velocity w,_; ; at the ghost point within the body needs
to be neither explicitly computed nor explicitly stored. This additional advantage
obviates another programming difficulty related to the presence of external points
appearing in more than one equation (for example the Cartesian components of the

momentum equation); in the explicit implementation multiple values extrapolated
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linearly from different directions would have to be stored (or otherwise a higher-
than-linear extrapolation would be required), but no such difficulty arises with the
implicit formulation.

6.3.2 The underlying staircase approximation

As pointed out in Sec. the simplest (first-order) description of the immersed
boundary is achieved by a staircase (piecewise-constant) approximation of the
body geometry, in which the boundary always coincides with a grid point. Since
the IBM uses a linear extrapolation to improve upon the staircase approximation
of the boundary, and thus restore the original second-order spatial accuracy of the
numerical method, it is essential that the underlying staircase approximation works
properly, before any correction is applied. This involves non-trivial aspects.

To begin with, the equations of motion in their discrete form need to be closed,
i.e. the number of unknowns must equal the number of equations. This property
becomes non-obvious when the geometry is complex and the grid is staggered. To
fulfill the closure requirement, the discretization grid is defined independently for
each velocity component, and each grid is compared with the true boundary to tag
a grid point as either internal or external. For each component, internal points are
chosen as those where the corresponding component of the momentum equation
(6.10) needs to be solved; this ensures the correspondence between equations and
unknowns. The velocity components on the external points are set to zero. This
decision, which is trivial in the one-dimensional case, avoids any trouble with
external points appearing in more than one equation.

The closure of the continuity equation deserves a specific remark. Since a
pressure boundary condition is neither required nor present, only the velocity
grids are compared to the boundary to discriminate external and internal points.
Thereafter, a pressure point is labeled “internal” if it falls on either side of at
least one internal velocity point; it follows that an “internal” pressure point may
occasionally fall (slightly) outside the true boundary, and may also be shared by
different components of the momentum equation in different directions. To match
the number of equations and unknowns, the continuity equation is then in principle
solved everywhere, both in the internal and external pressure collocation points, as
though there was no boundary. In practice, however, only the internal points need
to be considered since, with this definition, external pressure points are surrounded
by all zero velocities, and continuity is trivially satisfied there. In practice, when
the pressure-correction step of the fractional step method is executed, only the
internal pressure collocation points are updated, and these are the only ones that
will appear in the momentum equations at the following time step.
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Figure 6.5: Effect of the wall shear stress on the stability of a sand bed. The flow
develops between the wavy wall described by z,, and the upper boundary at z = 1.
The wall-shear stress is decomposed into in-phase and quadrature components.
Left: unstable situation (the quadrature component 7y of the stress is negative).
Right: stable situation (77, is positive). Adapted from |Luchini| (2016).

6.4 Results

We move on to describe two examples where the present method is applied. Both
involve turbulent flows over non-planar boundaries; they are meant to illustrate
the accuracy of the IBM in cases where the convective terms and the continuity
equation are at play. The first example is relatively simple from the geometric
standpoint, and concerns the turbulent flow in an open channel with a sinusoidally
undulated bottom. The second test case is about the flow within the human nose,
and is instead characterized by an extremely complex geometry.

6.4.1 The turbulent flow in a channel with undulated bottom

The IBM is applied to simulate via DNS the turbulent flow in a channel with
a sinusoidally undulated bottom wall: this is an idealised model of a river or
flume with a sandy bottom, that may bulge up and generate ripples and dunes.The
generation mechanism of these ripples involves fluid inertia (Charru et al., 2013);
a net accrual or depletion of sand particles occurs depending on the relative spatial
phase between the fluid shear stress and the wall undulation. Figure|6.5|sketches a
sinusoidally undulated bottom and the relative wall-shear stress, decomposed into
in-phase (cosine) and quadrature (sine) components, whose sign determines the
generation of ripples (Blondeaux,|1990): they grow whenever an unstable situation
is determined by a negative quadrature component of the wall-shear stress.

Here we replicate with higher accuracy the simulations performed by |Luchini
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€ a Ntot Ax Ay AZmin AzZmax Ny A At
0.05 1/256 < @ <1/2 up to 251657210 0.0654 0.0393 4.0x1073 0.0224 64 0.034245 0.03
0.025 1/128 < @ < 1/2 up to 251657210 0.0654 0.0393 2.0x1073 0.0111 128 0.027180 0.008
0.0125 1/32<a<1/2 up to 125828605 0.0654 0.0393 9.6x 1074 0.0056 256 0.021573 0.0015

0.05 1/2 1966080 0.0654 0.0393 4.0x 1073 0.0225 64 0.034245 0.001
0.05 1/2 2799360 0.0582 0.0349 3.6x 1073 0.0199 72 0.030442 0.001
0.05 1/2 3840000 0.0524 0.0314 3.2x1073 0.0179 80 0.027398 0.001
0.05 1/2 6635520 0.0436 0.0262 2.6x1073 0.0149 96 0.022830 0.001
0.05 1/2 8436480 0.0403 0.0242 2.4x1073 0.0137 104 0.021088 0.001
0.05 1/2 10536960 0.0374 0.0224 2.2x1073 0.0127 112 0.019557 0.001
0.05 1/2 15728640 0.0327 0.0196 2.2x1073 0.0111 128 0.017108 0.001
0.05 1/2 30720000 0.0262 0.0157 1.6 x 1073 0.0089 160 0.013699 0.001

Table 6.1: Computational parameters for the numerical simulations of the turbu-
lent flow in a channel with undulated bottom. The equivalent grid spacing A is
computed by assuming a uniform grid in all directions.

(2016), aimed at determining how this instability depends on the wavelength and
elevation of the bottom. We consider a channel configuration with a shear-free, flat
upper surface, with lengths and velocities made dimensionless with the channel
height / and the bulk velocity U,. The (dimensionless) expression of the undulated
bottom is:

Zw = € (1 + cosax) .

Here « is the dimensionless wave number of the wavy bottom wall (with wave
length 4 = 27/a@), and € is the dimensionless amplitude of the waviness. The
computational domain extends for L, = A, L, = 2w and L, = 1 in the streamwise,
spanwise and wall-normal directions. The wavenumber is varied in the range
1/256 < @ < 1/2 (or 12.5 < L, < 1608). Please notice that these very long
computational boxes are required because this flow was shown in |Luchini| (2016)
to have an interesting response to very long wavelengths of the undulation. While
the shortest extreme is comparable to that employed in low-Re turbulent channel
flow simulations (Kim et al., [1987), at the other extreme more than two-orders
of magnitude longer domains are considered. Several simulations are run for
the Reynolds number Re, = Uph/v = 2800. Periodic boundary conditions are
used for the streamwise and spanwise directions, free-slip boundary conditions are
applied at z = 1, and no-penetration and no-slip conditions are applied at the wavy
wall. To obtain well converged statistics, simulations are run for at least 1000U} / h
time units after the initial transient. Table contains general information about
the set of simulations carried out for the present work. In a first set of simulations,
the grid spacing is kept constant while the size of the computational domain is
varied; a second set of simulations, used for a grid convergence study, has a fixed
domain size, and a spatial resolution that progressively increases uniformly in all
directions. Since the wall-normal distribution of grid points is mildly stretched, an
average wall-normal spacing Az = 1/N, is used to provide an equivalent uniform
grid spacing A = (AxAyAz)(1/3).
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Figure 6.6: In-phase (left) and quadrature (right) components 71, and 7y, of the
wall-shear-stress response to a wall modulation of wavenumber «.

Nios A T x10% o1, x 10° 11, x10° o, x 10°
1966080 0.034245 6.40764  7.18508 -1.18162  6.40058
2799360 0.030442 6.76041  8.67627 -1.25258  7.84068
3840000 0.027398 6.80707  4.46546 -1.29628  3.54087
6635520 0.022830  7.13429  7.65407 -1.37018  6.87870
8436480 0.021088 7.28166  7.05332 -1.38633  6.14717
10536960 0.019557  7.28948  8.31248 -1.40233  6.93155
15728640 0.017108 7.42786  8.55187 -1.42513  7.48778
30720000 0.013699  7.46693  7.73307 -1.45979  7.64443

Table 6.2: Spatial convergence study for the wavy channel test case. The table
lists the number of grid points, the mean grid spacing, the values 7. and 71 of the
mean stresses, and the corresponding root-mean-square values o of the variance
of the estimate of the mean, computed after Russo & Luchini (2017).

The quantities of interest here are the spatial Fourier components 71, and 7y
of the time-averaged wall-shear stress 7(x). They are defined as
Jax

2 [ 2[5 2
Tie = L_/ 7(x) cos( )dx; Ty = L_/ 7(x) sin( Zx
x J0 x JO X
(6.20)

Figure [6.6] shows the dependence of 7|, and 7, on the wavenumber « of the
wall modulation, for different values of €. The red curve is for e = 0.05 and has
been obtained using the same time step and grid size as in|Luchini (2016), whose
results are perfectly reproduced. The plot confirms that the considered values of
€ are small enough to be in the linear regime. As already observed by |Luchini
(2016), when « is reduced 1;. decreases to a local minimum at @ ~ 0.2, and then
increases again. At the smallest @, the quadrature component 7, changes sign,
indicating a change of the stability of the ripples. This is confirmed at different

2nx
L,
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Figure 6.7: Convergence of the quadrature component 71 of the wall shear stress
for the wavy channel test case. Left: variation of the time-averaged value of 7y,
with the mean spatial resolution A; the error bars correspond to +30,, where
the root-mean-square value oy of the estimate of the mean is computed after
Russo & Luchini| (2017). The continuous line is a fit of equation (6.21)), yielding

7\ = ~0.001518, C = 0.2109 and p = 1.912. Right: percentage error 100(r\* ~

s
T15)/ Tl(:) of the quadrature stress versus spatial resolution; the dashed line shows

the expected second-order decrease.

amplitudes €. For a discussion of the physical implications of this behaviour, see
Luchinif (2016)).

To verify the order of accuracy of the IBM, figure plots the results of
a spatial convergence study, whose main results are reported in table [6.2] For
a = 0.5 (or L, = 4n) and € = 0.05, different discretizations have been tested,
by progressively reducing the mesh size uniformy in all the three directions. The
coarsest mesh has (Ny, Ny, N;) = (192, 160, 64), corresponding to a total number
of points Ny, = 2 x 10°. The finest mesh has (N, Ny, N;) = (480,400, 160),
with a total number of ~ 3 x 107 points. The time step is fixed for all cases at
At = 0.001, a value that is small enough to ensure that the time discretisation error
is not dominant.

Given a numerical method with rate of convergence p, the difference between
the solution f computed on a three-dimensional uniform grid with spacing A and
the exact solution f(¢) must vary according to

IIf = @ <CcA™P (6.21)

where C is a constant. We use equation (6.21]) to compute a least-square fit for the
quadrature stress component (equivalent results, not shown, are obtained with the
in-phase component) obtained from the numerical experiments. Since the exact

l(e) is evaluated with the asymptotic value of the

solution is not known, the value T s
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fitting curve. In computing the time-averaged value of 715, we also quantify the
error implied by the finite averaging time; to this purpose the method described
by Russo and Luchini in Russo & Luchini (2017) i1s used to compute the root-
mean-square value o of the estimate of the mean, and figure plots error bars
for £30°. As expected, figure confirms that the present immersed-boundary
method exhibits a second-order convergence, with an exponent p = 1.912.

6.4.2 The turbulent flow in the human nose

The air flow inside the human nose is an important application, owing to the wide
and obvious implications of a healthy breathing. The physiologically healthy flow
through the nasal cavities is difficult to define, as no single flow feature can be
shown to correlate with the perceived breathing quality. The prevalence of anatom-
ical malformations (like e.g. septal deviations, or hypertrophy of the turbinates)
is huge, with nasal breathing difficulties affecting up to one third of the entire
world population (Li ez al., 2020). In recent years the number of numerical studies
dealing with the fluid mechanics of the human nose, built upon the patient-specific
anatomic information provided by CT scans, has increased considerably. While
the majority of such studies consists in simple RANS simulations executed with
commercial, finite-volumes software, the availability of accurate reference solu-
tions remains essential for validating physiology studies of fundamental character,
and becomes clinically important whenever specific and unusual anatomies need
to be evaluated for diagnosing and surgery planning. However, so far very few
studies, (e.g. [Calmet et al.| (2016)); |L1 ef al.| (2017)), have described the nose flow
with DNS-like resolution, owing to the combination of its extreme geometrical
complexity and the accompanying significant computational cost; none of them
employed an immersed-boundary approach.

In the context of the present work, the nasal airflow represents an ideal test
bed for the IBM, whose accuracy and computational performance can be assessed
on a geometrically challenging scenario. In this study, we consider therefore one
specific sinonasal anatomy, that has been recently used in a tomo-PIV experiment
described in Tauwald et al.| (2024). The anatomy is derived from segmentation
of a CT scan of a healthy patient, composed of 384 DICOM images with sagittal
and coronal resolution of 0.5 mm and an axial gap of 0.6 mm. The anatomy is
segmented at constant radiodensity threshold, with the assistance of an experi-
enced surgeon, according to a well established procedure (Quadrio et al., 2016b),
to identify the interface between air and solid tissues. For experimental reasons,
the whole anatomy has been then enlarged by a factor of 2. Figure [6.8] portraits
the anatomy of the internal nose, and demonstrates how the actual geometrical
boundary is extremely complex, with evident three-dimensional features and the
presence of large lateral volumes, the paranasal sinuses, which are only loosely
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Figure 6.8: Anatomy of the human airways, after a patient-specific reconstruction
of a CT scan. The surface represents the boundary of the computational domain,
and is augmented by a spherical volume placed outside the nose tip, whose goal is
to set the computational boundary away from the nostrils. The vertical (coronal)
sections on the right illustrate how the complex cross-sectional shape varies along
the passageways, including the nasal vestibulum, the anterior part of the meati
(a), the intermediate sections shaped by the turbinates (b) and (c), down to the
rhinopharynx (d).

connected to the main airways via small orifices called ostia. Figure [6.8|also high-
lights, by means of coronal sections, how the cross-sectional shape of the airways
varies significantly from the nose tip towards the throat. The computational do-
main also comprises a spherical volume, shown in figure which surrounds the
external nose: the sphere is designed to locate the boundary of the computational
domain far from the nostrils, while keeping the computational overhead within
reason.

In this work a simple steady inspiration is considered, where a (constant in
time) pressure drop is imposed between the inlet at the external surface of the
sphere and the outlet at the trachea; the numerical value of 5 Pa and the corre-
sponding volumetric flow rate of approximately 600 cm?>/s correspond, after the
factor-of-two geometrical expansion is accounted for with dynamic similarity ar-
guments, to a mild physical activity (Wang et al., 2012)). Note that, because we are
replicating an experimental study, dimensional quantities are used in this section.
Regardless of the time-independent boundary conditions, the flow is unsteady, with
three-dimensional shear layers and vortical structures; in some regions the flow
becomes turbulent. Starting from an initial condition of resting flow everywhere,
the simulations are advanced in time until the initial transient has vanished, and
then further integrated for about 1s of physical time to compute time averages.

Some features of the time-averaged flow are illustrated in figure The left
panel plots the mean pressure field in a representative sagittal section that cuts
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Figure 6.9: Left: mean pressure field in a sagittal section. Right: mean velocity
magnitude field in the same section.

Nigt  Almm] Q[em’[s] o [em’[s]
3749528  0.9978 598.591 0.3306
6289066 0.8317 608.040 0.3909

10603652  0.6934 615.943 0.3407
17969591  0.5775 620.155 0.2288
30476246  0.4815 624.907 0.5118
51936820 0.4011 628.032 0.6040
91969807  0.3343 628.626 0.9309
157849674  0.2787 630.130 0.6996
273071473  0.2322 631.042 0.5586

Table 6.3: Spatial convergence study for the nose test case. The table lists the
total number of grid points in the fluid volume, the (isotropic) grid spacing in
millimeters, the value Q of the temporally averaged flow rate at the trachea, and
the root-mean-square value o~ of the variance of the estimate of the mean, computed
after |Russo & Luchinif (2017)).

through the right passageway, and illustrates the pressure decrease from the outer
ambient to the throat. The pressure drop is particularly localized and noticeable at
the nasal valve and at the striction determined by the larynx. The right panel plots
the magnitude of the mean velocity vector in the same section. During inspiration
the external air is first accelerated abruptly in correspondence of the nasal valve,
and quite large velocity values are observed in certain portions of the meati; the
airflow then enters the rhinopharynx with quite definite shear layers, and then
transforms into a laryngeal jet after the narrowing at the larynx, where the largest
velocities are found.

Table reports the results of a spatial convergence study, where the time-
averaged value of the flow rate Q at the trachea for the fixed pressure drop of 5 Pa
is observed as the spatial resolution is changed. The calculations have been carried
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Figure 6.10: Convergence of the flow rate for the nose test case. Left: variation
of the time-average flow rate Q with the (isotropic) spatial resolution A; the error
bars correspond to £30-, where the root-mean-square value o of the uncertainty of
the mean is computed after Russo & Luchini (2017). The continuous line is a fit of
equation (6.21)), yielding Q(¢) = 633.1cm>/s, C = 3.502 x 1077 and p = 1.999.
Right: percentage error 100(Q(¢) — 0)/Q'® of the mean flow rate versus spatial
resolution. The dashed line shows the expected second-order decrease.

out for a fixed time step size At = 0.02 ms, that is small enough to ensure that the
the time discretization error is not dominant. The geometrical complexity suggests
the use of isotropic spacing, hence cubic cells are used with edge length A. The
coarsest mesh consists of about 3.7 millions points within the fluid volume; the
size of its cells is 1 mm (which is comparable to the resolution of the CT scan, if the
model scaling is considered) and still allows a decent representation of the smallest
flow structures. The largest employed mesh has about 273 millions points and a
spatial resolution of 230 um. Fitting the formula to the data of table
following the same procedure discussed above in Sec. yields an exponent
p = 1.999: the second-order convergence is fully confirmed, as shown graphically

by figure [6.10]

6.5 Conclusions

We have presented a novel, simple and efficient implicit second-order immersed
boundary method (IBM) for the direct numerical simulation of the incompressible
Navier—Stokes equations.

Our IBM belongs to the class of methods employing a discrete-forcing formu-
lation; its computational efficiency descends from the tight integration with the
underlying numerical discretization, based on second-order accurate central finite
differences computed on a staggered grid. Such integration is possible because
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the boundary-distance information is concentrated in a single point, namely the
centre point of the stencil that discretizes the Laplacian operator. This allows the
IBM correction to be made implicit at no cost: this is perhaps the main novelty of
the present IBM implementation.

This type of correction offers several crucial advantages. On the one hand, since
the correction is applied only to the central point of the stencil, the formulation
enjoys extreme simplicity in terms of implementation: the cobweb of IFs and
ad-hoc coding to handle special cases that would otherwise handle those parts of
the boundary that come close to each other becomes unnecessary. On the other
hand, the computational cost of the IBM correction is brought to a minimum.
In order to estimate it, a simple experiment consists in switching the correction
off, thus reinstating the baseline first-order-accurate staircase approximation of
the boundary; timing the execution of the solver with and without the correction
quantifies the extra cost necessary to achieve second-order accuracy near the
boundary. Such timing experiments led us to the conclusion that hardly any extra
cost is visible at all. The implicit nature of the IBM also has important favorable
consequences on the stability of the numerical method. The explicit IBMs, in fact,
fall into trouble whenever a grid point coincides or even approaches the boundary,
whereas for the implicit IBM the solution monotonically tends to zero as it should.

The IBM has been introduced and described in conjunction with two simple
linear problems, where the spatial and temporal accuracy of the method have
been separately addressed. In the second part of the paper, the method has been
applied to two challenging turbulent flow problems, namely the channel flow over
a wavy bottom and the air flow through the intricate anatomy of the human nose.
A full second-order accuracy has been confirmed even in these examples, which
contain the entire complexity of the Navier—Stokes equations; in particular the nose
flow can be rightfully considered a stress-test for the IBM, owing to the extreme
anatomical intricacy of the nasal cavities. The IBM described in this paper lies
at the heart of a DNS solver, currently under active development, which is aimed
at both CPU and GPU architectures, and promises to achieve very interesting
computational speed.
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Dimples for skin-friction drag
reduction: status and perspectives

Abstract

Dimples are small concavities imprinted on a flat surface, known to affect heat
transfer and also flow separation and aerodynamic drag on bluff bodies when act-
ing as a standard roughness. Recently, dimples have been proposed as a roughness
pattern that is capable to reduce the turbulent drag of a flat plate, by providing a
reduction of skin friction that compensates the dimple-induced pressure drag, and
leads to a global benefit.

The question whether dimples do actually work to reduce friction drag is still
unsettled. In this paper, we provide a comprehensive review of the available in-
formation, touching upon the many parameters that characterize the problem. A
number of reasons that contribute to explaining the contrasting literature informa-
tion are discussed. We also provide guidelines for future studies, by highlighting
key methodological steps required for a meaningful comparison between a flat and
dimpled surface in view of drag reduction.

7.1 Introduction

Reducing the drag generated by a fluid set in relative motion to a solid body is
at the same time a fundamental attempt to learn how to favorably interact with
turbulence, and a technological challenge with immense potential in so many
application fields. The interest for turbulent flow control is steadily increasing,
owing to massive economic and environmental concerns.

Skin-friction drag is perhaps the most essential manifestation of the dissipative
nature of turbulence, and accounts for the total drag in the case of planar walls (as
in a channel flow or a zero-incidence flat plate boundary layer). Several techniques
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are available to reduce friction drag below the level typical of a smooth solid wall;
they can be categorized into active (requiring extra energy) and passive ones. The
former typically provide larger savings, but imply extra complexity and cost, so that
the ideal technique for friction reduction remains a passive one, often embodied
in surface patterns performing better than the planar flat geometry.

The most prominent example of such patterns is riblets (Garcia-Mayoral &
Jimeénez, 2011)). Introduced by NASA in the *80 of the past century, and intensely
studied over the subsequent years for their potential in aeronautical applications,
riblets consist of streamwise-aligned microgrooves, and have the proved ability
to reduce friction drag. The riblets cross-section can be of several shapes, the
triangular one being perhaps the most popular, but an essential feature is a very
sharp tip. Although new developments (Quadrio et al., 2022; Cacciatori et al.,
2022)) hint at a bright future for riblets in aeronautics and suggest lower cost/benefit
ratios, riblets are currently still not deployed in commercial transport aircraft,
owing to their limited savings (McLean et al., 1987} |[Kurita et al., 2020) and to
critical production and maintainance issues, descending from the microscopic size
of riblets and from the requirement of preserving the sharpness of the tip.

A possible alternative to riblets is emerging recently, easier to manufacture
and lacking any sharp detail. The pattern to impress on the surface consists of
small dimples. Dimples, i.e. small concavities imprinted on a surface, have been
extensively studied in the past for their ability to enhance the heat transfer of a
surface (see e.g. Leontiev ef al.|(2017) and references therein). The use of dimples
on the surface of bluff bodies (e.g. a golf ball) is well known, and their ability
to influence the turbulent boundary layer and the separation on the body is rather
well understood (Choi et al., [2006); the same concept is also being considered in
sport-car racing (Allarton et al., [2020). In this paper we concern ourselves with
dimples applied to an otherwise flat surface: the goal is to reduce the turbulent
skin-friction drag. We limit our review to passive dimples, although also active
control by dimples has been proposed (Ge et al., 2017).

The ability of dimples to reduce drag is way less intuitive than that to increase
heat exchange, and was considered first at the Kurchatov Institute of Athomic
Energy (Kiknadze et all [1984) in Russia, where hemispherical dimples were
placed on the surface of a heat exchanger and found to reduce the flow resistance
as well. In subsequent studies by the same group, a drag reduction of about 15—
20% was mentioned (Alekseev et al., |1998), the highest performance reported so
far. In the last two decades, a handful of research groups devoted their efforts
to understanding the drag reduction problem by dimples, attempting to come up
with a recipe for the best shape and size. Unfortunately, to date no consensus has
been reached on the effectiveness of dimples in reducing friction drag, and on their
working mechanism: some authors confirmed drag reduction, others did not.

Measuring — in the lab, or with a numerical simulation — the (very small, if any)
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drag reduction induced by dimples is by no means a trivial task. A reduction of
friction drag would be unavoidably accompanied by an increase of pressure drag,
with a net benefit possible only if the former overwhelms the latter. There are just
so many design variables to be tested, as the geometry of the dimple itself, the
size, the spatial layout and relative arrangement of the dimples on the surface need
to be carefully considered. This is a daunting task as long as no theory, hypothesis
of working mechanism or scaling argument is available to guide the search in such
a vast parameter space. However, it is undeniable that dimples, once proved to
work, would provide substantial advantages over riblets, thanks to their simplicity,
ease of production, lack of sharp corners and easier maintenance.

The goal of the present contribution is to provide the first comprehensive review
of the published information available on dimples for skin-friction drag reduction.
Since the very fact that dimples can actually work is still subject to debate, we
will complement the review with a discussion of important procedural aspects
that in our view are essential, should one embark in a (numerical or laboratory)
experiment to assess the potential for drag reduction. Such procedures (or, more
precisely, their absence) are at the root of the large uncertainty and scatter of the
available data, and have hindered so far the answer to such a simple question as:
Do dimples actually work to reduce turbulent drag?

The present contribution is structured as follows. Section provides an
overview of the experimental and numerical studies on the drag reduction prop-
erties of dimples. Section describes the geometrical parameters defining the
dimples, whereas §7.4|reports the two main physical explanations for the working
mechanism of drag-reducing dimples. In we highlight the problem of prop-
erly measuring drag reduction, and guidelines and recommendations on how to
properly compare results among different studies are provided. This review paper
is closed by brief concluding remarks in §7.6] Appendix contains details of
the DNS simulations that have been carried out for the present study.

In the next Subsection, the concept of dimples is introduced first, together with
the notation that will be used later to indicate their geometrical parameters.

7.1.1 Characterization of a dimpled surface

A solid wall covered with dimples is described by several geometric parameters:
the dimple shape, the relative spatial arrangement of the dimples and the cover-
age ratio (ratio between non-planar and total surface). Originally, dimples were
conceived as spherical recesses, hence with a circular footprint on the wall. One
particular class of circular dimples, introduced by (Chen et al.| (2012}, has become
quite popular thanks to its parametric nature and represents the starting point of
our description. This design is the union of a spherical indentation and a torus,
meeting tangentially in a regular way that avoids sharp edges. A cross-section of
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Figure 7.1: Cross-section of the parametric dimple geometry introduced by (Chen:
et al.| (2012)) (left) and streamwise shift of the deepest point (right).

this dimple, which possesses axial symmetry, is drawn in figure

Four parameters define the geometry of this dimple: the diameter D of the
circular section at the wall, the depth d of the spherical cap, the curvature radius r
at the edge and the curvature radius R of the spherical cap. These four parameters
are not independent, but linked by one analytical relation, so that only three degrees
of freedom exist. In fact, geometry dictates that:

%:\/d(2R+2r—d). (7.1)

Moreover, a handful of studies extended this baseline circular geometry, by
introducing the additional parameter s, which describes the shift along the stream-
wise direction (either downstream for s > or upstream for s < 0) of the point of
maximum depth, which in the baseline geometry lies exactly at the center of the
dimple cavity.

It is difficult to overemphasize the importance of a well-defined parametric
geometry in the quest for the optimally performing dimple. Although the circular
shape is by far the most popular, over the last years a number of alternative dimple
shapes have been studied; sketches for the various shapes are drawn in figure [7.2
Some of them derive from a deformation of the circular shape: e.g. the elliptical
dimple is the result of a symmetrical stretch of the circular dimple along the
streamwise direction. The teardrop dimple has two segments tangent to the circle,
preserves the spanwise symmetry and exists in two variants depending on whether
the triangle points upstream or downstream. The diamond dimple is the union of
the two variants of teardrop and possesses two vertices. Only the triangular dimple
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differs substantially from the circular shape and — as for the teardrop dimple —
can have the streamwise-aligned vertex pointing upstream or downstream.

When a single dimple is identically replicated to fully cover the planar surface,
the relative spatial arrangement of the dimples is important in determining the
overall influence on the flow. A regular spatial layout of a dimpled surface depends
on the distance between two adjacent dimples in both the streamwise and spanwise
directions. Another parameter that is related to the spatial arrangement of dimples
is the coverage ratio, that can be defined as the percentage of recessed surface
compared to the total surface of the wall. (The reader will notice an ambiguity, as
at the denominator of the coverage ratio one could put either the surface area of
the equivalent flat wall, or the wetted area of the dimpled surface. This ambiguity
is often ignored, but it is commented upon e.g. in |Prali et al. (2019) [Tay et al.
(2017) and Ng et al.| (2020)).) It is doubtful whether coverage, which is affected by
S0 many parameters, is by itself a useful quantity to describe dimples performance.
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Moreover, dimples can be arranged either irregularly or regularly following a
certain pattern. The two most widespread patterns are the staggered and the flow-
aligned arrangements. Their definition is not unique. Often, the layout is referred
to as staggered when the streamwise projection of one dimple overlaps with the
following one, while it is called flow-aligned otherwise (see figure[7.3). However,
this definition, that corresponds to the most used arrangement, is not universally
accepted. |Prall ef al. (2019), indeed, define the staggered arrangement as having
the distance in spanwise direction from the centres of two adjacent dimples equal
to half the distance between the centres of two non-adjacent dimples. Several
additional patterns have been tested, e.g. the hexagonal one.

7.2 Do dimples work?

Although in the last two decades a number of dimples-related contributions have
appeared, many works claim that drag reduction is possible for certain geometries
and flow conditions (Veldhuis & Vervoort, 2009; Tay, [2011; Tay et al.l 2015;
Van Nesselrooij ez al., 2016; Tay et al.,2016; Tay & Lim,2017,2018}; Spalart ez al.,
2019)), whereas others only report drag increase (Tay ez al.,[2017;Van Campenhout
et al., 2018; |Pral et al., |2019; Ng et al., 2020). Notably, one work (Spalart
et al., 2019) set out to specifically reproduce the experimental drag reduction
results described in Van Nesselrooij ef al.|(2016) with a state-of-the-art combined
numerical/experimental study, and failed.

Such uncertain situation can be traced back to the lack of a generally accepted
standard to measure drag and to compare different geometries among themselves
and with the reference flat wall, since there are unavoidable differences when mea-
suring drag in experiments and simulations, and in external (e.g. boundary layer)
and internal (plane channel) flows. An additional reason explaining the scatter of
available results consists in the still limited understanding of how dimples modify
the surrounding flow field. Knowing the physics involved in drag reduction by
dimples would be extremely useful in the optimization of all the several parameters
involved. A description of the effect of the many geometrical parameters involved,
and on the conjectures on the working mechanism of dimples are reported later in
and respectively.

We start by presenting an overview of the main results available in the literature,
by focusing on the raw drag reduction information. They are reported in Table
that contains entries for the best drag reduction figure that could be extracted
from each paper; when multiple dimple shapes are present, they are all considered.
Drag change is simply defined here as ADrag = Dragaimpies —Dragsmoorn, Where
Dragsmoorn and Draggimpies are the (measured or computed) friction drag of the
reference flat plate and the total drag of the dimpled plate, respectively. Negative

236



values of ADrag thus correspond to drag reduction. Across the several studies,
various definitions of the Reynolds number are used, particularly for internal flows.
These have been all converted, whenever possible, to value of the bulk Reynolds
number Rej, by using the empirical Dean’s correlation (Dean, 1978). Several
other entries are also available in the Table, and will be defined and discussed
throughout the text.

7.2.1 Experimental studies

The majority of the experimental studies carry out their tests in a wind tunnel and
compare the drag measured on a flat plate with the drag measured on a dimpled
plate. The flat/dimpled plate lies either on the upper or bottom wall, whereas the
other wall of the wind tunnel is smooth. The plate is installed at a certain distance
from the entrance section for the flow to become fully developed by the time it
reaches the test section. A major difference among the various studies consists in
the internal/external character of the flow.

The largest drag reduction, as observed in Table is a whopping 14% found
in the boundary layer experiment by Veldhuis & Vervoort (2009) at the Technical
University of Delft. The free-stream velocity was 7.5 m/s and dimples were of
circular shape. They found the staggered configuration to be more efficient in
reducing drag than the flow-aligned one. Other boundary layer experiments car-
ried out later by the same group at TU Delft reported a significantly smaller but
still extremely interesting maximum drag reduction of 4% (Van Nesselrooij et al.,
2016), obtained at a Reynolds number based on the free-stream velocity U, and
the dimple diameter D of Rep ~ 40000, which corresponds to a Reynolds based
on the boundary layer thickness 6 of Res = 1500. In this case, dimples are rela-
tively large (in physical dimensions) shallow circular dimples, with a 50% smaller
coverage ratio than |Veldhuis & Vervoort (2009). In a later study |Van Campen-
hout et al.|(2018]) also measured a drag increase of 1% for shallow dimples with
different layouts at Rep =~ 63100. Van Nesselrooij et al.| (2016) presented what
is described in |Spalart et al.| (2019) as a “’very convincing experimental paper”,
studying different dimples configuration and finding that the best one consistently
involves sparse (low coverage) and staggered dimples for the entire range of con-
sidered Reynolds numbers. They also focused on the importance of the depth
of the dimples. When made dimensionless with the dimple diameter, shallower
dimples are found to work better for each flow condition; however, when depth is
compared to the boundary layer thickness, shallow dimples work better at low Re
but deep dimples are better at higher Re.

Another group that provided significant contribution to the dimples research
thread is from the National University of Singapore, with Tay and colleagues. They
performed experimental studies on a channel flow and reported up to 7.5% drag
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reduction in Tay et al.| (2019) for diamond-shaped dimples at a Reynolds number
based on the bulk velocity U, and the channel semi-height # of Re, =~ 30000
and a layout with full coverage. Large drag reductions are measured also with
other non-conventional dimple shapes (Tay & Lim, 2018), such as the upstream-
pointing teardrop at 6%, or the downstream-pointing teardrop at 5%, in a flow with
Rep ~ 30140 and Rep, ~ 22270, respectively. Conversely, the triangular shape was
proved to always lead to drag increase (Tay er al., [2016). Circular dimples were
found to be less effective than diamond and teardrop shapes. A reduction of drag
up to 2% (Tay, 2011) and 2.8% (Tay et al., 20135)) are found at Re;, ~ 17500 and
Re;, =~ 32100 for different physical geometrical parameters of the dimple but with
an identical layout and coverage ratio of 90%. At Re;, ~ 42850 a drag reduction
of 3.5% is measured in Tay & Lim| (2018). In Tay er al|(2015) they compare
the same physical dimples and flow geometry by varying the coverage ratio and
find that a dense layout with 90% coverage performs better than a sparse one with
40% coverage. They also compare two different dimple depths, measuring slightly
higher drag reduction for deeper dimples. Finally, Tay & Lim| (2017) experiment
with shifting the point of maximum depth within the dimple along the streamwise
direction, and measure the best performance of 3.7% when the shiftis s = 0.1D
in the downstream direction.

7.2.2 Numerical simulations

For drag reduction studies, numerical simulations need to resort to high-fidelity
approaches, like Direct Numerical Simulation (DNS) and highly resolved LES
(Large Eddy Simulation). Obviously, such simulations are not very practical for
large-scale parametric studies, especially when the Reynolds number becomes
large, since their unit computational cost rapidly increases with Re. The need
for high-fidelity methods, the computational cost and the requirement to handle
non-planar geometries are among the reasons why numerical studies for dimples
are fewer than experiments. However, simulations (and DNS in particular, which
avoids the need of turbulence modeling) are perfectly suited for such fundamental
studies and provide us with the full information required to understand the working
mechanism of dimples, by e.g. breaking up the drag changes into friction drag
and pressure drag changes and by yielding a detailed and complete statistical
characterization of the turbulent flow.

Circular dimples in a turbulent channel flow were studied with DNS for the
first time in 2008 by |Lienhart et al.|(2008), who reported a drag increase of 1.99%
at Rep, =~ 11000. The same work contains also an experimental study of the same
configuration, for which no drag changes were observed.

Ng et al.|(2020) at NUS performed one of the most interesting DNS studies,
considering a turbulent channel flow at Re, = 2800 and examining different
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dimple geometries. They found that the classic circular dimple increases drag by
6.4%, an amount that decreases to 4.6% when the point of maximum depth is
shifted downstream by s = 0.1D. They also studied non-circular dimple shapes,
obtaining this time a large drag reduction of 7.4% for the diamond dimple, 4.9%
for the elliptical dimple and 3.1% for the upstream-pointing teardrop dimple; the
downstream-pointing teardrop dimple, instead, gave 0.1% drag increase.

Another recent numerical channel flow study is that by Tay et al.|(2017): they
run a Detached Eddy Simulation (in which a baseline LES is complemented with
a RANS model for the near-wall region) to replicate their own experimental study
described in Tay et al.|(2015). The DES yielded 1% drag increase at Re;, = 2830,
which does not confirm the experimental study and found drag increase for every
case tested, whereas the experiments found smaller drag increase and even a slight
drag reduction for a particular geometry. The suitability of DES for such drag
reduction studies, however, remains dubious.

Pral3 et al.|(2019) published the only work in which an open channel is consid-
ered: with a LES they report a drag reduction of 3.6 % at Re, ~ 6121. They also
considered two different configurations, finding that flow-aligned dimples perform
better than staggered dimples.

There is only one DNS study for the boundary layer, i.e. the already mentioned
work by Spalart et al.| (2019), in which circular dimples at Res = 30000 were
considered as the baseline geometry. They additionally studied the effect of the
edge radius r, and found that with proper smoothing of this edge a drag reduction
of -1.1% is obtained, which descends from the combination of a -1.7% reduction
of friction drag, counterbalanced by a 0.6% increase of pressure drag.
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7.3 How to design dimples?

Systematic studies which address the influence of each geometric parameter are
lacking, so that the design of the optimal configuration to achieve the maximum
drag reduction has not been identified yet. This Section describes the little we
know, first in terms of the geometrical characteristics of the dimples and then in
terms of their arrangement.

7.3.1 The shape of the dimple

Figure plots the drag change data measured by several works which adopted
the baseline circular geometry. The percentage of drag change is shown as a
function of the three independent geometrical parameters d/D, r/D and R/D,
after extracting from each publication the largest drag reduction (or the smallest
drag increase). It should be noted that, in general, the various points correspond to
simulations or experiments that differ for other, sometimes very important, design
parameters. Dashed lines, instead, connect points for which only the parameter on
the abscissa is changed.

The influence of d/D on the drag change has been studied by several authors:
previous research from heat exchange enhancement suggests the very reasonable
idea that this is one of the key factors affecting drag. However, while the optimal
d/D is in the range 0.1 — 0.5 for best heat exchange (Kovalenko et al., [2010;
Tay et al., 2014), several authors report that shallower dimples with d/D < 0.1
should be considered for reducing the overall drag, to avoid excess penalty from
the ensuing pressure drag. Data are extremely scattered and clearly indicate that
the drag change over a dimpled surface does not depend on the d/D ratio alone.
For example for d/D = 0.05 Veldhuis & Vervoort (2009) report a drag reduction
of almost 15%, while [Tay et al.| (2017) report a drag increase of approximately
6%. The experimental measurements from Veldhuis & Vervoort| (2009) are for a
turbulent boundary layer over a dimpled surface with coverage ratio of 60% at a
free-stream velocity in the range 0 — 29 m/s; the results from Tay et al.|(2017) are
from a Detached Eddy Simulation of a turbulent channel flow at Re;, = 3000 with
a coverage ratio of 90%.

It is reassuring, though, to see — at least in some of the datasets where data
points are connected by dashed lines — a local optimum for intermediate depths,
since it is reasonable to expect zero drag changes for d — 0 and an increase of drag
as for standard k-type roughness for d — co. With the other parameters unchanged,
Tay et al. (2017) and Van Nesselrooij et al.| (2016)) agree on observing a decrease
of performance with increasing d/D (in the range 0.015 < d/D < 0.05), although
at a different rate; within the same d/D range, Tay et al|(2015) and |Veldhuis &
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Dashed lines connect points for which only the parameter on the abscissa is
changed.
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Vervoort (2009) measured a slight increase of drag reduction performance with
increasing d/D. The latter study was extended up to d/D = 0.12, finding that for
d/D > 0.05 the overall drag increases with d/D.

The curvature radius r at the edge of the dimple is meant to mitigate the
negative effects of pressure drag, by preventing or decreasing flow separation. The
second panel of figure[7.4]shows that also in this case data are highly scattered: for
0.5 £ r/D £ 1.5 the achieved drag change ranges between -4% (Van Nesselrooij
et al., 2016) and 4.8% (Ng et al., 2020). The experiments of Tay et al.| (2015)) at
Rej, ~ 32100 show that after a certain value, i.e. /D > 4, the influence of the edge
curvature on the drag change is minimal. Spalart et al.|(2019) performed a DNS
of a turbulent boundary layer, with a Reynolds number (based on the boundary
layer thickness) of Res = 7.5 X 103 and Res = 3 x 10* and considered r/D = 0.5.
Their data points are not plotted in figure [/.4] since their paper does not contain
enough information to quantify ». However, they confirmed that smoothing the
dimple rim is beneficial.

A scattered picture is also obtained when data are plotted against the R/ D ratio,
as shown in the third panel of fig[7.4] confirming again that for this configuration
a single geometrical parameter is unable to fully characterize the influence of the
dimples on the flow.

The experiments of Tay & Lim|(2017) and the numerical simulations of Ng
et al.| (2018}, 2020) agree on the indication that the downstream shift s is beneficial,
for a wide range of Reynolds numbers, with the best effect observed when s = 0.1D
in the downstream direction. When instead the shift is in the upstream direction,
1.e. s < 0, drag increases rapidly. It should be mentioned that the Reynolds
number of the simulations (Re;, = 2800) is somewhat lower than the lowest
Reynolds number of the experiments (Re, ~ 4300). [Tay & Lim (2017) claim that
a 0.2D downstream shift is equivalent to the axisymmetric case at Re, = 7000
with a drag increase of 1.5%), because the lower drag obtained by the reduced flow
separation at the shallower upstream wall is compensated by the higher drag of
the flow impinging on the steeper downstream wall. Ng ef al.| (2018, 2020), who
can take advantage of DNS to break down the total drag into friction and pressure
contributions, find that friction drag is almost unaffected by a downstream shift,
since it does not affect the reattachment point.

When it comes to alternative shapes, triangular dimples were considered by
Tay et al.| (2016). In their experiment they machined dimples with the bottom
surface sloping up from the deepest point at the triangular vertex towards the base
of the triangular depression to meet the flat channel surface, hence producing
the negative of a wedge. A larger drag was obtained for both upstream- and
downstream-pointing triangles, for the whole range of tested Reynolds numbers,
1.e. 5180 < Rep < 28600. Moreover, for the downstream-pointing triangle the
drag increase is nearly constant with Re, whereas for the upstream-pointing triangle
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the drag increase grows with Re. Tay & Lim|(2018) studied the teardrop dimple
and measured drag reduction for both the upstream- and downstream-pointing
teardrops, for 4500 < Re;, < 44000, with the former yielding up to 6% drag
reduction and the latter up to 5%. Tay et al.| (2019)) studied the diamond dimple
and measured drag reduction up to 7.5%. More recently, Ng et al.|(2020) compared
in a numerical study the circular, elliptical, teardrop and diamond dimples in a
turbulent channel flow, reporting drag reduction of 4.9% for the elliptical dimple,
3.1% for the upstream-pointing teardrop, and 7.4% for the diamond dimple.

7.3.2 The arrangement of the dimples

When it comes to the spatial arrangement of dimples on the surface, once the other
parameters are fixed, the staggered configuration leads to lower drag compared to
the flow-aligned one (Veldhuis & Vervoort, 2009; |Van Nesselrooy) et al., 2016
Van Campenhout et al., |2018; Spalart et al., 2019), a fact that explains why
the staggered configuration is the most adopted one. |[Van Nesselrooij et al.|(2016)
found 3% of drag increase for flow-aligned dimples and up to 4% drag reduction for
staggered dimples with the same geometrical parameters, coverage and Reynolds
number. Spalart ez al. (2019) found drag increase for both configurations, but the
drag increase of the flow-aligned dimples was almost twice that of the staggered
dimples.

Lashkov & Samoiloval (2002) and |Van Campenhout et al.| (2018) considered
the drag change also for other, non-standard arrangements. The former study found
a large drag increase (up to 50%) when an hexagonal dimple layout is used. The
latter study showed a constant drag increase of about 1% for each of the several
considered layouts.

The effect of coverage ratio was considered by Tay|(2011) and Tay et al. (2015)),
who compared in a channel flow circular dimples with 40% and 90% coverage,
and found that higher coverage enhances the (positive or negative) effects of the
dimples. |Van Nesselrooyj et al.|(2016) experimentally studied the effect of coverage
in a boundary layer. They found that a 90% coverage yields drag increase for a
wide range of Re, whereas 33.3% coverage always yields drag reduction within the
same Reynolds number range. Performance of both layouts are found to improve
by increasing Re. Spalart et al.|(2019) in their boundary layer DNS compared
the two coverage ratios, and observed about 1% of drag reduction for the lower
coverage, and 2% of drag increase for the higher one.
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7.4 How do dimples work?

The uncertainties on the true effectiveness of dimples in reducing turbulent drag
are accompanied, perhaps unsurprisingly, by a limited understanding of the physics
involved. Thanks to the several experimental and numerical works carried out so
far, some ideas and hypotheses exist, but consensus is lacking. We describe below
two prevailing descriptions of how dimples interact with the overlying turbulent
flow.

7.4.1 Self-organized secondary tornado-like jets

The first attempt at explaining drag reduction by dimples is due to |[Kiknadze et al.
(2012), who based their explanations uniquely of video records and photographs,
even though similar observations were already put forward in previous numerical
(Veldhuis & Vervoort, |2009) and experimental (Kovalenko et al., [2010) studies.
According to|Kiknadze et al.|(2012)), whose authors are affiliated with the Research
and Production Centre “Tornado-Like Jet Technologies” in Moscow, the action of
dimples can be explained by a so-called tornado-like jet self-organization. In plain
words, this is how the flow organizes itself and develops over the double-curvature
concavity of a dimple. The flow coming from an upstream flat portion accelerates
at the leading edge of a circular dimple, and is lifted off from the surface while
trying to follow the curved wall, leading to a reduction of skin-friction drag in
the fore half of the dimple. After the streamwise midpoint, the flow converges
towards the midline to eventually meet the flat wall past the trailing edge, and
the skin friction increases again. Although the skin friction reduction in the fore
half might outweigh the increase of the aft half, the recessed geometry of the
dimple introduces an additional pressure drag component: hence, to achieve drag
reduction the net reduction of the skin-friction drag needs to be larger than the
increase of pressure drag. It should be observed, though, that this description is
not directly addressing the insurgence of drag reduction, but only constitutes an
attempt to draft a simplified description of the local flow modifications induced by
the dimple.

If dimples are deep enough, their steep walls make the flow prone to separa-
tion on the upstream part of the recess, with creation of spanwise vorticity and
recirculation. The flow reversal has a positive effect on the drag, causing nega-
tive skin friction in the first portion of the dimple. When the flow reattaches, a
strong impingement of the flow on the rear slope of the dimple produces a locally
high skin friction. Moreover, flow separation obviously causes a large increase of
pressure drag which could cancel out the positive effect of the skin friction drag.
To avoid separation and the consequent increase of pressure drag, more efficient

247



shapes than the classical circular one are used. Shifting downstream the point of
maximum depth of the dimple alters the wall slopes, and affects the total drag by
changing pressure drag, whereas the friction drag tends to remain unchanged (Ng
et all 2020). A (moderate) downstream shift minimizes the negative effects of
separation, and offers lower drag than the standard circular geometry. However,
the shift does not significantly affect the location of the reattachment point, except
for very large shifts, for which flow reversal may be entirely suppressed, but at the
cost of an intense impingement onto the steeper rear wall which negatively affects
the drag.

Non-circular dimples induce different drag changes (Ng et al., [2020). Flow
separation and flow reversal are not observed for elliptical, upstream-pointing and
diamond dimples, leading to a lesser drag compared to the smooth wall. This can
be attributed to the gentler upstream slope and to the longer, more streamwise-
aligned leading edge. Other studies which do not report flow reversal even for
the circular shape are Van Nesselrooij et al. (2016) and Spalart ef al.|(2019); they
measure a maximum drag reduction of 4% and 1.1%, respectively. (Tay et al.
(2017) observe flow separation for circular dimples in the whole range of tested
flow conditions for d/D = 0.05, but not for d/D = 0.015; however, they measure
drag increase in all the tested cases.

7.4.2 Spanwise forcing

A more recent conjecture on the mechanisms by which dimples attain drag reduc-
tion has been put forward independently by the two groups at TU Delft (Van Nes-
selrooij et al.,2016) and NUS (Tay et al., 2015)). Flow visualisations indicate that,
near the wall, streamlines coming in straight from a flat surface bend towards the
dimple centerline in the upstream portion of the recess, then bend away from it
in the downstream portion, thus creating a converging-diverging pattern (see for
example Tay et al.| (2014)). Such meandering implies a spanwise velocity distri-
bution with changing sign across the dimple length (Van Nesselrooyj et al., 2016;
Van Campenhout et al., 2018)), and a consequent alternating streamwise vorticity
(Tay et al., 2017) since the spanwise velocity remains confined very near to the
wall. [Van Nesselrooij et al.| (2016]) reports an average spanwise velocity of about
2-3% of the free-stream velocity for a boundary layer; Tay et al./(2017) measured
a maximum spanwise velocity in the range 3.5-8% of the centerline velocity in the
channel. Spalart ef al.| (2019) also detected in their DNS study a spanwise motion,
although weaker in intensity.

Figure depicts an instantaneous spanwise velocity field over a circular
dimple, taken from one of our DNS simulations of a turbulent channel flow over
circular dimples (see Appendix for computational and discretization details
of our simulations). An alternating spanwise velocity pattern is clearly visible,
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Figure 7.5: Instantaneous spanwise velocity component w on a wall-parallel plane
at y* = 1.3 from the flat part of the wall. Lengths and velocities are made
dimensionless with 4 and Up. The velocity field is computed by DNS for a circular
dimple, which actually yields drag increase.

supporting the idea that the dimple creates a velocity component in the spanwise
direction and bends the streamlines in a converging-diverging behaviour. The
instantaneous values are very large, up to 40% of the bulk velocity.

The alternate spanwise velocity resembles the spanwise-oscillating wall (Jung
et al.,|1992), an active technique for the reduction of turbulent friction drag, where
the wall oscillates in time in the spanwise direction. In the oscillating-wall control,
the spanwise velocity component at the wall w,, is prescribed as a function of time
as:

wy,(t) = Asin (?I) , (7.2)

where A is the amplitude of the oscillation and 7 is its period. The oscillating
wall produces very large reductions of friction drag, although at a significant
energy cost. Its detailed performance is determined by the control parameters A
and T; |Quadrio & Ricco (2004), after a careful DNS study, identified the link
between the value of parameters and the obtained drag reduction. They found an
optimum value for the oscillating period of 7% ~ 100, whereas drag reduction
monotonically improves with the amplitude (albeit the energy cost of the control
rises faster as A%). Dimples could be considered as a passive implementation
of the spanwise-oscillating wall. |Van Campenhout et al.| (2018) measured the
analogous parameters and defined a period 7 and a maximum spanwise velocity
Wmayx Of a fluid particle, averaging over a selected region of the domain. In the
oscillating wall, it is known (Quadrio & Sibilla, [2000) that the time-averaged
mean spanwise velocity profile coincides with the laminar solution of the Stokes
second problem. Van Campenhout et al.| (2018) assumes the same to hold for the
flow over dimples, thus deriving an analogous value for the amplitude. For their
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dimples with d/D = 0.025, they found 7" = 135 and A" = 0.74. Data from
Quadrio & Ricco| (2004) do not contain information for such small amplitudes,
but an extrapolation leads to a drag reduction of about 4% for this combination
of parameters: a value that closely resembles the measurement of 3.8% from
Van Nesselrooij et al.|(2016).

It should be noted, first, that a closer analogy should be made between this
interpretation of the dimples working mechanism and the spatially modulated
spanwise forcing introduced by Viotti et al.| (2009). However, in that paper it
is shown how temporal and spatial oscillations can be easily converted one into
the other by using a suitable convective velocity scale at the wall. There are,
of course, obvious differences between data collected by Quadrio & Ricco for a
turbulent channel flow at Re; = 200 or Re;, = 3173 and the dimple experiments
described in refsVan Nesselrooij et al.| (2016) and |[Van Campenhout et al.| (2018)
for a boundary layer at Res = 1226 (the limited information provided in these
references precludes computing the value of the friction Reynolds number).

Other important concepts to be aware of when trying to draw such a parallel
is that, with the oscillating wall, a minimum spanwise velocity is required for the
active technique to produce its effects: this threshold value A7, , that needs to be of
the order of the natural fluctuations of spanwise velocity in the near-wall region,
is quantified in Quadrio & Ricco| (2004) as A;’h = 1, i.e. similar or larger than
the dimples-induced spanwise velocity as determined in [Van Campenhout et al.
(2018). Finally, and definitely most important, with a flat wall, even in presence of
spanwise forcing, one should be only concerned with friction drag, whereas with
dimples both viscous and pressure drag come into play.

7.5 How to set up a proper comparison?

Measuring (small) changes in aerodynamic drag is not trivial, especially in the
turbulent regime, regardless of the numerical or experimental nature of the analy-
sis. Studies employ a variety of approaches, where simulations and experiments
presents different approaches and different challenges.

Nowadays, whenever we need to compare the drag of a reference flat surface
with that of a rough surface, we are aware of the subtlety of the measurement,
of the importance to carefully define and control the Reynolds number of the
experiment, to discriminate between internal and external flows, and in general
to correctly define the equivalent “flat wall” flow to compare with. In this final
Section, we will discuss some of these topics, trying to call the reader’s attention to
the logical steps that should be followed when designing a meaningful experimental
or numerical campaign.
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7.5.1 Measurement of the drag (difference)

All the available studies measure the drag difference ADrag by separately mea-
suring the drag forces Draggmoorn and Draggimpies- As recently discussed in
Van Nesselrooy et al.|(2022) in the context of the description of their novel experi-
mental setup devoted to such measurements, various approaches are available. The
simplest among them measure the local friction, and as such are unable to yield
satisfactory results for the drag, because the friction contribution to the drag force
over a dimpled surface depends on the position, and the same holds for the pressure
component. Hence, in an experiment one has to either resort to measuring the
drag force with a balance, a challenge by itself owing to the small forces involved,
or to deduce the force from the pressure drop across two sections, as done for
example by Gatti et al.| (2015). With dimples, both approaches have been used.
Information about the shear stress was extracted from boundary layer momentum
loss in [Lienhart et al. (2008). Direct measurement of the drag through a force
sensor was employed in Veldhuis & Vervoort (2009); Van Nesselrooyj ez al. (2016)
and [Van Campenhout et al.| (2018). This type of measurement may be affected
by uncertainty and accuracy problems: forces are small, and blurred by spurious
contributions, and the experimental setup must be designed and run with extreme
care.

In the case of numerical experiments, only the DNS approach provides the
required accuracy that is not embedded e.g. in RANS models, constructed and
tuned for canonical flows and hence incapable to deal with drag reduction in
a quantitatively accurate way. Once DNS is used, two equivalent options are
available to compute the drag in internal flows. One possibility is the calculation
of the (time-averaged value of) the friction drag and the pressure drag separately,
employing their definition as surface integrals of the relevant force component.
In alternative, the (time-averaged value of) the pressure drop between inlet and
outlet informs of the total dissipated power, and thus leads to the total drag. This
is feasible both in simulations and experiments. [Tay (2011), Tay et al. (2015), Tay
et al.| (2016)), Tay et al. (2017), Tay & Lim|(2017) and [Tay & Lim (2018) in fact
compared the mean streamwise pressure gradients of both the two flat sections
upstream and downstream of the dimpled test section with the mean streamwise
pressure gradient within the test section, employing static pressure taps.

Experience accumulated in riblets research, however, tells us that the riblets
community obtained its first fully reliable dataset when D.Bechert in Berlin de-
veloped on purpose a test rig, the Berlin oil channel (Bechert et al.,|1992)), where
the measured quantity was directly the drag difference: targeting the quantity of
interest, i.e. the drag difference under identical flow conditions, instead of relying
on the difference between two separately measured drag forces was key to improve
accuracy and reliability.
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Figure 7.6: Drag change versus bulk Reynolds number Rey.

7.5.2 The Reynolds number

Dynamic similarity is a well known concept in fluid mechanics, and enables
meaningful comparative tests provided the value of the Reynolds number is the
same. The true question is to understand which Reynolds number should be kept
the same. The Reynolds number is defined as the product of a velocity scale U
and a length scale L, divided by the kinematic viscosity v of the fluid. While e.g.
in an experiment the precise measurement of v might be difficult, its meaning is
unequivocal. Choosing U and L, instead, presents more than one option.

For the velocity scale U, dimples do not lead to specific issues. While for
a zero-pressure-gradient boundary layer over a flat plate the use of the external
velocity Uy sounds reasonable, for internal flows like the plane channel flow one
has to choose among the bulk velocity Uj, the centerline velocity U, and the
friction velocity u,. The choice of reference velocity has been already discussed
in the context of skin-friction drag reduction (Hasegawa et al., 2014): provided
drag reduction is not too large, and the flow is far enough from laminarity, choosing
U is not critical and should not be regarded as a major obstacle.

For the length scale L, instead, the situation is different, as dimples themselves
contain one or more length scales that could be used in the definition of Re. For
example, to avoid the ambiguity implied by the definition of the origin for the
wall-normal coordinate, |Van Nesselrooij et al. (2016) and [Van Campenhout et al.
(2018]) for their boundary layer experiments decided to define a Reynolds number
based on the diameter of their circular dimple. Naturally, achieving the same Re
based on flow velocity and dimple diameter is not enough to guarantee dynamic
similarity in two different flows.
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Figure 7.7: Present simulations, circular dimples at various sizes and Reynolds
numbers with 2690 < Re;, < 10450. Left: drag changes vs dimple depth in inner
units. Right: drag changes vs dimple depth in outer units.

By isolating all the data sets for which a value for the bulk Reynolds number
Rey, is given (either explicitly or deduced from equivalent information), and putting
together the reported drag changes, one obtains the picture reported in figure
Besides showing both drag reduction and drag increase, drag changes exhibit
every possible trend with Rej: increasing, decreasing, constant or nearly constant,
and non-monotonic with either a maximum or a minimum at intermediate Rej,.
Without excluding additional possible causes, this can be attributed to the host
of parameters that are not kept identical across the dataset, besides the Reynolds
number, and stresses once more the importance of experiments where only one
parameter is changed at a time.

In a turbulent wall flow, the Reynolds number is an essential ingredient to define
the proper scaling of important quantities, say the total drag change. If for example
only the dimple depth d is varied, its value can be set in wall units (d*) or in outer
units (d/h), and, if the Reynolds number is also changed, various combinations
for d* and d/h become possible. It is the flow physics which dictates what scaling
works best at collapsing results. We have performed two sets of DNS simulations
(see §7.Alfor details) to understand the scaling of drag changes induced by circular
dimples when only their dimensions are changed but its shape is preserved. We
have fixed the values of d/D and r/R, the value of the depth d (either in inner
d/h or outer d* units) has been varied, and all the other parameters did vary
accordingly, as prescribed by equation (/.1).

Figure [/.7| plots the results and shows that drag changes (in this specific case,
drag increases) appear to follow an outer scaling: all the data points collapse onto
a single curve when drag changes are plotted against d/h. This is an expected
result, as these dimples are rather deep, and thus somehow akin to a large-scale d-
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Figure 7.8: A dimpled wall and two different, equivalent flat channels. The
red/blue lines indicate the dimple profile. Left: the channel height 24 goes from
the top wall to the dimple tip; right: the channel height 2/ goes from the top wall
to the dimple lowest point.

roughness (Jiménez, 2004), where the large cavities basically destroy the near-wall
layer, i.e the only region where inner scaling would make sense.

7.5.3 The equivalent flat wall

The comparison between flat and dimpled wall can be set up for internal or external
flows. The latter, which may be less convenient in numerical simulations owing to
their non-parallel nature, present a sensible advantage in this context, since drag
and its related changes have simply to be computed for the same plate immersed in
the same external velocity, and a reduced drag force is unequivocally advantageous.
For internal flows, however, the non-planar dimpled wall brings up the problem of
properly defining the location of the equivalent flat wall and, in general, of setting
up the comparison properly.

As shown schematically in fig[7.8] for a channel flow, for example, a certain
definition of the reference flat wall impacts the reference length % and, eventually,
changes the value of the Reynolds number of the flow to compare with. The
reference wall might be placed on the flat surface among dimples, on the position
of lowest elevation in the cavity, on the average height of the dimpled surface, etc.,
leading to different flow volumes.

To properly account for this effect, let us start from the usual definition of the
bulk Reynolds number Re, = Uph/v, where h is a reference length (e.g. half the
witdh of the flat channel) and v is the kinematic viscosity. Once the cross-sectional
area A(x) of the dimpled channel changes along the streamwise direction, the bulk
velocity Uy, defined as an average velocity across the section, becomes itself a
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streamwise-dependent function:

1
Ub(X) = m A(x) M(X)dA (73)

We thus replace this definition with a volume average, and define a new bulk
velocity Up as an average over the volume to obtain a streamwise-independent
quantity:

Up = % /V u(x)dv. (7.4)

Note that the two quantities U, and Uy, coincide for a flat wall. A comparison at
same flow rate requires that the volumetric flow rate

1 [ 1 1%
0= u(x)dA = —/ / u(x)dAdx = —/u(x)dV =—Uy, (7.5
A(x) Ly Jo Jaw Ly Jy Ly

is the same for the flat and dimpled channels, provided the streamwise length L, of
the channel is the same. This implies that V Uy = V,;Uy g, where the subscripts -
and -4 refer to quantities measured in the flat and dimpled channel respectively. In
the end, the bulk velocity in the dimpled channel (and the bulk Reynolds number)
need to be changed by multiplication of a factor given by the volume ratio:

Ug= LUsi: Rens= LR (7.6)
bd = V. b.f> ephd = v, ep.f- .

The numerical value of Rey is thus affected by the choice of the equivalent flat
channel. For example, the equivalent flat channel might go from the top wall to
the lowest point of the dimple, and Re, 4 > Rej, ¢. In contrast, if the equivalent
channel goes from the top wall to the tip of the dimple, Re, 4 < Rep r. The two
bulk Reynolds numbers end up being the same only when the volume is preserved
in the reference and dimpled channels (i.e. the equivalent flat channel is located
at the average dimple height).

If the comparison is carried out by DNS, one conveniently measures the time-
averaged value f of the spatially uniform volume force f required to maintain a
constant flow rate at each time step. This volume force is interpreted as f = AP/L,,
where AP is the pressure drop along the channel. The proper measure of the drag
change is:

Vafa=Vyfy _ValVifa=Jr.
Vifs Ir
Therefore, the change of the fluid volume has to been considered also when

measuring the drag change in the controlled case.

ADrag =

(7.7)
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Figure 7.9: Drag changes, measured by DNS, for circular dimples with d/h = 0.25
at Re, ~ 2800. Red/blue bars express drag changes when the equivalent channel
defines 2/ as the distance between the top wall and the top/bottom of the dimple
(color code is the same of figure [7.8). Case A: comparison at the same Rej,
ADrag computed without accounting for the volume ratio. Case B: as case A, but
ADrag is corrected with the volume ratio. Cases C and D are like cases A and B,
but the comparison is made at the same flow rate.
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Figure exemplifies the consequences of neglecting these considerations.
These are certainly exaggerated by the choice of working with a dimple config-
uration that causes a large change of drag. However, the relative differences are
major; neglecting such considerations would most certainly hinder the true ability
of dimples to alter skin-friction drag.

7.5.4 The drag reduction metrics

In closing, we mention a final methodological issue, that affects drag reduction
measurements for dimples, riblets, and roughness at large: the proper metrics to
express it. It is customary to express drag reduction as (percentage) changes in the
skin-friction coefficient at a given Re; unfortunately, the coefficient itself contains
a dependence on the Reynolds number already for the flat wall case, thus making
it impossible to rely on percentage changes for a robust assessment of the drag
change properties of a given surface. The complete information would be the
(ADrag, Re) pair. In alternative, the proper metric for expressing drag reduction
is the vertical shift of the logarithmic portion of the mean streamwise velocity
profile expressed in viscous units.

This is a known concept for roughness (Jiménez, 2004) as well as riblets
(Luchini, 1996; Spalart & McLean, 2011), and also extends to some active flow
control strategies (Gatti & Quadriol, |2016). As long as the direct effect of the
roughness remains confined within the buffer layer of the turbulent flow, it can
be translated into an upward shift AU* of the logarithmic velocity profile in the
law of the wall: a positive AU* corresponds to drag reduction, and a negative
AU™* implies drag increase, as for the conventional k-type roughness. Part of
the trends seen in figure for drag reduction data are due to Reynolds effects;
properly removing them via analytical relations is possible, as done in Gatti &
Quadrio (2016) for active spanwise forcing, and would contribute to clarifying the
situation, by exposing some remaining “’puzzling” trends with Re (to cite words
used in Spalart et al.|(2019)).

7.6 Conclusions

In this review paper we have provided a brief and up-to-date description of what we
know and what we don’t about the potential of dimples for turbulent skin-friction
drag reduction. While we can’t obviously offer an answer to the still-standing
question whether or not dimples are a suitable technique to reduce turbulent skin-
friction drag, it is our hope that this comprehensive overview will at least help
the newcomer to frame the problem, quickly identify the key references, and get a
glimpse at the complexity of the topic.
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While reviewing the state of the art, we have also mentioned some methodolog-
ical issues that bear a critical importance when attempting to measure drag changes
by dimples. Leveraging concepts and procedures (and perhaps facilities altogether)
developed over the years for riblets might yield data that are reliable enough to
begin understanding the physics behind dimple drag reduction, a necessary and
preliminary step to improve their performance.

7.A Computational details

In this review we have also presented results from DNS simulations carried out on
purpose for the present work. They concern a turbulent plane channel flow, with
dimples placed on one wall only. The employed parallel DNS code was intro-
duced by (Luchini, |2016), and solves the incompressible Navier—Stokes equations
in primitive variables on a staggered Cartesian grid. Space discretization is based
on second-order finite differences, and temporal integration uses a fractional time
stepping method based on a third-order Runge—Kutta scheme. The Poisson equa-
tion for the pressure is solved by an iterative successive over-relaxation algorithm.
An implicit immersed-boundary method, implemented in staggered variables, con-
tinuous with respect to boundary crossing and numerically stable at all distances
from the boundary (Luchini, 2013, 2016), describes the geometry of the non-
planar wall. Periodic boundary conditions are enforced in both the streamwise
and spanwise directions, while no slip and no penetration boundary conditions are
enforced at the walls.

The size of the computational domain (and therefore the number of dimples
considered) is chosen to ensure that it is always larger than the minimal flow units
needed to sustain the near-wall turbulence cycle (Jiménez & Moin, [1991). The
smallest domain in our simulations has size L, = 4V3h and L. = 4h in external
units and L} = 1385 and L} = 800 in viscous units. A uniform distribution of
points is used in both the streamwise and spanwise directions, with the selected
grid spacing ensuring that §x* < 10 and 6z < 5 for all the considered cases. In
the wall-normal direction a non-uniform distribution is used to properly resolve
the dimples and the near wall region. The grid spacing is indeed constant from
the dimple bottom to the dimple tip, from where a hyperbolic tangent distribution
is used. The number of points in the wall-normal direction is chosen to ensure
that at the walls §y* < 1 for all cases. The number of points for the simulations
in figure carried out at about Re;, = 2800 (or Re; = 180) is N, = 260,
N, =260 and N, = 260. For the simulations in ﬁgure instead, the number of
points increases up to N, = 300, Ny = 334 and N, = 300 to deal with the higher
Reynolds numbers, since in this dataset the Reynolds number varies, in the range
2690 < Rep, < 10450 (or 160 < Re, < 550).

258



Drag Reduction by Riblets on a
Commercial UAV

The content of this Paper has been published in
CacciaTtorl, L., BrignoLl, C., MELE, B., GATTERE, F.,
MonTi, C.M. & Quabrio, M. 2022
Drag Reduction by Riblets on a Commercial UAV.
Applied Science 12 (10), 5070.

Minor editing has been done for formatting purposes.



Drag Reduction by Riblets on a
Commercial UAV

Abstract

Riblets are micro-grooves capable of decreasing skin-friction drag, but recent
work suggests that additional benefits are possible for other components of the
aerodynamic drag. The effect of riblets on a fixed-wing, low-speed Unmanned
Aerial Vehicle (UAV) on the total aerodynamic drag are assessed here for the
first time by means of RANS simulations. Since the microscopic scale of riblets
precludes their direct representation in the geometric model of the UAV, we model
riblets via a homogenized boundary condition applied on the smooth wall. The
boundary condition consists in a suitably tuned partial slip, which assumes riblets
to be locally aligned with the flow velocity, and to possess optimal size. Several
configurations of riblets coverage are considered to extract the potential for drag
reduction of different parts of the aircraft surface. Installing riblets with optimal
size over the complete surface of the UAV leads to a reduction of 3% for the drag
coefficient of the aircraft. Besides friction reduction, analysis shows a significant
additional form drag reduction localized on the wing. By installing riblets only
on the upper surface of the wing, total drag reduction remains at 1.7%, with a
surface coverage that is only 29%, thus yielding a significant improvement in the
cost-benefit ratio.

8.1 Introduction

The growing concern over energy efficiency and environmental pollution is fur-
thering the appeal of transport vehicles, aircraft in particular, producing less aero-
dynamic drag. One of the most interesting passive drag reduction techniques is
the use of riblets, i.e. streamwise-aligned micro-grooves that are known to reduce
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turbulent skin-friction drag (see for example the review paper of Garcia-Mayoral
& Jimenez (2011) and the many references therein), and are approaching usability
in aeronautics.

Early studies, spurred by the oil crisis of the *70, were performed at NASA
(Walsh & Weinstein, 1979), and important experiments were carried out in the
Berlin oil tunnel by Bechert and coworkers (Bechert ez al., 1997;|Bechert & Barten-
werfer, |1989). They evidenced the crucial importance of the riblet shape, their
size and — most importantly — the sharpness of their tip; optimal configurations
empirically determined at the time yield up to 6-8% and possibly higher reductions
of skin-friction for low-Re flat plate boundary layers studied in laboratory condi-
tions. The theoretical understanding of the riblets working mechanism is due to
Luchini ef al. (1991), who quantified the different resistance offered by a grooved
wall to the parallel flow and the cross-flow. He also explained (Luchini, 1996)
how skin-friction drag reduction is equivalent to an upward shift of the logarithmic
portion of the turbulent velocity profile. This important argument, later taken up
again by Spalart & McLean (2011), implies that it is incorrect to describe riblets
performance simply as a percentage change of the skin-friction coefficient, as this
simplistic figure depends on the Reynolds number of the flow. However, the value
of the upward shift, once measured in viscous units, is Reynolds-independent and
should be used to characterize the ability of riblets (and other techniques) to re-
duce turbulent friction; in fact, recently this concept has been extended (Gatti &
Quadrio, 2016)) to other strategies of skin-friction reduction.

To capture in a numerical simulation the complex physics of the interaction
between turbulence and a solid wall covered by riblets, and to properly measure
friction reduction, direct numerical simulations (DNS) or wall-resolved large eddy
simulations (LES) are required. Such computations are unfeasible for complex
aeronautical configurations at high Reynolds numbers, where numerical simula-
tions based on the Reynolds-Averaged Navier—Stokes equations (RANS) equipped
with a turbulence model are the standard approach. Owing to their microscopic
dimensions, however, riblets on an aircraft cannot be included directly in a RANS
simulation. Even if they could, it is unclear to what extent a standard RANS model
would be able to represent the physics of drag reduction.

Bridging the gap between drag reduction by riblets in turbulent flows and the
need to incorporate it into RANS-type flow solvers has led to the development
of computational models for riblets. |Aupoix et al.|(2012) modified the Spalart—
Allmaras turbulence model to account for riblets by using a smooth-wall geometry.
Along similar lines, Mele et al.|(2016) introduced a modified boundary condition
for the k — w turbulence model, and Koepplin et al.| (2017) extended the Aupoix
model to describe riblets locally misaligned with the mean flow, and to account
for mean pressure gradients.

How riblets affect a turbulent boundary layer with non-zero pressure gradient
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is a debated subject (Nieuwstadt er al.l [1993; Debisschop & Nieuwstadt, 1996;
Boomsma & Sotiropoulos, 2015). In 2018, |Mele & Tognaccini| (2018) developed
a new model based on a slip-length concept, whose results provided an interesting
view on the riblets drag reduction mechanism in presence of pressure gradients.
Besides friction reduction, they found that riblets alter the pressure distribution,
and may provide an additional pressure drag reduction. This indirect effect was
also observed for other friction reduction devices: [Banchetti er al.| (2020) used
spanwise forcing to reduce turbulent friction on a wall with a bump, and found
in their incompressible DNS study that a reduced friction drag is accompanied
by a reduced pressure drag. Similarly, |Quadrio et al. (2022) studied by DNS
the compressible flow over a wing, and observed how spanwise forcing affects the
shock wave to yield large reduction of the total drag of the aircraft. The availability
of a boundary condition to faithfully simulate in a RANS the presence of riblets on
the surface of a solid body of complex shape is thus becoming extremely attractive.

The standard no-slip condition at a solid wall can be extended to a partial-
slip one, which is useful to describe specific physical situations (e.g. flow over
superhydrophobic surfaces). Riblets are amenable to such a description; their slip
length is related to the protrusion height concept (Bechert et al., |1997; Bechert
& Bartenwerfer, [1989; |Luchini et al., [1991)). In particular, |Luchini et al.| (1991)
defined the longitudinal and transverse protrusion heights, which identify the
virtual origin for the streamwise and spanwise velocity profiles, and realized that
the only meaningful non-arbitrary quantity is their difference. Later, he also
introduced (Luchini, 2013)) a linearized boundary condition for generic roughness
and the protrusion heights for various roughness types to be adopted in DNS.
He also demonstrated that the difference Ak between the two riblets protrusion
heights corresponds to the slip length 4. \Gomez-de-Segura et al. (2018)) later
discussed how the slip length A* expressed in viscous units is equivalent to the
upward displacement AU of the mean velocity profile in the logarithmic region;
here A" = Au./v where v is the kinematic viscosity, u; = /7, /p is the friction
velocity, p is the density and 7,, is the (local) shear stress.

The value of the slip length A depends upon shape and size of the riblets cross-
section. Bechert & Bartenwerfer| (1989) found that the largest drag reduction for
riblets of different shapes is obtained when s*, the spanwise period of the riblets, is
in the range 10-20. Garcia-Mayoral & Jiménez| (2011) tested alternative scalings
to find whether drag reduction can be linked to a single geometric parameter
that captures the importance of riblet spacing and their cross-sectional shape as
well. Data for different riblets were found to best collapse when plotted against
a dimensionless length scale /5 derived from the cross-sectional area A, of the

groove, and defined as l; = (A;)l/ 2. For riblets of various geometries, best
performance was consistently found at l; ~ 10.5. For optimal triangular riblets,
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I3 = 10.5 corresponds to a unitary shift AU™ which coincides with the one reported
in previous studies (Walsh, [1980; Mele & Tognaccini, 2018; Mele et al., 2020).
Recently, Zhang et al.| (2020) have been able to compute the slip length for other
riblets shapes, i.e. with trapezoidal and blade cross-section.

The goal of this paper is to present the implementation of a slip-length boundary
condition for riblets, and to use it in a set of RANS simulations to assess the drag
reduction capabilities of riblets when installed on a fixed-wing UAV, for which
endurance is of capital importance. Indeed, over the years riblets have been studied
either at low speed over plane walls, or in transonic flow conditions for aeronautical
applications, especially for medium- or long-range commercial passenger aircraft.
Such studies, carried out both numerically (Mele et al., 2016; [Catalano et al.,
2020) and experimentally (Walsh et al.l |1989; McLean et al., [1987; [Szodruch,
1991; |Kurita et al., | 2018, 2020), provide interesting results for aircraft operating
in a range of chord-based Reynolds numbers up to Res, = 3 X 107. In contrast,
the low-speed aircraft considered in the present work has a cruise speed of 22 m/s
with Reo = 5 X 10°.

The paper describes the implementation into an incompressible CFD solver of a
slip-length wall boundary condition, similar to that described inMele ez al.|(2020),
to compute the drag reduction achievable with riblets of optimal dimensions. The
computational model is validated against configurations of increasing complexity,
and eventually applied to a realistic use case. We also consider selective deploy-
ment of riblets to different parts of the aircraft, to show that drag reduction is
not trivially proportional to the surface area covered by riblets. The structure of
the work is as follows. After this introduction, describes our model and the
computational setup; contains results of preliminary simulations intended for
validation; the actual results are described in and contains a concluding
discussion.

8.2 Methods

8.2.1 Slip length boundary condition

Both theory and experiments (Bechert & Bartenwerfer, |1989;|Luchini et al., [1991;
Bechert ef al., 1997)) suggest that the physics involved in drag reduction by riblets
acts through a local mechanism. Indeed, since riblets are small compared to the
turbulent structures of the near-wall cycle, far enough from the wall the turbulent
flow perceives the presence of riblets only as a homogeneous effect: the upward
shift AU" > 0 of the logarithmic portion of the mean velocity profile:

1
U* = —log(y*) + A + AU* (8.1)
K
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where ¥ = 0.392 is the von Karman constant, and A = 4.48 is the near wall
intercept for smooth surfaces (these constants are set after Luchini| (2017)), but
their numerical value does not affect the outcome of the study). The dimensionless
vertical shift AU* equals the virtual shift in wall units of the non-slipping wall
(Bechert & Bartenwerfer, [1989), i.e. the slip length 2*. We exploit this shift to
account for the presence of riblets via a slip boundary condition, which linearly
relates the wall value of the longitudinal component of the velocity u,, (the subscript
w indicates quantities evaluated at the wall) to the wall shear rate (du/dy),, through

the slip length A:
=A|l—1 , 8.2
Uy (ay )W (8.2)

thus effectively recovering the no-slip condition when A = 0. The discrete counter-
part of equation (8.2]), where the derivative is approximated with a finite difference,

reads:
Ui — Uy

d b
where u; is the longitudinal velocity at the first inner mesh point, and d is its
distance from the wall. Hence, the velocity at the wall is:

A
A+d

Uy =A4 (8.3)

Uy = U] (8.4)

In this work, we always set the shift of the mean velocity profile at AU* =1,
which corresponds (Walsh, [1980; Mele & Tognaccini, 2018; Mele et al., 2020)
to the best-performing riblets with triangular cross-section. These riblets have a
square root of the cross-sectional area of l;,“ = 10.5, and provide a drag reduction
of 7% when measured in the lab under controlled conditions and at low Re. Using
AU™* = 1implies setting A* = 1, whence the physical size of the riblets varies along
the body with the friction velocity of the flow. In other words, riblets are assumed
to be locally optimal everywhere, and the corresponding physical dimensions are
computed as a result of the simulation.

It is worth noticing that the present boundary condition can be used to simulate,
besides riblets, any other drag reduction method whose effect reduces to a shift
in the mean velocity profile. To this purpose, only the slip length value must be
adjusted.

8.2.2 Computational setup

The boundary condition described above has been implemented in OpenFOAM
(Weller et al., [1998), an open-source finite-volumes CFD library widely used in
engineering and science, both in commercial and academic studies. Before con-
sidering the UAYV, the boundary condition has been validated on flow cases of
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increasing complexity where at least partial information is available for compari-
son: a flat plate and a NACA 0012 airfoil.

The selected flow solver is SimpleFOAM, which uses the SIMPLE (Semi-
Implicit Method for Pressure Linked Equations) algorithm to solve the incom-
pressible steady RANS equations. The k — w SST turbulence model (Menter,
1994) has been adopted in this work, where standard values for the coeflicients
and no transition model have been used. For all the simulations we adopt a
freestream ratio between eddy and laminar viscosity equal to 0.001, together with
free-stream turbulence intensity of 7Us = 5%, with the only exception of the
flat plate case, for which TU, = 0.5%. The spatial discretization used for the
divergence, gradient and Laplacian operators is second-order accurate. All the
results have been checked to be fully converged in integral quantities (drag and
lift) and in the residuals, by ensuring that the L; norm reduced to 1078 times the
initial value of the residual.

The study considers three geometries of increasing complexity. The first case
is a two-dimensional flat plate boundary layer of length L = 2 m is considered,
where Re = U, L/v = 10%. With air as working fluid, and a free-stream velocity
of Us = 5 m/s, the computational domain is rectangular and extends for 2.3 m
in length and 1 m in height. The flat plate sits along the lower boundary of the
computational domain. The domain extends 0.3 m upstream of the flat plate, and
a symmetry boundary condition is used to simulate a free stream approaching the
plate in this region. A suitable volume mesh is designed with the BlockMesh utility
available in OpenFoam, and checked to yield mesh-independent results with a mesh
sensitivity study. The final mesh, which provides a local friction coefficient that
does not vary with further refinements, consists of 125000 hexahedral elements,
with 250 cells in the wall-normal direction and 500 cells in the wall-parallel
direction, of which 400 are distributed over the flat plate. Non-uniform grid
spacing is adopted to obtain more resolution in the near-wall and in the leading-
edge regions, to better capture the boundary layer development. Transition is
adequately described, and the distance y; of the first cell from the wall is always
below unity when expressed in wall units, i.e. y] < 1.

The second case is a two-dimensional NACA 0012 airfoil, at a chord-based
Reynolds number of Reo, = 10°. The airfoil chord ¢ is taken of unitary length at
1 m, and the far-field boundary is located approximately 50c away from the airfoil
surface. A mesh sensitivity study is carried out on a number of C-type grids,
by observing changes in the drag coefficient after successive mesh refinements.
The chosen grid consists of 450 hexahedral cells in the chord-normal and 725 in
the chord-tangent directions, and provides a repeatable transition location. The
mesh spacing near the airfoil is sufficient to ensure y* < 1 over the airfoil surface.
Stretching of the grid is used to improve resolution in the wake region. To further
validate the mesh accuracy, the solution has been checked also as a function of
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Figure 8.1: CAD model of the simplified UAV.

the angle of attack @. Hence, a number of preliminary runs at various values of
a have been performed, without riblets, by replicating the flow conditions used in
Mele & Tognaccini|(2012)). The outcome in terms of lift and drag coefficients are
in very good agreement with the results reported by Mele & Tognaccini| (2012) as
well as with the experimental measurements described in|Ladson (1988)).

The final and most important case is the UAV, with total length of 2.4 m and
wing span of 3.6 m; its (simplified) geometry is described with some detail in
Simulations are carried out first on the isolated UAV wing, to understand
to what extent the indirect beneficial effects of riblets noticed for the NACA 0012
carry forward to three dimensions, and the complete UAV is then considered. In
both cases the computational domain is made by a hemisphere, with a radius of
50 m that surrounds the wing half-span and the UAV half-span mounted on the x —z
plane, respectively. Symmetry is used to reduce computational cost. In this case,
a commercial mesher is used to create unstructured meshes made by hexahedral
and tetrahedral cells, with refinements boxes to capture the flow development near
the body and in the wake. The grids possess 24 additional layers of hexahedral and
tetrahedral elements aligned to the boundary surface, to guarantee that y7 < 1, thus
satisfying the requirements for an accurate computation inside the boundary layer
within a low-Re formulation that does not resort to wall functions or other models
of the near-wall region. A suitable mesh density is determined by observing
changes in the drag coeflicient, and robustness in predicting transition. The final
mesh is designed with 4 millions elements for the wing, and by 9.6 million elements
for the full UAV.

8.2.3 The UAV model

The considered UAV belongs to the family of Mini and Light Tactical UAV, with
a MTOW (maximum take-off weight) ranging from 25 to 50 kg. The UAVs of
this class are designed to integrate multiple payloads with different capabilities,
e.g. EO/IR sensors, multi/hyperspectral cameras, LiDAR, transmitters, radars.
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Flexibility is ensured by the fuselage modularity and by the possibility to change
the onboard systems configuration to achieve an optimized aircraft balance.

In this work, we consider a simplified geometric model of the UAV, as plotted in
figure[8.1] where small-scale geometric details and the propeller are omitted. The
motivation is two-fold: such a simplified geometry, while remaining representative
of the actual aircraft and retaining its essential qualitative features and dimensional
characteristics, is free from intellectual property constraints; moreover, the lack of
small-scale details allows some savings of computational effort. The simplified
UAV is 2.4 m long and it has a span b = 3.6 m. It has a swept wing with a
chord length of 0.3 m at the root with winglets at the tips of 0.22 m and dihedral
angle of 21.5°. The considered reference surface area is S = 1 m?. The UAV is
characterized by a reverse V tail made by a symmetric four digits NACA airfoil
with a span of 1.05 m and a chord of 0.23 m. The tail is directly connected
to the lower surface of the wing by two booms of 1.05 m with a circular cross-
sectional area of radius 0.015 m. The fuselage is 1.41 m long and its cross-section
originates from a rectangular shape, 0.29 m high and 0.23 m wide, with rounded
edges. The drone cruise speed is 22 m/s, leading to a chord-based Reynolds
number Re,, = 5x 10°. The UAV weight of 25 kg and the cruise speed of 22 m /s,
together with the geometrical information mentioned above, imply a lift coefficient
in cruise of C;, = 0.8322.

8.2.4 Dimensionless force coefficients

In this paper, the aerodynamic coefficients, i.e. the ratio of a force component
and the reference quantity 1/2pU2, are the lift coefficient C; and the total drag
coefficient Cp. The latter can be decomposed into friction Cp y and pressure
Cp,p drag coefficients; the former describes the resistance to the relative motion
between the fluid and the solid boundary due to viscous effects, the latter quantifies
the net drag force arising from pressure variation around the body. When a wing of
finite span is considered, the drag coefficient can alternatively be decomposed into
induced and profile drag coefficients. The former, defined as Cp; = Ci /(7b?/S)
describes the additional drag due the three dimensional effects cause by the lift
and the latter, defined as Cp ,, = Cp — Cp,; describes the same quantity due to
all the other types of drag except lift-induced one. Profile drag can further be
decomposed in friction drag Cp ¢ and form drag Cp rorm = Cp pr — Cp y. Lastly,
the local skin-friction and pressure coefficients are defined as Cy = 21,/ pUZ,
and C, = 2p/ pU?2 (in the coefficient subscripts, capital letters indicate global
quantities and small letters indicate local quantities).

Changes between clean and riblets configurations are computed as AC, =
Cyo — C, where the subscript O refers to the clean configuration and x is the
quantity of interest. The drag reduction rate, i.e. the change in drag normalised
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Figure 8.2: Zero-pressure-gradient boundary layer over a flat plate. Left: evolution
of the skin-friction coefficient with/without riblets, and comparison with data from
Mele & Tognaccini (2018). Right: change along the plate of the slip length (left
y axis) and riblets height (right y axis), in dimensional units.

with the drag of the clean configuration is defined as ACp/Cpp.

8.3 Validation

The boundary condition used to model riblets is first tested on simple two-
dimensional flows, where available information allows a quantitative check of
the outcome.

8.3.1 Flat plate

The first application example is the zero pressure gradient boundary layer devel-
oping over a flat plate. Optimal V-shape riblets, with l; = 10.5 corresponding to

h* = \/il;, are placed everywhere along the plate, immersed in a uniform external
flow.

Figure (left) shows how riblets influence the streamwise evolution of the
friction coeflicient, demonstrating the correct amount of drag reduction. On the
entire plate, the integrated percentage drag reduction is ACp/Cpo = 6.5%, in
agreement with existing experimental (Bechert et al., 1997) information. Local
changes of Cy, descending from the imposed slip, are consistent with those by
Mele & Tognaccini (2018). The evolution of the physical dimensions of the
grooves is shown in figure [8.2 (right), together with the analogous evolution of the
slip length. Once the boundary layer becomes fully turbulent, i.e. for Re, > 10°,
changes of the slip length with the streamwise coordinate are rather mild: there is a
small increase with Re, to reach the largest value of 50 microns at the downstream
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Figure 8.3: Mean velocity profile with/without riblets over the flat plate, at Re, =
5x 103 (left) and Re, = 9 x 107 (right). The riblets profile consistently shows the
upward shift of AU* = 1 on the logarithmic region.

end of the plate. By construction, as explained earlier in §8.2} this corresponds
to one viscous length. At the plate end, the predicted size of optimal riblets is
approximately 4 = 0.8 mm.

The correctness of the model is directly checked in figure which provides
graphical evidence that, regardless of the streamwise location, the upward shift of
the mean velocity profile is of unitary value, confirming that AU* = A% = 1.

8.3.2 NACA 0012 airfoil

Testing progresses to consider the two-dimensional flow around a NACA 0012
airfoil; this test case remains highly simplified, but brings in pressure drag, and thus
lends itself to studying the effect of riblets on this non-frictional drag component.
Unfortunately, little information is available for validation.

Once again, the airfoil is assumed to be fully covered by riblets of locally
optimal size, i.e. ensuring l; = 10.5 everywhere. Figure shows the mean
velocity profile on the upper surface of the airfoil at x/c = 0.5, for two different
angles of attack, namely 0 and 4 degrees. The expected unitary upward shift AU™*
due to the grooves is consistently observed. At @ = 4°, experimental data are
available from|[Sundaram et al.|(1996), and the present results appear to agree with
them. However, the agreement is less satisfactory at other incidences. It must be
mentioned that experiments were carried out with riblets of constant physical size,
with a size that is about 10 viscous lengths. The percentage total drag reduction
at @ = 0° is measured to be 7%, which is in agreement with the experimental
data from Sundaram et al.| (1996); [Viswanath| (2002) as well as with CFD results
obtained by Mele & Tognaccini (2012)). Our data indicate only a mild variation of
drag reduction with angle of attack, while Viswanath (2002) mentions an increase
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Figure 8.4: Mean velocity profiles (top) and skin-friction coefficient (bottom) for
the NACAOO012 airfoil, at an incidence of @ = 0° (left) and @ = 4° (right). The
top row shows the mean profile over the suction side in law-of-the-wall form at
x/c = 0.5, and compares with data from Sundaram et al.| (1996). The bottom row
plots the evolution of the friction coefficient along the chord, and compares with
data from |[Mele & Tognaccini| (2012), represented with symbols.
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Figure 8.5: Pressure coefficient on the pressure and suction sides of the NACA0012
airfoil at @ = 4° for the clean case (black line), and difference with the riblets case
(red dashed line).

beyond 16% at @ = 0° and a sudden drop to zero at @« = 10°. The lower part of
figure 8.4 compares the evolution of the skin-friction coefficient along the airfoil,
and shows a very good agreement with the same quantity taken from Mele &
Tognaccini (2012) (except for the precise location of the transition region).

The pressure coefficient C), and the difference AC, = C,p — C, at @ = 4°
are shown in figure Changes are visible, to attest once again the effect of
riblets on the pressure distribution along the airfoil. Changes in the expansion
peak at the leading edge and on the pressure recovery at the trailing edge due to
riblets provide a significant additional contribution to drag reduction; form drag
is reduced by 7.7%, adding to the friction reduction of 6.7%. These results agree
with several findings by [Mele & Tognaccini| (2018), who interpreted the reduced
form drag by observing that riblets change the flow field by making it more similar
to the inviscid solution, where the slip length is infinite, and form drag is exactly
zero. Moreover, the altered pressure distribution leads to a larger lift, at all tested
incidences; this effect, that will be discussed later when discussing the full aircraft,
is important for the reduction of the total drag: since the aircraft in cruise always
needs the same lift, an increased aerodynamic efficiency implies a reduced angle
of attack in cruise, thus bringing in an additional contribution to drag reduction.

271



ACD (%]

« [deg]
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8.4 Results

8.4.1 The isolated UAV wing

The UAV wing is considered first, to focus on the presence of indirect drag
reduction effects in three dimensions, but without the geometrical complexities
implied by the interaction between wing and fuselage. The UAV finite isolated
wing is considered at the cruise flight condition of Res, = 5 x 10°. As always,
locally optimal riblets with lg+ = 10.5 are placed over the entire wing surface.

Figure [8.6/shows how drag reduction induced by riblets changes with the angle
of attack. The friction component of the total drag reduction is nearly constant at
6.3%, whereas pressure and total drag change with @. At @ = 0° the total drag
reduction rate is 3.7%, and diminishes at larger incidences. Clearly the diminished
total drag reduction goes hand in hand with the diminished pressure drag reduction.
As already observed for the NACA 0012 airfoil in riblets tend to modify
the pressure distribution in such a way that lift is increased; this is confirmed here
for the UAV wing. This phenomenon causes an increase of the lift-induced drag,
that is not seen in two dimensions, and should not be regarded as a negative effect
of riblets, since the aircraft has to achieve the same lift, and increased aerodynamic
efficiency is always beneficial.

In fact, riblets performance should be measured by adjusting @ in such a way
that the lift coefficient is unchanged. In Table we compare the clean case
and the riblets case at the same angle of attack, and at the same lift coefficient as
well. Two configurations are considered, at a nominal angle of attack of @ = 0°
and a = 4°. Total drag is split into friction Cp ¢ and pressure Cp , drag, as well
as induced Cp; and profile Cp ,, drag. As expected, comparing at the same C,
provides larger drag reduction than comparing at the same @. At the same angle

272



Clean Riblets Clean Riblets

a=0° a=0° a = —0.0626° a =4° a=4° a = 3.885°
CrL 0.4996 | 0.5055 (+1.2%) 0.4996 (-) 0.8719 | 0.8828 (+1.8%) 0.8719 (-)
Cp 0.0227 0.0219 (-3.7%)  0.0217 (-4.5%) | 0.0386 | 0.0380 (-1.8%)  0.0374 (-3.3%)
Cp.,p 0.0121 0.0119 (-1.4%)  0.0118 (-2.8%) | 0.0280 0.0280 (-) 0.027 (-2.2%)
Cp.r 0.0106 0.0099 (-6.4%)  0.0099 (-6.4%) | 0.0106 | 0.0100 (-6.3%)  0.0100 (-6.3%)
Cp.i 0.0077 | 0.0079 (+2.4%) 0.0077 (-) 0.0235 | 0.0241 (+2.5%) 0.0235 (-)
Cp,pr | 0.0150 | 0.0140 (-6.8%)  0.0140 (-6.8%) | 0.0151 0.0138 (-8.4%)  0.0138 (-8.5%)

Table 8.1: Aerodynamic coefficients for the isolated UAV wing. Comparison
between clean and riblets configurations is carried out at the same angle of attack
and at the same lift coefficient, for nominal angle of attack of @ = 0° and a = 4°.
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Figure 8.7: Drag breakdown for the isolated UAV wing (left), and focus on the
profile drag (right). Solid lines with square markers indicate the clean configura-
tion, dashed lines with triangular markers indicate the configuration with riblets.

of attack, riblets produce a larger lift coefficient and hence a larger induced drag.
It is worth noticing that the decrease of Cp j, is almost the same for the cases at
constant a and constant C, whereas the induced drag is larger when compared at
the same «a.

Drag breakdown is graphically shown at various « in figure focus is on
the total, induced and profile drag on the left panel, and on the contributions to
profile drag on the right panel. From the left panel, riblets are seen to mainly act
on the profile drag while the lift induced drag is essentially unchanged. The right
panel of figure focuses on the decomposition of profile drag, and shows that,
besides the obvious reduction of friction drag, riblets additionally act upon form
drag in a significant way. Depending on the angle of attack, the benefit of riblets in
reducing Cp ,, are in the 5-10% range. This is linked to the modifications on the
pressure distribution on the wing, already observed in the NACA 0012 validation
tests, see figure The pressure distribution at 2y/b = 0.52 for the UAV wing
is shown in figure[8.8] and confirms the larger pressure recovery and the increased
expansion peak induced by riblets that are at the root of form drag reduction.
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Figure 8.8: Pressure coefficient on the pressure and suction sides of the isolated
UAV wing at 2y /b = 0.52, at @ = 4°, for the clean case (black line) and difference
with the riblets case (red dashed line).
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Finally, figure plots the skin friction distribution at the spanwise station
2y/b = 0.52 of the wing, and compares clean and riblets configurations at different
angles of attack. A decrease of the skin friction across the entire chord is observed.
In particular on the suction side friction is mainly reduced in the fore portion; at
large angles of attack, friction reduction vanishes in the aft part. On the lower
surface, the reduction of friction is almost constant when « is varied.

8.4.2 The UAV

The complete UAV is now considered, in the configuration described above and
shown in figure Consistently with the rest of this study, riblets are assumed
to be locally optimal, with /; = 10.5 and unitary slip length 4™ = 1. The spatial
distribution of the optimal riblet size, i.e. [, (which, for a given cross-sectional
shape, leads immediately to the geometric dimensions of the riblets) is retrieved
as a result of the simulations. It should be remarked, however, that previous work
(Mele et al., 2016) indicates how the size of locally optimal riblets does not vary
much, so that the drag reduction obtained adopting riblets with constant physical
size is quite near to the maximum drag reduction.

A series of simulations with/without riblets is carried out to provide data points
to build the polar of the aircraft (figure[8.10). Owing to the already highlighted lift
increase provided by riblets, the angle of attack necessary to provide the required
lift in cruise conditions slightly decreases from @ = 2.85° to 2.81°. The drag
reduction obtained for the entire aircraft is an interesting 3%, that derives from
a combination of a (less important) friction drag reduced by 6.1% and a (more
important) pressure drag reduced by 1.5%.

Figure helps determining where the largest percentage changes of the
skin friction take place over the surface of the aircraft. ACy/Cy g is about 6%
almost everywhere, roughly as expected for a flat plate at this value of Re, except
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Figure 8.11: Percentage of skin friction reduction on the upper (left) and lower
(right) parts of the aircraft in cruise condition.

for the region near the trailing edge and for the aft part of the fuselage: here the
absolute value of Cy approaches zero, and its percentage variations become less
meaningful.

Figure [8.12] shows the computed height distribution for the locally optimal
riblets, by assuming that the cross-sectional riblet shape is a standard V groove,
for which s* = h* = \/il;. The optimal riblets height is about 0.2 mm nearly
everywhere, except for the trailing edge of the wing, and for the aft part of the
fuselage. This provides graphical evidence to the previous statement that riblets
of properly chosen constant physical height would provide a drag reduction that is
very close to the maximum.

Riblets are then tested in off-design situations, i.e. at various incidences
different from the cruise angle of attack, to check for robustness and to verify that
riblets do not cause unwanted effects on the UAV aerodynamics, during maneuvers
or the climb/descent phases of a typical mission. As already noted for the UAV
wing, figure [8.13] shows that, although drag reduction is maximum in cruise,
performance degrades only mildly when the angle of attack differs from the cruise
value. Again, it is confirmed that friction drag reduction remains nearly constant
when a ranges from —2° to 5°.

Finally, the aerodynamic drag is broken down into profile drag and induced
drag in the left plot of figure[8.14] while the right plot decomposes further profile
drag into friction and form drag. The most obvious difference between clean and
riblets configurations is the reduced profile drag, which derives from a sizable
reduction of the friction component, jointly with a comparable contribution from
the form drag.
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Figure 8.12: Spatial distribution of the computed optimal riblets height in physical
units, for symmetric V groove riblets. Left: upper part of the aircraft in cruise
conditions; right: lower part.
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Figure 8.13: Drag reduction rate vs angle of attack. The largest drag reduction is
achieved in cruise condition.
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Figure 8.14: Drag breakdown (left) and decomposition of profile drag (right).
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triangular markers refer to riblets configuration.

Riblets deployment B
I full coverage 1.000
II no wing TE 0.953
I no booms 0.935
v only wing 0.524
V | only wing, suction side | 0.289

Table 8.2: Coverage configurations

8.4.3 Partial coverage

Perhaps the most interesting consequence of the availability of a simple yet accurate
boundary condition to model riblets within RANS simulations is the ability to carry
out quick numerical studies to address practical problems related to their use. For
example, since riblets produce limited benefits and imply costs and penalties, an
elementary cost/benefit analysis should start from addressing the simple question
of which area of the aircraft surface would yield the largest benefits after riblets
installation. To this aim, we have designed a further set of simulations to explore
partial coverage of the aircraft surface with riblets. The amount of coverage is
quantified by the ratio 8 between the riblets-covered area and the total area, with
B = 1indicating total coverage. In these simulations, the full aircraft is considered,
but riblets coverage varies according to Table|8.2 where case I is the full-coverage
case described above. Outcomes of the simulations are shown in Table [8.3] and
graphically represented in figure Figure [8.15|schematically illustrates where
riblets are applied on the surface of the UAV.

Since at the trailing edge of the wing riblets do not provide significant reduc-
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II: no wing TE III: no booms IV: only wing V: only wing,
suction side

— 4

Figure 8.15: Schematic drawing of various riblets coverage configurations, cases
II-V.

Co  ACp/Cpo%  Cn, ACp,/Copn% Cps ACh/Ch po%
Clean | 0.0508 - 0.0338 - 0.0170 -
I | 0.0493 3.0 0.0333 15 0.0160 6.1
I | 0.0493 3.0 0.0333 1.5 0.0160 6.1
I | 0.0493 2.9 0.0333 1.5 0.0160 5.8
IV | 0.0498 2.0 0.0333 14 0.0165 3.3
V| 0.0499 1.7 0.0333 1.5 0.0167 22

Table 8.3: Drag breakdown for the UAV in cruise condition, for different configu-
rations of riblets coverage, and percentage changes with the clean case.
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Figure 8.16: Drag reduction contributions for different configurations of riblets
coverage from highest (I-full coverage) to lowest (V-wing only, suction side)
coverage.
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tions in skin friction (figure[8.11)) while locally enforcing a substantial change from
the optimal size, in configuration II riblets are removed from the trailing edge of
the entire wing. The reduction of the riblets-covered surface is minimal (less than
5%) but, as expected, there is no appreciable decrease in terms of performance.
Configuration III has riblets removed from the booms that connect the wing to the
tail. Again, the overall drag reduction is essentially unchanged, with 6.5% savings
in covered area: pressure drag reduction remains unchanged since the boom is
not an aerodynamic body, whereas friction reduction decreases but minimally so
because the surface of the boom is small. Together, cases II and III suggest that
removing riblets from both the trailing edge and the booms would avoid difficult
areas, and save over 10% of application surface without incurring in significant
performance degradation.

Configuration IV has riblets applied on the wing only, and is motivated by
the observation that, in this application, pressure drag is approximately 2/3 of the
whole drag, and that riblets placed on the wing produce pressure drag reduction
in addition to friction drag reduction. With configuration IV, performance indeed
degrades from 3% to 2%, but the saving in coverage area is more than proportional,
with riblets surface shrinking down to one half at § = 0.524. As expected,
pressure drag reduction remains almost unchanged at 1.4%, and friction drag
reduction is seen to diminish from 6.1% to 3.3%: indeed, the area of the wing is
approximately one half of the total area. Perhaps the most interesting configuration
is configuration V, where only the suction side of the wing (and the entire winglet)
is equipped with riblets, leading to 8 = 0.289. In contrast, the riblets-induced
benefit remains more than one half, i.e. 1.7% instead of 3.0%.

8.5 Conclusions

The drag reduction potential of riblets deployed on a fixed-wing, low-speed Un-
manned Air Vehicle (UAV) has been assessed with RANS simulations, with a view
to determining an optimal coverage policy. While riblets are fully characterized
in low-speed flows over plane walls, and studies are available for aeronautical
configurations in transonic flow (commercial mid- or long-range passenger air-
craft), a low-speed aircraft like the present one (for which the cruise speed is only
22 m/s) is considered here for the first time. Since the friction component of the
aerodynamic drag of the UAV is modest, the effectiveness of riblets in this specific
application needs to be assessed.

The RANS simulations, which employ a standard OpenFOAM setup, are un-
able to describe riblets directly. Thus, the presence of riblets is accounted for
via a suitable slip condition enforced at the planar wall. The chosen amount of
slip is constant in viscous units, and corresponds to riblets that locally possess

280



optimal size in viscous wall units. The slip length model has been validated in the
simple flows over a flat plate and around a subsonic airfoil, where results agree
with available information.

Once applied to the UAV, the simulated riblets have brought out indirect and
favorable effects, which go beyond the local reduction of friction drag, and render
the deployment of a friction-reduction device definitely interesting also in such a
low-speed application. Indeed, riblets significantly change the pressure distribu-
tion across the wing of the aircraft, which translates into an additional reduction
of form drag, and in a lift increment as well. Although the latter obviously causes
an increase of lift-induced drag, the requirement for the aircraft in cruise to fly at
a given lift leads to a reduced angle of attack and thus to a further contribution to
drag reduction. In the end, riblets provide up to 3% of reduction of the total drag
of the aircraft at cruise speed: a noticeable result, especially when the low flight
Reynolds number of the UAV is considered.

Once a cheap computational model is available to reliably compute the global
effect of riblets on the aerodynamic drag, varying the riblets coverage policy
becomes a computationally affordable task; relatively inexpensive simulations can
help determine what drag benefit can be achieved with a given extent and location of
the coverage of the aircraft surface. Thanks to the importance of secondary effects
on pressure drag reduction induced by riblets, as a consequence of the significant
pressure drag component, up to 1.7% of total drag reduction is achieved by placing
riblets on the upper surface of the wing only. In this configuration, the total drag
reduction is almost 2/3 of the maximum obtained with full coverage but it is
obtained with a coverage of less then 1/3 of the total area. Since riblets costs (for
application and maintenance) are directly linked to the amount of riblets-covered
surface, the wing-only configuration offers a reduced cost-benefit ratio, and leaves
untouched the UAV fuselage, where systems (sensors, cameras, transmitters) are
designed to be installed. Further analysis can determine the practicality of riblets
removal from high-wear areas (e.g. the leading edge), which would further add
to the practical appeal of riblets in this application. Such calculations are made
possible by the simplicity of the slip length model, whose validity goes beyond
riblets, since it can be used to simulate a generic drag-reducing device which
locally reduces the skin friction.
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