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Preface

This Thesis deals with turbulent flows, mostly wall-bounded flows, with a special

focus on skin-friction drag reduction. It takes a global stance at the topic, by

making new attempts to understand the elusive physics behind drag reduction with

novel methods, and by addressing some of the many practical obstacles that still

prevent drag reduction techniques to be deployed in applications.

The document is structured in two parts. Part I is an original summary of

the work, where its main ideas and results are presented. It is organized in four

Chapters. Chapter 1 presents the main research questions and provides a broad

overview of the entire thesis. Chapter 2 introduces novel tools to give new insights

on the physical mechanisms driving wall-bounded turbulent flows and their changes

by skin-friction drag reduction. Chapter 3 addresses a number of practical aspects

that need to be considered before drag reduction techniques become a viable

strategy in applications. Lastly, Chapter 4 provides a concluding discussion and

delineates possible future developments of the present work. The subsequent Part

II details each part of the work through articles, which are presently at various

stages of the editorial process. The list of papers included in the Thesis is reported

below, along with the respective publication status and the description of my own

contribution to each work.

Paper 1 Gattere, F., Codrignani A., Gatti, D. & Quadrio, M. Mean Impulse

Response in a Turbulent Channel Flow. Journal of Fluid Mechanics (in

preparation).

Contribution: The idea of the work started back with the Master thesis of

A. Codrignani. I wrote missing codes, run the corresponding simulations,

and furthered the simulations already performed. I improved the post-

processing analysis, and investigated the physical implications of the results.

I developed the codes for the final verification against DNS results. I wrote

the current manuscript together with the co-authors.

Paper 2 Gattere, F., Chiarini, A., Gallorini, E. & Quadrio, M. 2023 Structure

function tensor equations with triple decomposition. Journal of Fluid Me-

chanics 960, A7.
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Contribution: I started this work with my Master thesis, by extending the

code for the anisotropic generalised Kolmogorov equations to compute its

phase-aware variance, and by running part of the simulations. I investigated

the results, wrote the first draft and the rebuttal letters to the reviewers,

together with the co-authors.

Paper 3 Quadrio, M., Castelletti, M., Chiarini, A. & Gattere, F. On the optimal

period of spanwise forcing for turbulent drag reduction. Journal of Fluid

Mechanics (in preparation).

Contribution: I conceptualized this work together with A. Chiarini and M.

Quadrio. I performed the simulations and handled the post-processing of

the results. I investigated the results and wrote the manuscript together with

the co-authors.

Paper 4 Gatti, D., Quadrio, M., Chiarini A., Gattere, F. & Pirozzoli, S. Tur-

bulent skin-friction drag reduction via spanwise forcing at high Reynolds

number. Journal of Fluid Mechanics (under review).

Contribution: I performed the preliminary analysis of the data and decided

what simulations to perform together with A. Chiarini. I reviewed and edited

the manuscript together with the co-authors.

Paper 5 Gattere, F., Zanolini, M., Gatti, D., Bernardini, M. & Quadrio, M.

2024 Turbulent drag reduction with streamwise-travelling waves in the com-

pressible regime. Journal of Fluid Mechanics 987, A30.

Contribution: This work started with the Master thesis of M. Zanolini. I run

most of the simulations and performed part of the validation of the code. I

developed the post-processing of the data and analyzed the results together

with M. Zanolini. I wrote the first draft of the manuscript. I investigated

the implications of the different comparison and replied to the reviewers

together with D. Gatti, M. Bernardini e M. Quadrio.

Paper 6 Luchini, P., Gatti, D., Chiarini, A., Gattere, F., Atzori, M. & Quadrio,

M. A simple and efficient immersed-boundary method for the incompressible

Navier–Stokes equations. Journal of Computational Physics (under review).

Contribution: I prepared the literature review on the topic and wrote the

Introduction together with A. Chiarini. Together with A. Chiarini and D.

Gatti, I wrote the Methods section starting from an informal report written

by P. Luchini. I reviewed and edited the manuscript together with the co-

authors.

Paper 7 Gattere, F., Chiarini, A. & Quadrio, M. 2022 Dimples for Skin-Friction

Drag Reduction: Status and Perspectives. Fluids 7 (7), 240.

II



Contribution: I conceptualized the work together with the co-authors. I

prepared the literature review, and wrote the first draft of the manuscript. I

replied to the reviewers together with the co-authors.

Paper 8 Cacciatori, L., Brignoli, C., Mele, B., Gattere, F., Monti, C.M. &

Quadrio, M. 2022 Drag Reduction by Riblets on a Commercial UAV.

Applied Science 12 (10), 5070.

Contribution: I co-supervised L. Cacciatori and C. Brignoli during their

Master thesis. I reviewed and edited the first draft and I replied to the

reviewers together with M. Quadrio.

III



Conferences

Part of this Thesis has been already presented at international conferences. Part

of the conference work is only briefly mentioned in this Thesis. My name is

underlined whenever I was the presenting author.

• Gattere, F., Chiarini, A., Cavallazzi, G. M., Rossi, A., Gatti, D., Lu-

chini, P. & Quadrio, M. Towards Reliable and Cost-Effective DNS over

Riblets. European Drag Reduction and Flow Control Meeting (EDRFCM

2022), Paris, France 6-9 Sept 2022.

• Gattere, F., Chiarini, A., Zanolini M., Gatti, D., Bernardini M. &

Quadrio, M. Turbulent drag reduction using spanwise forcing in com-

pressible regime. European Drag Reduction and Flow Control Meeting

(EDRFCM 2022), Paris, France 6-9 Sept 2022.

• Gattere, F., Chiarini, A., Gallorini, E. & Quadrio, M. Scale-space

budget equations for inhomogeneous (quasi-)periodic turbulent flows. 14th

European Fluid Mechanics Conference (EFMC14), Athens, Greece 13-16

Sept 2022.

• Gattere, F., Chiarini, A., Zanolini, M., Gatti, D., Bernardini M. &

Quadrio, M. Turbulent Drag Reduction with Streamwise Travelling Waves

in Compressible Regime. 18th European Turbulence Conference (ETC18),

Valencia, Spain 4-6 Sept 2023.

• Quadrio, M., Chiarini A., Conforti, A. & Gattere, F. Spanwise forcing

for turbulent drag reduction: the meaning of the optimal oscillation period.

18th European Turbulence Conference (ETC18), Valencia, Spain 4-6 Sept

2023.

• Gatti, D., Cipelli S., Gattere F., Chiarini, A., Luchini P. & Quadrio,

M. Accurate and Efficient Direct Numerical Simulation of Turbulent Drag

Reduction via Riblets. 18th European Turbulence Conference (ETC18),

Valencia, Spain 4-6 Sept 2023.

• Gattere, F., Codrignani, A., Gatti, D. & Quadrio, M. Mean Impulse

Response in a Turbulent Channel Flow. 26th International Congress of

Theoretical and Applied Mechanics (ICTAM 2024), Daegu, Republic of

Korea 25-30 Aug 2024.

• Gattere, F., Chiarini, A., Castelletti, M. & Quadrio, M. On the Optimal

Period of Spanwise Forcing for Turbulent Drag Reduction. European Drag

IV



Reduction and Flow Control Meeting (EDRFCM 2024), Torino, Italy 10-13

Sept 2024.

• Cipelli S., Quadrio, M., Gattere, F., Chiarini, A., Luchini, P. & Gatti,

D. Sinusoidal Riblets for Turbulent Drag Reduction. European Drag Re-

duction and Flow Control Meeting (EDRFCM 2024), Torino, Italy 10-13

Sept 2024.

• Gatti, D., Quadrio, M., Chiarini, A., Gattere, F. & Pirozzoli, S. Numer-

ical Study of Turbulent Skin-friction Drag Reduction via Spawise Forcing

at Large Values of Reynolds Number. European Drag Reduction and Flow

Control Meeting (EDRFCM 2024), Torino, Italy 10-13 Sept 2024.

• Gattere, F., Codrignani, A., Gatti, D. & Quadrio, M. Mean Impulse

Response in a Turbulent Channel Flow. 1st European Fluid Dynamics

Conference (EFDC1), Aachen, Germany 16-20 Sept 2024.

V



Contents

I Skin-friction drag reduction: physics and applications 1

1 Introduction 2

2 Understanding wall-bounded turbulence towards its control 6

2.1 A linear description of turbulence . . . . . . . . . . . . . . . . . 9

2.2 A complete description of turbulence . . . . . . . . . . . . . . . . 15

2.3 A conceptual description of controlled turbulence . . . . . . . . . 21

3 Understanding controlled turbulence towards applications 26

3.1 Drag reduction and the Reynolds number . . . . . . . . . . . . . 28

3.2 Drag reduction and the Mach number . . . . . . . . . . . . . . . 30

3.3 Drag reduction and the real world . . . . . . . . . . . . . . . . . 35

3.3.1 A novel immersed-boundary method for non-planar walls . 36

3.3.2 Dimples . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Riblets on a flat plate . . . . . . . . . . . . . . . . . . . . 40

3.3.4 Riblets on a three-dimensional body . . . . . . . . . . . . 43

4 Conclusions and outlook 47

II Papers 51

1 Impulse Response in Turbulent Channel Flow 53

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.2 The LIRF of the turbulent channel flow . . . . . . . . . . . . . . 57

1.2.1 Definition of LIRF . . . . . . . . . . . . . . . . . . . . . 57

1.2.2 How to measure the LIRF . . . . . . . . . . . . . . . . . 59

1.2.2.1 Measuring the LIRF in the frequency domain . 59

1.2.2.2 Measuring the LIRF in the physical domain . . 60

1.2.2.3 Measuring the LIRF as an input-output correlation 61

1.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . 62

VI



1.3.1 Discretization of the DNS . . . . . . . . . . . . . . . . . 62

1.3.2 Computation of the response . . . . . . . . . . . . . . . . 63

1.3.3 Discretisation of the response . . . . . . . . . . . . . . . 64

1.3.4 Visualisation of the response . . . . . . . . . . . . . . . . 65

1.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.4.1 Comparison with literature and alternative approaches . . 66

1.4.2 Linearity of the impulse response in a non-linear system . 67

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.5.1 The shape and intensity of the LIRF . . . . . . . . . . . . 69

1.5.2 The LIFR as a function of the forcing location . . . . . . . 73

1.5.3 The LIFR as a function of time . . . . . . . . . . . . . . . 76

1.5.4 The LIRF in the whole space-time domain . . . . . . . . . 78

1.6 A posteriori validation . . . . . . . . . . . . . . . . . . . . . . . 79

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2 Structure function tensor equations with triple decomposition 84

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . 87

2.2.1 Triple decomposition of the velocity field . . . . . . . . . 88

2.2.2 The anisotropic generalised Kolmogorov equations (AGKE) 88

2.2.3 The phase-aware AGKE, or iAGKE . . . . . . . . . . . . 92

2.3 Turbulent drag reduction by the spanwise-oscillating wall . . . . . 95

2.3.1 Database and computational details . . . . . . . . . . . . 97

2.3.2 iAGKE tailored to the channel flow with oscillating walls 99

2.4 Effect of the spanwise forcing on the near-wall cycle . . . . . . . . 101

2.4.1 Near-wall structures . . . . . . . . . . . . . . . . . . . . 101

2.4.1.1 Description at a fixed phase . . . . . . . . . . . 101

2.4.1.2 Evolution during the cycle . . . . . . . . . . . . 103

2.4.2 Interaction of the mean, coherent, and fluctuating fields . . 107

2.4.3 Pressure–strain redistribution . . . . . . . . . . . . . . . . 112

2.4.4 Transfers of the spanwise stresses . . . . . . . . . . . . . 114

2.5 Concluding discussion . . . . . . . . . . . . . . . . . . . . . . . 117

2.A Derivation of the budget equations for XD̃8XD̃ 9 and XD′′
8
XD′′

9
. . . . . 119

2.A.1 Budget equation for *8, D̃8 and D′′8 . . . . . . . . . . . . . 119

2.A.2 iAGKE for XD̃8XD̃ 9 . . . . . . . . . . . . . . . . . . . . . 121

2.A.3 iAGKE for XD′′
8
XD′′

9
. . . . . . . . . . . . . . . . . . . . . 127

2.B The iAGKE for the plane channel flow with oscillating walls . . . 130

2.C Analysis of conditionally-averaged quantities . . . . . . . . . . . 132

VII



3 On the optimal period of spanwise forcing for turbulent drag reduction135

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . 138

3.2.2 Numerical experiments . . . . . . . . . . . . . . . . . . . 139

3.2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.3.1 The drag reduction map . . . . . . . . . . . . . . . . . . 141

3.3.2 Physical interpretation of the optimum . . . . . . . . . . . 143

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4 Turbulent skin-friction drag reduction via spanwise forcing at high

Reynolds number 148

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.2 Methods and procedures . . . . . . . . . . . . . . . . . . . . . . 154

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.3.1 Maps of R: validity of the results by GQ16 . . . . . . . . 158

4.3.2 Maps of Δ�∗: validity of the GQ model . . . . . . . . . . 160

4.3.3 Monotonicity of R with '4 . . . . . . . . . . . . . . . . . 162

4.3.4 Net power savings at large values of '4 . . . . . . . . . . 163

4.4 Concluding discussion . . . . . . . . . . . . . . . . . . . . . . . 166

4.5 Dataset details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5 Turbulent drag reduction with streamwise travelling waves in the com-

pressible regime 175

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . 179

5.2.2 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2.3 Parameters and computational setup . . . . . . . . . . . . 181

5.2.4 Performance indicators . . . . . . . . . . . . . . . . . . . 184

5.2.5 On the comparison strategy . . . . . . . . . . . . . . . . 185

5.3 Drag reduction and power savings . . . . . . . . . . . . . . . . . 189

5.3.1 Drag reduction . . . . . . . . . . . . . . . . . . . . . . . 191

5.3.2 Power budgets . . . . . . . . . . . . . . . . . . . . . . . 196

5.4 Concluding discussion . . . . . . . . . . . . . . . . . . . . . . . 198

5.A A compact representation of the dataset . . . . . . . . . . . . . . 201

6 A simple and efficient immersed-boundary method for the incompress-

ible Navier–Stokes equations 205

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

VIII



6.2 The immersed-boundary method . . . . . . . . . . . . . . . . . . 209

6.2.1 Equations of motion and discretization . . . . . . . . . . . 209

6.2.2 The steady case . . . . . . . . . . . . . . . . . . . . . . . 211

6.2.3 The steady case: example . . . . . . . . . . . . . . . . . 213

6.2.4 The unsteady case . . . . . . . . . . . . . . . . . . . . . 214

6.2.5 The unsteady case: example . . . . . . . . . . . . . . . . 217

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.3.1 Advantages and drawbacks . . . . . . . . . . . . . . . . . 219

6.3.2 The underlying staircase approximation . . . . . . . . . . 220

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.4.1 The turbulent flow in a channel with undulated bottom . . 221

6.4.2 The turbulent flow in the human nose . . . . . . . . . . . 225

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7 Dimples for skin-friction drag reduction: status and perspectives 231

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.1.1 Characterization of a dimpled surface . . . . . . . . . . . 233

7.2 Do dimples work? . . . . . . . . . . . . . . . . . . . . . . . . . . 236

7.2.1 Experimental studies . . . . . . . . . . . . . . . . . . . . 237

7.2.2 Numerical simulations . . . . . . . . . . . . . . . . . . . 238

7.3 How to design dimples? . . . . . . . . . . . . . . . . . . . . . . . 243

7.3.1 The shape of the dimple . . . . . . . . . . . . . . . . . . 243

7.3.2 The arrangement of the dimples . . . . . . . . . . . . . . 246

7.4 How do dimples work? . . . . . . . . . . . . . . . . . . . . . . . 247

7.4.1 Self-organized secondary tornado-like jets . . . . . . . . . 247

7.4.2 Spanwise forcing . . . . . . . . . . . . . . . . . . . . . . 248

7.5 How to set up a proper comparison? . . . . . . . . . . . . . . . . 250

7.5.1 Measurement of the drag (difference) . . . . . . . . . . . 251

7.5.2 The Reynolds number . . . . . . . . . . . . . . . . . . . 252

7.5.3 The equivalent flat wall . . . . . . . . . . . . . . . . . . . 254

7.5.4 The drag reduction metrics . . . . . . . . . . . . . . . . . 257

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

7.A Appendix 7.A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

8 Drag Reduction by Riblets on a Commercial UAV 260

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

8.2.1 Slip length boundary condition . . . . . . . . . . . . . . . 263

8.2.2 Computational setup . . . . . . . . . . . . . . . . . . . . 264

8.2.3 The UAV model . . . . . . . . . . . . . . . . . . . . . . 266

8.2.4 Dimensionless force coefficients . . . . . . . . . . . . . . 267

IX



8.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

8.3.1 Flat plate . . . . . . . . . . . . . . . . . . . . . . . . . . 268

8.3.2 NACA 0012 airfoil . . . . . . . . . . . . . . . . . . . . . 269

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

8.4.1 The isolated UAV wing . . . . . . . . . . . . . . . . . . . 272

8.4.2 The UAV . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8.4.3 Partial coverage . . . . . . . . . . . . . . . . . . . . . . . 278

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

X



Part I

Skin-friction drag reduction:

physics and applications

1



1 Introduction

Turbulence is ubiquitous in natural and artificial flows; fathoming the physics be-

hind turbulent flows and learning how to tame it is a long-standing effort in fluid

mechanics. Turbulent flows are complex, especially those with practical interest

that are usually confined by solid boundaries; they are strongly anisotropic and

inhomogeneous, and have a finite (yet often large) Reynolds number that leads to

an incomplete separation of scales. The nature of turbulent flows is chaotic; one

can only hope to describe them statistically. However, for wall-bounded flows, a

quasi-deterministic description of turbulence is also possible; some structures can

be recognized through a random background, and their evolution is essentially de-

terministic. Turbulent flows are multiscale; fluctuations of different scales interact,

and transfer energy (on average) from the large energy-containing scales embed-

ding the geometrical information towards small dissipative local isotropic scales

via a cascade mechanism. The presence of a solid wall also introduces the physical

position as an additional independent variable; energy, beyond being transferred

among scales, is transferred in space along the inhomogeneous directions, e.g.

from the wall towards the bulk of the flow and vice versa. Turbulent flows possess

a strong non-linear nature; non-linearity drives the energy cascade. However, lin-

ear mechanisms play a central role in the near-wall turbulence regeneration cycle.

Turbulent flows are diffusive; through viscous mechanisms, small-scale fluctua-

tions are spread and the transfer of momentum and energy is enhanced. In the

presence of a wall, the diffusive nature of the turbulent flow results in more intense

wall-shear stresses and a larger skin-friction drag than the laminar counterpart.

Owing to their complexity, anisotropy and inhomogeneity, wall-bounded tur-

bulent flows can be studied with many approaches (see e.g. Pope, 2000; Davidson,

2004). Although Navier–Stokes equations are strongly non-linear, they are often

studied after linearisation about a base flow. Linear mechanisms are key in the

near-wall turbulent cycle; the streaks of streamwise velocity are due to quasi-

streamwise vortices interacting with the mean velocity shear via a linear process.

However, the self-sustainment of the cycle which regenerates the vortices from the

streaks needs non-linearity (Reynolds & Tiedermann, 1967). Therefore, even if

the linear behaviour of non-linear turbulent flows can be instructive, a complete
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characterization needs the full non-linear description. Statistics are probably the

best way to represent turbulence: despite turbulent flows are not deterministic,

their statistics are. The simplest is the mean, i.e. the average over time (and usu-

ally homogeneous directions), useful to decompose the complete flow field into

a mean field and turbulent fluctuations. Higher-order moments further enrich the

description of the statistical distribution (e.g., the velocity here). For instance, the

variance measures how data are spread around the mean, the skewness measures

the asymmetry around the mean, and the kurtosis measures the importance of

extreme events in the tails of the distribution. One-point statistics measure the in-

tensity of the fluctuations, and they are usually associated to physical space where

quantities are characterized in their evolution along a certain inhomogeneous di-

rection. Two-point statistics, such as spectra (in homogeneous directions only) and

correlations, indicate their spatial scales.

An alternative approach to statistics involves the identification of structures

which share a sort of coherency compared to the background random turbulence

and show a deterministic evolution (Robinson, 1991). The near-wall region is

dominated by two classes of structures: streaks and quasi-streamwise vortices

(QSV). The former are elongated and meandering regions of alternating streamwise

low and high speed superimposed on the mean velocity, whereas the latter are

vortical structures roughly aligned with the streamwise direction. Streaks and QSV

are the two main actors of the self-sustaining cycle of the near-wall turbulence;

through their mutual regeneration, turbulence is sustained. Vortices generate

the low-speed and high-speed streaks by the interaction with the mean velocity

profile, advecting low-streamwise velocity upwards and high-streamwise velocity

downwards. In turn, QSV are generated by a transient growth of perturbations,

driven either by the streaks instability or by the mean shear (Jiménez, 2018).

The complexity of turbulent flows and the practical consequence of their prop-

erties in applications drive researchers towards the comprehension of the physical

mechanism of turbulence and the discovery of ways to control it for specific pur-

poses, such as reducing its harmful interaction with the wall, i.e. reducing the

skin-friction drag. The current incomplete knowledge of the turbulence physics

reflects into currently unsatisfactory drag reduction strategies.

Regardless of their significant room for improvement, both numerical and ex-

perimental studies have amply documented the effectiveness of some flow control

techniques in decreasing skin-friction drag. Most of the studies (particularly nu-

merical ones) seeking to understand the physics of turbulent flows and how they

are modified by control are carried out in simple configurations such as internal

flows, i.e. plane channel flows or circular pipe flows, in the incompressible regime

and at low values of the Reynolds number. These features make it feasible to

carry out computations using Direct Numerical Simulations (DNS), which resolve

every scale of the flow and produce high-fidelity data without modelling errors.
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However, practical applications for skin-friction drag reduction techniques include

complex external flows, such as for example wind turbines and aircraft. Aeronau-

tical applications are of particular interest. About 50% of a civil aircraft’s drag

comes from viscous effects caused by the turbulent boundary layer near the solid

surface. So, an efficient drag reduction technology which develops even a tiny

reduction would have huge economic and environmental benefits.

A highly promising approach to reduce skin-friction drag is spanwise forcing

(Ricco et al., 2021), which involves generating an unsteady spanwise cross flow

that interacts with the near-wall turbulence, attenuating the turbulent activity and

decreasing skin-friction drag. This spanwise motion can be achieved through

various methods, including transverse oscillations of the wall (Quadrio, 2011),

incorporation of rotating discs on the surface (Ricco & Hahn, 2013), or the use of

plasma actuators (Choi et al., 2011). Among spanwise forcing strategies, in-plane

oscillation of the wall is an interesting category. The two simplest techniques

are the oscillating wall (Jung et al., 1992) which induces the wall to move in the

spanwise direction with a harmonic time law and the steady waves (Viotti et al.,

2009) which impose a steady spanwise wall velocity that varies periodically in

the streamwise direction. The most significant reduction in drag is attained when

the two techniques are combined in the streamwise travelling waves of spanwise

velocity (Quadrio et al., 2009) involving periodic oscillation both in time and

space. Besides achieving large drag reduction rates, travelling waves also yields

considerable net benefit, meaning they are still convenient after the energy cost of

the actuation is considered.

Before declaring a drag reduction technique as a viable option for implemen-

tation in practical applications, such as on commercial aircraft, some aspects must

be investigated. Typical flight Reynolds number ('4) is on the order of '4 ≈ 107;

thus, an important aspect to consider is the dependence of the drag reduction

rate on the Reynolds number. Gatti & Quadrio (2016) measured the drag reduc-

tion achieved by streamwise-travelling waves of spanwise velocity (Quadrio et al.,

2009). They found out that drag reduction presents a mild logarithmic decrease

with increasing Reynolds number and proposed a model to extrapolate the drag

reduction at high Reynolds number from its value at low-'4. Even though the

performance deteriorates, they measured that a significant level of drag reduction

can still be attained at values of '4 commonly encountered in aviation. Recently,

Marusic et al. (2021) offered a new view for the exploitation of spanwise forc-

ing at high '4, measuring an increasing drag reduction rate with '4 thanks to

the interaction of the near-wall forcing with the large-scale outer motions, whose

importance grows with '4.

Also, typical commercial airplanes fly in transonic regime; a quantification of

the compressibility effects on the drag reduction performance is needed through

the study of the dependence of the drag reduction on the Mach number. Yao &
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Hussain (2019) and Ruby & Foysi (2022) investigated the oscillating wall and

the spanwise steady waves, respectively and found a large positive effect of the

compressibility on drag reduction, hinting at a possible beneficial application of

spanwise forcing in aeronautics.

Finally, practical applications feature complex surfaces with non-planar walls,

where pressure drag comes into play and provides extra drag. Quadrio et al. (2022)

studied travelling waves applied on a portion of a wing in transonic flight, finding

that localized actuation has the potential to boost the aerodynamic efficiency of the

whole aircraft via indirect effects on the pressure drag. These results are highly

encouraging, suggesting the potential for the successful implementation of drag

reduction strategies in real scenarios, particularly within the field of aviation.

This Thesis concerns itself with turbulent drag reduction and its practical

applications. On one hand, novel tools are introduced to improve our understanding

of the interaction between near-wall turbulence and an external forcing. On the

other hand, skin-friction control is applied to flows of practical interest, to clarify

a number of open issues related to a future industrial exploitation.
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2 Understanding wall-bounded tur-

bulence towards its control

The first goal of the present Thesis is to provide a comprehensive description of

turbulent flows and of how they are modified by the skin-friction drag reduction

control. We aim at disentangling the different mechanisms that drive turbulent

flows with and without control, by analyzing their contributions separately.

Due to the key role of linear mechanisms in the creation of the structures

of the near-wall turbulent cycle (Kim & Lim, 2000), an obvious starting point

is separating the linear and non-linear dynamics of turbulence. To this aim, we

exploit the linear impulse response function, a fundamental tool of signal theory.

Within the limit of linearity, the response function informs us of positions and

scales of forcing that are required to achieve a desired effect. Instead of following

the classic approach where the equations of motion are linearized about either the

laminar (Jovanović & Bamieh, 2005) or the mean turbulent (Högberg et al., 2003)

velocity profile, here we measure (numerically) the mean linear response function

of a fully non-linear turbulent flow, to also account for the mean effect of turbulent

diffusion (Luchini et al., 2006). Even though turbulent flows are strongly non-

linear, as long as they are forced by a sufficiently small perturbation, non-linearity

does not kick in, and the linear response of the system can be isolated.

The linear response could be exploited in linear control algorithms as the best

model of the plant. However, a complete description of turbulence and the quanti-

tative assessment of drag reduction techniques require non-linear processes to be

fully accounted for. For this, we resort to the anisotropic generalised Kolmogorov

equations (AGKE) (Gatti et al., 2020), which describe the production, redistri-

bution, transfer and dissipation of turbulent fluctuations across both scales and

positions, simultaneously. This is the most informative description of a turbulent

flow from the standpoint of velocity second moments. To enable such a complete

description when flow control comes into play, we start from the observation that

most of the skin-friction drag reduction strategies possess a coherent, determinis-

tic component. For instance, active techniques (which need extra energy to work)

such travelling waves both in-plane (Quadrio et al., 2009; Zhao et al., 2004) and

6



of wall-deformation (Nakanishi et al., 2012; Tomiyama & Fukagata, 2013) are

coherent in time and/or space. Among passive techniques (which do not need

extra energy) riblets (Walsh & Weinstein, 1979), dimples (Lienhart et al., 2008),

permeable substrates (Abderrahaman-Elena & Garcı́a-Mayoral, 2017) and super-

hydrophobic surfaces (Daniello et al., 2009) are organized roughness featuring

a spatial periodic pattern. To understand how the coherent deterministic forcing

interacts with the non-deterministic small-scale turbulence, the two contributions

to the fluctuating field can be separated. Building upon a triple decomposition

of the variables into mean, deterministic and stochastic components, we derive a

phase-aware version of the AGKE which describes the dynamics of both the co-

herent and stochastic fields, as well as their interplay at each phase of the coherent

pattern. This tool enables connecting scales and positions of the forcing to scales

and positions at which turbulence is modified.

Lastly, in the context of active flow control, the need for an actuator involves

substantial limitations to the control strategy. For example, given a mechanical

system to create a spanwise motion of the wall, the penetration depth of the

induced motion cannot be chosen at will. Here, we propose to free the control law

from the limitations inherited by the actuator, an endeavor that is only possible in

numerical simulations. A thought numerical experiment is therefore carried out

to appreciate under a new angle the role of various control parameters in spanwise

forcing: limitations derived from a specific actuator are lifted, thus revealing the

true dependence of drag reduction upon the various quantities.

In this Chapter we exploit these new developed tools to describe the char-

acteristics of a simple, turbulent, wall-bounded flow: a fully developed, incom-

pressible, low-Reynolds-number, turbulent channel flow. The turbulent channel

flow is the simplest configuration of a wall-bounded turbulent flow; it possesses

two statistically homogeneous directions (streamwise G and spanwise I) parallel

to the flat, smooth, indefinite walls, and only one non-homogeneous direction (H)

perpendicular to the walls. Also, the incompressibility constraint removes the

thermodynamics from the Navier–Stokes equations and the low-Reynolds number

limits the size of the smallest flow structures, that scale with '4−3/4. This simple

configuration therefore allows employing Direct Numerical Simulations (DNS),

although they are in general very computationally demanding. DNS resolve all

spatial and temporal scales of the flow and produce high fidelity data, which are

necessary to understand the physics of the flow.

We leverage DNS in this simple configuration also to perform parametric

studies to investigate how the change of the control parameters affects the drag

reduction performance. With the aim to describe the interaction between drag
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reduction and turbulence, we focus on one of the simplest active drag reduction

techniques: the spanwise-oscillating wall. First, active techniques reduce drag

more than passive ones. So, their effects on the flow are larger and easier to

detect and study. Second, unlike most passive techniques, the oscillating wall is

flat, so that only skin-friction drag matters, leaving out pressure drag. Third, the

oscillating wall is described by few parameters, so it is easier to track their single

effects on the flow field.

The oscillating wall, introduced by Jung et al. (1992), forces the wall to move

in the spanwise direction with a harmonic oscillation in time, i.e.

F(H = 0, C) = � sin

(
2c

)
C

)
, (2.1)

where � is the amplitude and ) the period of the oscillation. The wall’s harmonic

oscillation generates a cross-flow that is periodic after space- and phase-averaging,

and that superimposes to and interacts with the turbulent flow. The phase-averaged

spanwise flow matches the analytical laminar solution of the second Stokes problem

(Quadrio & Sibilla, 2000), hereafter referred to as the Stokes layer (SL), with small

deviations for large ) :

F(! (H, C) = � exp

(
−
√

c

a)
H

)
sin

(
2c

)
C −

√
c

a)
H

)
. (2.2)

where a is the kinematic viscosity.

The drag reduction performance of the oscillating wall have been extensively

studied in the past 30 years from the seminal work of Jung et al. (1992). Quadrio

& Ricco (2004) found the drag reduction rate increasing monotonically with the

amplitude of the forcing �; at fixed � the maximum drag reduction is always

attained for the optimum period )+ ≈ 100. Hereinafter the superscript + identi-

fies quantities made dimensionless with the friction velocity Dg =
√
gF/d of the

uncontrolled case where gF is the average wall shear stress.

In an channel flow configuration run at constant mass flow rate, the drag

reduction (R) is defined as the difference between the skin-friction drag coefficient

(� 5 ) of the controlled and uncontrolled flow, i.e.

R = 100 ×
� 5 ,0 − � 5

� 5 ,0

, (2.3)

where the subscript 0 refers to the uncontrolled flow. The skin-friction coefficient

is defined as� 5 = 2gF/(dU2), with gF the average wall shear stress, d a reference

density and U a reference velocity, usually defined as bulk quantities (d1,*1) for

internal flow, such as the channel flow; in the particular case of incompressible

flow, the density is constant, i.e. d1 = d.
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2.1 A linear description of turbulence

First, we introduce a new tool to investigate the linear behavior of a turbulent

flow. Although a turbulent flow is a highly non-linear system, the study of its

linear dynamics is of capital interest. The suggestion (see for example Kim

& Lim, 2000) that linear mechanisms are central to the near-wall turbulence

regeneration cycle means that linear models of turbulence may suffice for flow

control purposes. Linear model-based controls, either iterative (adjoint-based)

and direct (Riccati-based) approaches, applied to turbulent flows need the mean

state equations; unfortunately, in the turbulent regime they are not available and

must be replaced by a linearized laminar model. The applicability of linear control

approaches to turbulent flows lies upon the assumption that appropriately linearized

models faithfully represent at least some of the important dynamic processes of

turbulent flow systems. However a model obtained by linearizing the non-linear

governing equations of a turbulent flow fails to capture some of its distinctive

features such as the turbulent diffusion. Capturing such behaviour may be of non-

negligible importance when trying to optimize a control algorithm and understand

the mechanism by which the control disrupts turbulence. We propose exploting

the linear impulse response function (LIRF), a classic tool for the description of

linear time-invariant dynamical systems that we aim at applying to a non-linear

system such as a turbulent flow. In the simplest single-input single-output (SISO)

case of scalar variables and dependency on the time only, the LIRF H links the

input 5 and the output @ of a system in the time domain through a convolution,

i.e.:

@(C) =
∫ +∞

−∞
H(C − g) 5 (g) dg. (2.4)

By setting the input to a Dirac delta function X(g), then @(C) = H(C), hence

the name LIRF. It is the most complete description of the linear dynamics of a

system and provides information about where and how apply a forcing to achieve

the desired mean effect elsewhere and after a certain time delay. Although the

response is linear, our approach fully accounts for the mean effects of turbulent

mixing, otherwise lost via linearization.

In a non-linear setting such as a turbulent flow, the linearity of the response

is only guaranteed by the small amplitude of the forcing. Indeed, although the

system is non-linear, if it is forced by a sufficiently small perturbation, then it

responds linearly. Although inconsequential in the noiseless laminar case, this

limitation makes the approach highly unpractical in the turbulent case. Turbulent

fluctuations are akin to noise, which can be averaged out by employing ensemble

averaging, or at least an average over periodic repetitions of the same impulsive

forcing over a long enough simulation time. Unfortunately, the forcing amplitudes
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Figure 2.1: Sketch of the plane channel with reference system and definition of

quantities related to the linear impulse response function.

required for linearity are much smaller than the natural turbulent noise, so that

the simulation time required to bring down the statistical noise at a level at which

the deterministic part of the response appears is simply not affordable. A viable

alternative consists in the measure of the response of the system in the frequency

domain, as employed by Hussain & Reynolds (1972). In the frequency domain,

the constraint on the intensity of the forcing for linearity is less strict and a phase-

locked average enables separating the deterministic part of the response from the

random part. The obvious drawback of this approach is that a single experiment

only yields the LIRF for a single frequency. To overcome this problem we rely on

a property of the signal theory that avoids the direct measure of the response to an

impulse either in physical or frequency domain and brings together the best of the

two approaches, i.e. it has a decent signal to noise ratio and it provides a complete

measurement in one shot. The approach, originally introduced by Luchini et al.

(2006) relies on the property that when the system is forced by a white noise, the

LIRF can be computed as the correlation between the output and the input.

We test the LIRF for the multiple-input multiple-output (MIMO) case of a

turbulent channel flow, where the inputs are body forces and the outputs are the

velocity components, both defined for each point of the channel and in time. The

body force vector components are 5G , 5H and 5I and the velocity components D, E,

F in the streamwise G, wall-normal H and spanwise I directions, respectively. The

channel and the reference system are sketched in figure 2.1. The LIRF, written as

the correlation between the input and the output of the system and in frequency

domain (owing to the symmetries of the channel flow), reads:

Ĥ8→ 9 (U, H, V,T ; H 5 ) =
⟨D̂ 9 (U, H, V, C) f̂

∗
8 (U, H 5 , V, C − T)⟩C
n2
8

, (2.5)

after converting the convolutions into products in the homogeneous directions.

Here the hat indicates Fourier transform, U and V are the wavenumbers in the
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streamwise G and spanwise I directions; H 5 is the wall-normal location of the

impulsive forcing, where H 5 spans from the first inner point up to the centerline

(ℎ); T is the elapsed time after the application of the impulse and ⟨·⟩C is the average

over the simulation time; (·)∗ is the conjugate transpose and n8 is the vector of the

amplitudes of the forcing. The measured LIRF H8→ 9 describes the linear response

of the velocity of the system in every direction of the channel, at each point of the

space and in time, after the application of a forcing directed in a specific direction

and placed at a certain point of the space and at a previous time.

The LIRF is computed on the fly while running a DNS at '41 = *1ℎ/a = 2280,

where *1 is the bulk velocity, ℎ the channel half-height and a is the kinematic

viscosity of the fluid, corresponding to a friction Reynolds number of '4g =

Dgℎ/a = 150 with Dg =
√
gF/d being gF the shear stress at the wall and d

the density. The deterministic response emerges progressively averaging out the

noise from the turbulent fluctuations while the simulation proceeds. Hence, the

simulation needs to be run as long as possible and in the present case it is advanced

for 20000ℎ/*1 (or, equivalently, 2 × 105 viscous time units).

The LIRF is a powerful tool since it provides altogether a large amount of

information. The computed impulse response function H8→ 9 (U, H, V,T ; H 5 ) of a

turbulent channel flow depends on five variables: the wavenumbers U and V in

the two homogeneous (streamwise and spanwise, respectively) directions of the

channel, the position H in the wall-normal direction, the time T elapsed after the

impulsive forcing is applied and the parameter H 5 describing the distance from the

wall where the forcing is applied.

Figure 2.2 shows the LIRF tensor H8→ 9 in the physical space at a fixed bulk

time T = 0.48 after being forced at H+
5
= 15. This picture brings to light the high

anisotropic character of the response.

First of all the shape of the impulse response can be associated to different

flow structures which respond to the external forcing. The components H 5H→ 9

and H 5I→ 9 with 9 = D, E, F show that the forcing acts on the structures of the

near wall-cycle (Jeong et al., 1997). The streamwise component of the response

( 9 = D) yields to structures elongated in the streamwise direction, with alternating

positive and negative sign in the spanwise direction. Such structures are com-

patible with the amplification of the near-wall high- and low-speed streaks. The

wall-normal ( 9 = E) and spanwise ( 9 = F) components of the response iden-

tify alternated vertical and spanwise fluctuations typical of the turbulent quasi-

streamwise vortices (QSV). The relative position of the isosurfaces in figure 2.2

indicate the simultaneous presence of streaks and QSV, which mutually interact in

the cycle for the self-sustainment of turbulence. This picture is compatible with

what found by Jovanović & Bamieh (2005) and confirmed by the present work

in the wavenumbers plane investigating the same problem for a laminar channel

flow. In the laminar regime, the most amplified disturbances to a wall-normal
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Hfx→u Hfx→v Hfx→w

Hfy→u Hfy→v Hfy→w

Hfz→u Hfz→v Hfz→w

Figure 2.2: Isosurfaces of the response tensor H8→ 9 at the non dimensional time

T = 0.48 of a turbulent channel flow forced at the wall-normal distance H 5 = 0.1ℎ

or H+
5
= 15. All the isosurfaces are at the value ±0.5 except for the diagonal

components, H 5H→D and H 5I→D which are at the value ±1. Red is for positive

values, blue for negative ones.
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Figure 2.3: Isosurfaces of the response tensor H 5I→D at bulk time T = 0.48 for the

laminar (left), pseudo-turbulent (center) and turbulent (right) case. The forcing is

at the wall-normal distance H 5 = 0.1ℎ. All the isosurfaces are at the value ±1.

and a spanwise forcing H 5H→ 9 and H 5I→ 9 are found to be either oblique waves

or streamwise perturbations which yield after transition to turbulence to stream-

wise streaks and quasi-streamwise vortices. Similarly, the relative position of the

isosurfaces of H 5G→ 9 suggests that the streamwise forcing acts on the hairpin vor-

tices (Theodorsen, 1952) near the wall, as highlighted by Vadarevu et al. (2019)

by Linearized Navier–Stokes Equations (LNSE) augmented with eddy-viscosity

(eLNSE). This agrees with the idea that the Tollmien–Schlichting waves detected

in the laminar regime for this forcing (Jovanović & Bamieh, 2005) evolves into 3D

hairpin vortices in the late stage of transition to turbulence.

Although we find compatible information from the response of the linear and

turbulent channel flow, it does not mean they provide the same exact information.

The inadequacy of a linearized channel flow to provide the complete response of

a turbulent channel flow has been recently emphasized by the results obtained by

Russo & Luchini (2016). They measured the LIRF of a linearized and of a fully

turbulent channel flow to a steady volume force finding that they are significantly

different, which implies that the “background” turbulence has a non-negligible

impact on the linear response. Moreover, they demonstrated that it is impossible to

conceive a (positive and finite) eddy viscosity that makes the results obtained with

eLNSE compatible with the true measurement. To investigate this discrepancy, we

additionally compute the response to external volume forces of a laminar channel

flow and of a pseudo-turbulent channel flow, i.e. where turbulence is absent but the

base flow is the mean flow of the turbulent case, at the same '41 of the turbulent

case. Owing to the small intensity of the forcing, the response is again linear

and coincides with the one obtained by the LNSE. Figure 2.3 plots as an example

H 5I→D for the laminar, pseudo-turbulent and turbulent cases. Although the same

response shape is shared by all the investigated regimes, the shape and intensity

of the response show non-negligible differences. We conclude that the dynamics

of the impulse response in the turbulent regime has a linear component, yet this is

not sufficient for its complete description.

A second aspect of the anisotropic nature of the response of the channel flow is

the different intensity of each term of the tensor. As expected, the largest response
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corresponds to the diagonal components of the LIRF tensor, meaning that the

forcing mostly amplifies the velocity component in its same direction. Among the

off-diagonal terms, H 5H→D and H 5I→D show the largest magnitude of the response.

(See the caption of figure 2.2 for the details about the different contour levels used

for each term of the tensor).

Third, the components of the LIRF tensor also show different behaviour de-

pending on the time and on the distance from the wall of the forcing. Again H 5H→D

and H 5I→D show particular characteristics, different from the ones of the other

terms. Whereas the other components decay monotonically to zero, their response

in time exhibits a transient growth (Schmid, 2007) in the first instants after the

application of the forcing, before decaying. Moreover, whereas the other terms

of the LIRF tensor show an almost monotonic increase of the response with the

increased distance from the wall at which the impulsive body force is applied, the

two off-diagonal terms involving the response in the streamwise direction exhibit

a local peak in the buffer layer. This is a second hint of the link of the maximum

H 5H→D and H 5I→D to the amplification of the near-wall structures. This results

comply with the idea that an external forcing in the buffer layer directed either in

wall-normal direction (e.g. blowing and suction (Mickley et al., 1954), opposition

control (Choi et al., 1994)) or in the spanwise direction (e.g. spanwise forcing

Ricco et al., 2021) are the most effective techniques to perturb the streamwise

velocity field, e.g. with the aim to reduce the drag in the turbulent regime.

Figure 2.4 shows as an example the response H 5I→D in time (left) and depend-

ing on the position H 5 (right), comparing laminar, pseudo-turbulent and turbulent

cases. The turbulent diffusion, lacking in the laminar and pseudo-turbulent cases,

damps the turbulent response faster so that the turbulent case possesses a con-

siderably smaller transient growth compared to the other two cases. Moreover,

for larger T , the turbulent response does not decay to zero but shows a lower

bound representing the background noise of the turbulence overwhelming the de-

terministic part of the response. This noise floor is due to the finite horizon of the

response computation. Looking at the dependence of the LIRF on H 5 ,the response

of the laminar channel flow completely fails to capture the local peak in the buffer

layer, whereas the pseudo-turbulent channel captures it, although with a different

intensity and position compared to the fully turbulent case. This confirms that the

complete characterization of the turbulence needs to be accounted for a complete

linear description of a turbulent channel flow.

Once the response function H8→ 9 is computed, it can be used to predict the

linear response of the system through direct convolution between the LIRF itself

and the given (not necessarily small) input forcing, exploiting Eq. (2.4) after

tailoring it for the channel flow. This approach can be leveraged to predict the

linear behaviour of the channel flow to whatever external forcing shape at a fraction

of the cost of a DNS.
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Figure 2.4: Linear impulse response function as a function of time, i.e. H 5I→D (T )
(left) and as a function of the forcing position H 5 , i.e. H 5I→D (H 5 ) (right) for the

laminar, pseudo-turbulent and turbulent cases, after taking the absolute maximum

value of the other variables.

2.2 A complete description of turbulence

A linear representation of the flow may be sufficient to design a linear controller

for skin-friction drag reduction. However, for a complete characterization of the

dynamics of a turbulent flow and to investigate the effects of the control on the

turbulent activity, a full non-linear description of the (controlled) flow is needed.

The anisotropic generalised Kolmogorov equations (AGKE) provide information

about the mechanisms occurring at different scales and at different positions,

simultaneously. They bring together the scale information of the spectral analysis

and the position information of the analysis in physical space, thus providing a

natural definition of scales in the inhomogeneous directions, and describing fluxes

across scales. The AGKE are the budget equations for the second order structure

function
〈
XD8XD 9

〉
, where XD8 is the increment of the i-th velocity between two

points G1 and G2, identified by their midpoint - = (G1 + G2)/2 and their separation

vector A = (G2−G1), i.e. XD8 = D8 (- +A/2) −D8 (- −A/2);⟨·⟩represents the average

in time and homogeneous directions.

When the structure function is written for the fluctuating velocity u′, after a

Reynolds decomposition divides the velocity field u into mean U and fluctuating

u′ fields, the structure function
〈
XD′8XD

′
9

〉
is related to the sum of the single-point

Reynolds stresses evaluated at the two points X ± r/2 , i.e. +8 9 and the two-points

correlation tensor '8 9 (Davidson et al., 2006) as

〈
XD′8XD

′
9

〉
(X , r, C) = +8 9 (X , r, C) − '8 9 (X , r, C) − '8 9 (X ,−r, C) (2.6)
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where

+8 9 (X , r, C) =
〈
D′8D

′
9

〉 (
X + r

2
, C

)
+
〈
D′8D

′
9

〉 (
X − r

2
, C

)
(2.7)

and

'8 9 (X , r, C) =
〈
D′8

(
X + r

2
, C

)
D′9

(
X − r

2
, C

)〉
. (2.8)

The AGKE is an extension of the generalised Kolmogorov equation (GKE) by

Hill (2001), also referred to as Kármán-Howarth-Monin-Hill equation (Alves Portela

et al., 2017). GKE is the exact budget equation for half the trace of the second-

order structure function tensor, i.e. the scale energy, whereas the AGKE consider

each component of the tensor separately. The AGKE have already been success-

fully employed to describe the key features of a channel flow (Gatti et al., 2020) at

low and moderate '4, to investigate the ascending/descending and direct/inverse

cascades of the Reynolds stresses in a turbulent plane Couette flow (Chiarini et al.,

2022b), to describe the structure of turbulence of the flow past a rectangular cylin-

der (Chiarini et al., 2022a) and to characterize the effects of the curvature on the

structure of near-wall turbulence (Selvatici et al., 2023). It has also been employed

in the context of drag reduction to investigate the differences between an uncon-

trolled channel flow and one subjected to the wall-oscillation control (Chiarini

et al., 2019).

In all the above cited cases, AGKE are derived for the fluctuating velocity

field, after a Reynolds decomposition is employed to separate the mean flow and

the turbulent fluctuations. However, in the wall oscillation case the fluctuating field

sums together the contributions of the purely stochastic turbulent field with the

coherent one of the periodic oscillation of the wall. To separate the contribution of

the turbulence and the one of the control, and to investigate how they interact and

exchange energy, we define the mean field with a simple temporal average U (x) ≡
limg→+∞

1
g

∫ g

0
u(x, C)3C, the coherent field ũ(x, i) = u(x, i) − U (x) with a

phase average u(x, i) ≡ lim#→+∞
1
#

∑#−1
==0 u

(
x,

( i

2c
+ =

)
)
)

and the stochastic

field as what is left, i.e. u′′ = u − U − ũ. After decomposing the velocity

and pressure fields with such definitions, three tensorial budget equations, called

iAGKE, can be written for X*8X* 9 , XD̃8XD̃ 9 and XD′′
8
XD′′

9
, which add to the standard

AGKE the interplay among the mean, coherent and stochastic fields at each phase

i.

The iAGKE, i.e. the budget equation for the mean X*8X* 9 , the coherent XD̃8XD̃ 9

and the stochastic XD′′
8
XD′′

9
second-order structure functions, in their compact form
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read

mΦ<
:,8 9

mA:
+
mΨ<

:,8 9

m-:

=Ξ
<
8 9 (2.9)

2c

)

mXD̃8XD̃ 9

mi
+
mq2

:,8 9

mA:
+
mk2

:,8 9

m-:

=b28 9 + Z 28 9 (2.10)

2c

)

mXD′′
8
XD′′

9

mi
+
mqB

:,8 9

mA:
+
mkB

:,8 9

m-:

=bB8 9 , (2.11)

where repeated index : implies summation. They describe how a structure function

evolves in time and in space (both scale and physical). The termsΦ<, q2,qB andΨ<,

k2,kB represent the fluxes across scales and in the physical space, respectively; Ξ<,

b2,bB represent the source terms, denoting the net production of X*8X* 9 , XD̃8XD̃ 9

and XD′′
8
XD′′

9
, respectively. The source is the balance between the production,

the redistribution due to velocity-pressure interaction and the dissipation of the

second-order structure function. The coherent equations also feature the term Z 2

at the right hand side, representing the interaction among different phases driven

by the coherent flow field.

Beyond dividing the coherent and stochastic field contributions, the iAGKE

also add additional terms to the equations, that describe the interplay between the

fields. Originally, the fluxes, either in the space of scales or positions, feature the

mean transport, the viscous diffusion and the fluctuating transport; the latter is now

broken down into coherent and stochastic transport to account for the transport

processes either due to the coherent and the stochastic field, separately. The

same happens for the source, which beyond the pressure strain, the dissipation and

interaction between the velocity field and the external forcing, also breaks down the

former production due to the interaction between the mean and fluctuating fields

into the production between the mean and coherent fields ?<2
8 9

and the production

between the coherent and the stochastic fields ?2B
8 9

in the equations of XD̃8XD̃ 9 and

into the production between the mean and stochastic fields ?<B
8 9

and the production

between the coherent and the stochastic fields ?2B
8 9

in the equations of XD′′
8
XD′′

9
.

The coherent-stochastic production ?2B
8 9

indicates the exchange of stresses between

the coherent and the stochastic fields, and appear in both the equations but with

opposite sign. It describes the position, the scales and the phase at which the

exchange of energy between the two fields takes place.

In this study, we employ the phase-aware iAGKE as a framework to analyze

the interplay between an external harmonic control and the turbulent fluctuations

present in a fully developed turbulent channel flow subjected to the drag reduction

technique of wall oscillation introduced in the preamble of the present Chapter.

The channel flow configuration reduces the independent variables from seven to
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Figure 2.5: Diagonal components of the stochastic tensor XD′′
8
XD′′

9

+
at i = c in the

(A+I , .
+) plane. From top to bottom: uncontrolled case with � = 0, )+ = 75 and

)+ = 250. The contour is set at 95% of each maximum. The coordinates of the

maximum, marked with a cross, can be read on the axes. Taken from Gattere et al.

(2023).

five: three separations AG , AH and AI in the streamwise, wall-normal and spanwise

directions, the position in wall-normal direction . and the phase i; in the channel

flow, i-AGKE do not depend on - and / , being homogeneous directions. The

spanwise-wall-oscillation control (see Eq. 2.1) generates above the wall a spanwise

velocity profile called Stokes layer of Eq. 2.2, where i = 2c/) C is the phase of

the oscillation. The external oscillation has amplitude �+ = 12 and two periods

are investigated, namely )+ = 75, close to the optimum value for maximum drag

reduction and )+ = 250, a suboptimal case. The simulation is run at '4g =

200. The objectives of this study are threefold: first, examining the impact of

coherent motion on the dimensions and spatial configuration of near-wall structures

throughout the control period; second, characterizing the interaction between

mean, coherent, and stochastic fields within both scale and physical spaces; and

third, analyzing the phase dependency of the interaction between the coherent and

stochastic fields. For this problem the mean velocity is (*,+,,) = (* (H), 0, 0),
the coherent velocity is (D̃, Ẽ, F̃) = (D̃(H, i), 0, F(! (H, i)) and the stochastic field

is (D′′, E′′, F′′) = (D′′(G, H, I, i), E′′(G, H, I, i), F′′(G, H, I, i)).
The scales and wall-normal position at which the diagonal terms of the structure
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function tensor peak are associated to the statistic trace of the turbulent structures

(Gatti et al., 2020). In the uncontrolled case (see “Ref” in figure 2.5), XD′′XD′′<
(where the subscript < stays for the maximum) is in the buffer layer and for AI ≠ 0

and AG = AH = 0 meaning that the streamwise structure function is associated to

structures aligned in the streamwise direction (AG = 0) and negatively correlated

(XD′′XD′′ > 0 means '8 9 < 0) in spanwise direction (AI ≠ 0); it represents the

positive and negative streaks of the near-wall cycle. Instead, both XE′′XE′′ and

XF′′XF′′ peak in the buffer layer and for AG = 0; the former for AI ≠ 0, the latter

for AH ≠ 0 (result not shown) so that they are associated to the statistical trace

of the QSV which induce vertical velocity at the sides and spanwise velocity at

the top and the bottom of a vortex. The oscillating wall leaves XD′′XD′′< and

XE′′XE′′< almost unchanged (see figure 2.5), indicating that the dimension and

intensity of the near-wall structures only marginally depend on the drag reduction

rate. However, the streaks are slightly pushed away from the wall: XD′′XD′′< shifts

upwards, highlighting a thickening of the viscous sublayer with the control (Choi

et al., 1997). Interestingly, in the controlled case with )+ = 250, a local peak of

XF′′XF′′ appears in the AH = AI = 0 plane (not shown) and in the AG = AH = 0

plane at a wall-normal distance resembling the one of XD′′XD′′. We associate it to

the statistical trace of the streaks tilted in wall-parallel planes under the spanwise

velocity of the control, that deviates their direction from the streamwise alignment.

This effect is visible only for the suboptimal case )+ = 250, for which the near-

wall structures have time to tilt and align with the instantaneous shear vector

(d*/dy, mF̃/my). The same effect is visible investigating the phase evolution of

the maximum of the diagonal terms of the structure function tensor XD′′
8
XD′′

9
. In

figure 2.6, XD′′XD′′< and XF′′XF′′
< share the same trend and show a phase-shift

compared to XE′′XE′′<. This is consistent with the different wall normal distance

of streaks and QSV which implies a different shear to which they are subjected

because of the Stokes layer profile (Baron & Quadrio, 1996). Similar information

about the turbulent structures are usually extracted from phase-locked conditional

averages (Yakeno et al., 2014), which are unavoidably subjected to some degree

of arbitrary, e.g. one need to determine a priori a specific wall distance for the

eduction procedure. With iAGKE we obtain equivalent information via statistical

analysis that is free from assumption and hypothesis.

A part of the wall-parallel modulation of XF′′XF′′
< is also induced by the

interaction between the QSV and the coherent spanwise shear mF̃/my introduced by

the wall oscillation. At the phase and distances from the wall for which mF̃/mH > 0,

the quasi-streamwise vortices move low-spanwise-velocity fluid (F′′ < 0) upwards,

and high-spanwise-velocity fluid (F′′ > 0) downwards. The opposite happens

when the coherent shear is negative. This leads to the change in the statistical

scale-wise trace of the spanwise stresses XF′′XF′′, which have their largest peak
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Figure 2.6: Phase variation of the maxima XD′′
8
XD′′

8

+
<

in the (A+I , .+) plane for the

case at )+ = 250. i8 = 8c/4. Taken from Gattere et al. (2023).

in AI ≠ 0.

This interaction mechanism between the coherent Stokes layer and the

stochastic turbulent fluctuations is captured by the coherent-stochastic produc-

tion of the spanwise fluctuations, that in the AH = 0 space reduces to ?2BFF =

−2XE′′XF′′(mF̃/my). The interaction mechanism between the Stokes layer and

the QSV, which moves low (high)-spanwise-velocity fluid F′′ upwards (E′′ > 0)

(downwards (E′′ < 0)), and high (low)-spanwise-velocity fluid downwards (up-

wards) for positive (negative) spanwise shear, also leads to the creation of shear

stresses XE′′XF′′, otherwise null in the uncontrolled channel. The sign of XE′′XF′′

changes, with the same mechanism which leads to the change of sign of the

Reynolds shear stresses ⟨XD′′XE′′⟩ at the sides of QSV due to the sweep and ejec-

tions of streamwise velocity fluctuations D′′ caused by the mean shear d*/dH.

The wall normal position of such an interaction depends on both the shape of the

Stokes layer directly and on its influence on XE′′XF′′, leading to the alternation of

positive and negative stripes of energy exchange between coherent and stochastic

field, differently at each phase of the oscillation. Stripes of ?2B
8 9

> 0 means energy

going from the coherent motion to the turbulent field as expected, whereas ?2B
8 9

< 0

means that the turbulence has a feedback on the coherent field. The change of

XE′′XF′′ also influences the scales at which the energy exchange between coherent

and stochastic field takes place. Figure 2.7 shows for a specific phase, ?2BFF in

the AI − . plane. Going from the optimal )+ = 75 to the sub-optimal )+ = 250

period, the stripes of energy exchange from the stochastic to the coherent field

weaken, while those from the coherent to the stochastic field strengthen; overall,

the contribution of the spanwise velocity to the energy drained from the coherent

and given to the stochastic part becomes larger. A larger period of oscillation

implies a larger Stokes layer thickness, proportional to
√
a) ; as a result, the co-

herent spanwise shear and, as a consequence, the scale-space map of XE′′XF′′ are

stretched outwards, yielding an overall increase of the positive transfer of energy

towards the turbulent fluctuations. Anyway, when ?2BFF is averaged over the phases,

it turns out to be positive for both the periods investigated, meaning that overall
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Figure 2.7: Coherent-stochastic production ?2BFF
+ in the (A+I , .+) plane for)+ = 75

(left) and )+ = 250 (right) for i = c. The thin contour line is set at 95% of the

smallest (positive and negative) maximum over the phases; the thick black contour

line is ?2BFF = 0. The coordinates of the maximum, marked with a cross, can be

read on the axes. Taken from Gattere et al. (2023).

turbulence drains energy from the external harmonic motion.

Thanks to iAGKE a description of the phase by phase modification of the flow

field of a turbulent channel flow due to interaction between the near-wall turbulent

structures and the coherent spanwise velocity generated by the wall oscillation

control is made possible for the first time simultaneously in the space of scales and

physical space. However, iAGKE is suitable to study many different flows where

stochastic fluctuations coexist with some sort of coherent motion, very common

in turbulent flows. For instance, turbulent flows controlled by an external periodic

forcing, such as oscillating airfoils, rotors and turbines; the turbulent flow past

bluff bodies, where large-scale motions of the Kármán-like vortices in the wake

coexist with small-scale stochastic motion; the Couette flow where large rolls

and small perturbations live together; the atmospheric boundary layer, featuring

quasi-two-dimensional structures forced at smaller scales.

2.3 A conceptual description of controlled turbu-

lence

Thanks to the iAGKE, one can fully characterize a wall-bounded turbulent flow

and its modification by the oscillating wall. While we can identify the variations

in the turbulent flow due to two distinct oscillation periods and link these to the

dynamics of the near-wall cycle, the underlying physical mechanisms governing

drag reduction control remain elusive. Understanding how a control inhibits the

regeneration of turbulence concerns researchers since the pioneering work by Jung
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et al. (1992). The available evidence points to the existence of an optimal value

)>?C for the oscillation period to reduce the skin-friction drag, and there is broad

consensus that this value is )+
>?C ≈ 100. Despite the evidence, however, there is

no consensus on the physical interpretation of the optimum period, and more than

one meaning can be attached to these specific value. For example, )>?C can be

associated to time scales of the flow, such as the characteristic life time of the

near-wall coherent structures (Quadrio & Luchini, 2003). Owing to the convective

nature of the flow, )>?C can be also converted into a longitudinal length scale in

terms of a convection length scale, and be compared with typical lengths of the

near-wall coherent structures (Touber & Leschziner, 2012). The optimum ) might

also identify the maximum lateral displacement of the moving wall �<0G = �) ,

which is another (possibly) relevant length scale of the flow (Quadrio & Ricco,

2004). Finally the optimum period can also be associated to a wall-normal length

scale X; the more obvious definition (Baron & Quadrio, 1996) of a wall-normal

length scale is through the relation:

X = X(! ≡
√
a)/c. (2.12)

The length scale X(! represents the penetration of the effects of the wall oscillation

far from the wall into the bulk of the flow and it is defined as the wall distance

where the maximum spanwise velocity during the oscillation reduces to exp(−1)
times the maximum wall velocity �.

As mentioned in the preamble of the present Chapter, the harmonic oscillation

of the wall generates a spanwise periodic cross-flow that superimposes to and

interacts with the turbulent flow and coincides with the analytical laminar solution

F(! (H, C) of the Stokes second problem (Quadrio & Sibilla, 2000), with small

deviations for large ) . The generated time-varying velocity profile, called Stokes

layer (SL), already described by Eq. (2.2) is rewritten exploiting Eq. (2.12) as:

F(! (H, C) = � exp

(
− H

X(!

)
sin

(
2c

)
C − H

X(!

)
, (2.13)

where X(! is also known as the SL thickness, representing the wall-normal diffusion

length scale associated to the Stokes layer.

As discussed in §2.2, the coherent SL cross-flow is at the root of the drag

reduction process, yet no consensus exists regarding the details of how it interacts

with the incoming turbulent flow. Our inability to discriminate among the different

possible interpretations of )>?C reflects our current limited understanding of the

whole drag reduction mechanism of the oscillating wall set up. Aiming at under-

standing how the generated Stokes layer interacts with the underlying turbulence

and what time and space scales are actually targeted by the oscillation of the wall

to reduce drag, we decouple the effects of the period ) and of the penetration
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depth X of the Stokes layer. Based on Direct Numerical Simulations, we go be-

yond the concept of the conventional oscillating wall and get rid of the X = X(!
constraint: we explore the complete (), X) two-dimensional space of parameters

and investigate separately the role of ) and X. Instead of imposing the harmonic

spanwise oscillation of the wall to generate the SL, we enforce at each time step

of the simulation a mean spanwise velocity profile of the form

F(! = ⟨F(H, C; X, ))⟩ℎ = � exp
(
− H

X

)
sin

(
2c

)
C − H

X

)
, (2.14)

which we dub extended Stokes layer (ESL), and vary X and ) independently. The

operator ⟨·⟩ℎ indicates spatial averaging along the homogeneous directions. It

should be remarked that our procedure is equivalent to solve the Navier–Stokes

equations with the boundary condition of the wall oscillation and an additional

volume forcing that is practically zero whenever the extended Stokes layer reduces

to the standard Stokes layer.

We perform a set of DNS at '4g = 400. We increase the value of '4 compared

to the previously used '4g = 200 (see §2.2) since at this value of '4 the forcing

of Eq. (2.14) can be significantly more effective than the conventional oscillating

wall, such that the turbulent flow is prone to relaminarization. For the control, the

amplitude is set constant to �+ = 12, whereas the space of parameters (), X) is

investigated varying the period in the 10 ≤ )+ ≤ 200 range, while the SL thickness

varies between 2 ≤ X+ ≤ 20.

Figure 2.8 shows the drag reduction on the () − X) plane. The black line

represents the results pertaining the oscillating wall, when ) and X are constrained

by Eq. (2.12) and clearly shows that the maximum R when being constrained

to move on the line is achieved at )+ ≈ 100. Instead, once ) and X are made

independent, then )+ ≈ 100 (thus X+ ≈ 6 following Eq. (2.12)) is not particularly

meaningful and to reach larger R is convenient to move towards smaller periods

of oscillation, i.e. )+
>?C ≈ 30 and larger SL thickness, i.e. X+>?C ≈ 14. It is worth

noting that, when moving along the SL line, it is impossible to change ) and X in

opposite directions.

The peak of drag reduction ()+, X+) ≈ (30, 14) is quite broad and flat, and the

value of X>?C corresponds to the position in the buffer layer where the near-wall

cycle takes place, suggesting that the maximum R is gained for the ESL effectively

interacting with the near-wall coherent structures. Instead, for either X+ ⪅ 4 or

for )+ ⪅ 20, the characteristic space and time lengths of the forcing are too small

compared to the characteristic lengths of the turbulent structures of the near-wall

cycle, thus they do not successfully target them. For both ) and X larger the

optimum, the R performances degrade due to the enhanced turbulent activity. We

conclude that the values of the parameters ()+, X+) ≈ (100, 6), well known in

literature to provide the maximum R with the wall oscillation, do not possess
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Figure 2.8: Drag reduction map in the (), X) two-dimensional space of parameters.

The black thick line indicates the X = X(! constraint. The green dot identifies the

point of maximum drag reduction, whereas the black dot indicates the maximum

along the line X = X(! ()). Small back points indicates evey simulation’s parame-

ters.

a special meaning. Instead, the global maximum ()+, X+) ≈ (30, 14) might be

associated to some characteristic scales of turbulence.

As highlighted above, the optimal oscillating period )>?C can be obviously

compared to other time scales in the turbulent flow. Quadrio & Luchini (2003)

computed the integral scale )� of the space-time autocorrelation of velocity fluc-

tuations along the path of maximum correlation in the space-time plane, and

interpreted it as the integral lifetime of near-wall structures. We perform the same

analysis at the present '4g = 400 and at X+>?C , we measure )�,D = 75 for the

streamwise velocity fluctuations. These value is of the same order of )+ = 30, yet

quite far from it. Moreover our results of decreasing ) for increasing X are not

compatible with this interpretation since the integral lifetime increases with the

distance from the wall, being e.g. )�,D = 62 at H+ = 5 and )�,D = 75 at H+ = 15.

A possible alternative is to associate the optimal oscillating period )>?C to the

characteristic timescale of the near-wall cycle. Jimenez (2013) measured its period

to be )+ = 400, with a bursting phase lasting )+ ≈ 100 followed by a longer phase

of quiescence. Half of the bursting phase ()+ ≈ 50, comparable to our )+
>?C = 30)

is taken for the eruption and growth of the burst and the remaining for its decay.

The same time-scale )+ ≈ 50 has been measured by Blesbois et al. (2013) and

Ricco (2004) as the regeneration time-scale of the streaks. Again, our results of

decreasing ) for increasing X contradict also this interpretation, being the bursting

period proportional to the distance from the wall of the structures.

Due to the convective nature of the near-wall flow, )>?C can be compared to

the convective time scale )2 of the near-wall structures, which can be estimated
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looking at the convection velocity *2. The convection velocity *2 is known to

substantially differ from the local mean velocity in the near-wall region (Kim &

Hussain, 1993); it is nearly constant with a value *+
2 ≈ 10 in the viscous sublayer,

whereas it increases from the buffer layer upwards approaching the mean flow

(Quadrio & Luchini, 2003). The increase of *2 with H translates into a decrease

of )2, as these two quantities are inversely proportional )2 = !/*2 , with ! being

a length scale. This is consistent with our data that report a decrease of the local

optimum )>?C as X increases.

Finally, we consider the dominant interpretation of the optimal period for

the SL in terms of the wall-normal diffusion length scale X. This view is as

simple as appealing, and has been put forward very early by Baron & Quadrio

(1996), who noticed that the different wall-normal average positions of low-speed

streaks (H+ ⪅ 10) and streamwise vortices (10 ⪅ H+ ⪅ 50) enables an optimally

configured Stokes layer to break their coherency and alter the relative spanwise

position between them. The optimum value of X+>?C ≈ 14 might be linked to this

interpretation.

The information of the optimal (), X) is crucial when developing alternative

strategies that produce near-wall spanwise motion, without the need of moving the

wall, in a view of the possible simplest implementation in practical applications.

Some examples may be plasma actuators Jukes & Choi (2012), the alternation of

slip and no-slip stripes (Hasegawa et al., 2011) or texture (Garcı́a-Mayoral et al.,

2019), sinusoidal riblets (Sasamori et al., 2014), dimples (Lashkov & Samoilova,

2002), elettroactive polymers combined with an electromagnetic actuator (Gouder

et al., 2013).

From this perspective, the search for a control law should not be necessarily

dictated by the selection of an actuator, as done over the years for the wall oscilla-

tion. Instead, it may be more advantageous to seek first what is the most effective

control action, and start thinking of an actuator afterwards. Furthermore, the

strategy proposed in this study allows for a wider understanding of how spanwise

motion influences near-wall turbulence.
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3 Understanding controlled turbu-

lence towards applications

Probing natural turbulence with drag reduction is useful to understand the nature

of turbulence itself. However, despite our partial understanding of turbulence and

drag reduction, it is undeniable that several flow control techniques are definitely

effective at reducing turbulent skin friction. Hence, it is of no lesser importance to

assess whether or not such techniques can be exploited in practical applications,

e.g. for decreasing fuel consumption and pollutant emissions in the transportation

field, or for increasing the energy production of wind turbines.

Several practical aspects need to be investigated before claiming that drag re-

duction strategies are a viable real-world solution. In the previous Chapter, the

physics of wall-bounded turbulence has been studied in extremely simple and ide-

alized flows, but we are particularly interested in aeronautics, one of the industries

where drag reduction holds the highest potential. The most important parame-

ters to account for are the Reynolds number and the Mach number. The former

describes the relative importance of the inertial forces compared to the viscous

forces and in typical aeronautical applications ranges from '4 ≈ 103 − 105 for

Unmanned Aerial Vehicles (UAVs) up to '4 ≈ 106 − 108 for commercial and

military airplanes. The latter is a measure of the velocity made dimensionless by

the speed of sound, and quantifies how much the flow deviates from the incom-

pressible regime; it ranges from " ⪅ 0.3 for UAVs and gliders, to " ≈ 1 for

commercial flights, up to " ≈ 10 for hypersonic vehicles such as reentry space

capsules. Also, in practical applications the geometry is often more complex

than a flat wall, both because the body has a non-planar shape, and because the

locally planar wall may possess small-scale patterns. Applications such as wind

turbines or airplanes clearly involve solid objects that are far away from a flat plate,

possessing complex shapes featuring curved walls and multi-body configurations.

When passive drag reduction techniques are considered, most often these involve a

sort of smart roughness, i.e. small-scale modifications of the flat geometry which

interact with the near-wall turbulence to reduce the skin-friction drag.
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In the first part of the Chapter we still remain on the simple geometry of the

plane channel flow, to study the effects of the Reynolds and Mach numbers on

the drag reduction. We control the channel with one of the most promising active

technique: the streamwise travelling waves of spanwise velocity (StTW) (Quadrio

et al., 2009). StTW not only attain large drag reduction rates, but are also capable

of large net savings, i.e. they are still convenient after the energy cost of the

actuation is accounted for. For this type of forcing, the spanwise velocity at the

wall depends on both time and the streamwise coordinate as:

F(G, H = 0, C) = � sin(^G − lC), (3.1)

where � is the forcing amplitude, G is the streamwise direction and C is the time, ^ is

the wavenumber (which defines the wavelength _ = 2c/^) and l is the frequency

(which defines the oscillation period ) = 2c/l). The oscillating wall of Eq. 2.1

(Jung et al., 1992), obtained for ^ = 0 and the stationary wave (Quadrio et al.,

2007), obtained for l = 0, are two limit cases of this general type of forcing.

To assess the efficacy of an active drag reduction technique, the benefit, i.e.

the reduction of drag, needs to be compared to the cost of the actuation, i.e. the

power spent to move the wall. To do so, we disregard the actuator losses, which

are actually unavoidable in a practical implementation, and only consider the

power transferred from an ideal actuator towards the viscous fluid. Following the

definitions of the dimensionless indicators provided by Kasagi et al. (2009), the

control power per unit wetted area is defined as a fraction of the pumping power

per unit wetted area %0 = *1gG,0, where gG,0 is the streamwise component of the

wall shear stress, as:

%8= =
100

%0

⟨F(H = 0) gI⟩, (3.2)

with F(H = 0) the velocity imposed at the wall by the control and gI the spanwise

component of the wall shear stress. Finally, to compare benefits and costs of the

control, the net energy saving rate %=4C is defined as:

%=4C = R − %8=. (3.3)

Depending on the couple of parameters (^, l), drag increase or drag reduction

can be achieved. Quadrio et al. (2009) considered a channel flow at '4g = 200

and �+ = 12, and found a largest drag reduction of 48% which translates into a

positive net power saving of 17% for low frequency and small wavenumber. For

smaller forcing intensities �, a net power saving of as high as 32% can be achieved

at this value of '4.

27



3.1 Drag reduction and the Reynolds number

Despite the very large drag reduction and net power saving achieved, the results

of Quadrio et al. (2009) have been obtained for a Reynolds number ('41 ≈
103 − 104) that is quite far from the typical aeronautical values. Gatti & Quadrio

(2016) examined the relationship between the drag reduction performance and

the Reynolds number. Although they confirmed the decrease of drag reduction

with '4, they found it to degrade at a much slower rate than with the previously

suggested power law (Touber & Leschziner, 2012; Hurst et al., 2014). They also

demonstrated that the drag reduction rate by spanwise forcing becomes almost

constant with '4, provided that it is expressed not via R, that is per se '4-

dependent, but through the '4-invariant parameter Δ�∗, i.e. the shift of the

logarithmic portion of the mean velocity profile, which expresses the main effect

of the StTW on the flow:

*∗(H∗) = 1

:
ln H∗ + �∗

0 + Δ�∗ , (3.4)

with : the von Kàrmàn constant, �∗
0

the additive constant in the reference channel

flow, and �∗ = �∗
0
+ Δ�∗ the additive constant of the controlled flow, where the

superscript ∗ indicates quantities made dimensionless with the friction velocity of

the controlled flow. Thus, from the knowledge of the drag reduction at low-'4,

they were able to extrapolate drag reduction at higher '4, showing that a drag

reduction of R = 50% at '4g = 1000 translates into R = 34% at '4g = 105,

so that travelling waves are still of large interest for aeronautical purposes. Their

model (hereinafter indicated as GQ model) hinges on the assumption that Δ�∗

depends on the control parameters (�∗, ^∗, l∗) but not on '4 and reads:

Δ�∗
=

√
2

� 5 ,0

[
(1 − R)−1/2 − 1

]
− 1

2:
ln (1 − R) , (3.5)

where the '4-dependence is embedded in � 5 ,0. However, this study has two

limitations. First, they used relatively small computational domains (Jiménez &

Moin, 1991) to limit the otherwise prohibitive computational cost needed to explore

a large portion of the parameter space. Second, their study varies the Reynolds

number up to '4g = 1000, which may not be sufficiently large for the log-law in Eq.

3.4 to be well developed, thus jeopardizing the correct extrapolation at higher '4.

More recently, Marusic et al. (2021) observed for the first time R increasing with

'4 and justified it with the particularly slow timescale of forcing employed ()+ =

|2c/l+ | > 350), aiming at targeting the large outer-scaled turbulent structures

whose importance increases with '4. They found that with a backward travelling

wave (l/^ < 0) with l+ = −0.0105 ()+ ≈ −600), ^+ = 0.0008 and �+ ≈ 5,
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Figure 3.1: Drag reduction rate (R) as function of the reference friction

Reynolds number ('4g0
) for backward-travelling wave with parameters �+ = 5,

^+ = 0.00078 and l+ = −0.0105; colored symbols are the present data; experi-

mental data by Marusic et al. (2021) are black circles, while black squares denote

their LES numerical data; the straight line is the prediction of the GQ model (3.5).

R increases from 1.6% at '4g = 1000 (obtained by numerical simulations for

an open-channel flow), up to 13.1% at '4g ≈ 12800 (obtained by experiments

for a boundary layer). This result would open up new frontiers, suggesting that

spanwise forcing is more efficient at Reynolds number typical of real problems.

Despite the promising results, this study also have shortcomings; it relies on the

joint observation of data for a low-'4 open channel flow obtained by Large Eddy

Simulations (LES) and data for a high-'4 boundary layer flow (up to '4g ≈
12000) obtained by experiments, bringing together different flow configurations

and methods. Also, the experimental setup, whose dimensions are fixed in external

units, does not allow to keep the control parameters constant in viscous units

while varying '4g. The relevance of this result encourages us to provide a new

accurate database produced by high fidelity data obtained by DNS in a single

configuration, i.e. an open channel. The computational domain employed in the

present simulations is sufficiently large to properly account for all relevant scales of

turbulence, and the investigated Reynolds numbers, ranging 1000 ≤ '4g ≤ 6000,

are large enough to avoid low-'4 effects.

Figure 3.1 compares the numerical results of the present simulations with

the same control parameters of Marusic et al. (2021) with their numerical and

experimental results. Figure 3.1 confirms the validity of the predictive model for

drag reduction by Gatti & Quadrio (2016) and its underlying hypothesis. This

result implies that the drag reduction induced by streamwise travelling waves at a

given combination of the parameters (�+, l+, ^+) monotonically decreases with

the Reynolds number, suggesting that the large outer inertial structures do not
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Figure 3.2: Net power saving (%=4C) as function of reference friction Reynolds

number ('4g0) for backward-travelling waves with the same parameters of figure

3.1. Colored symbols are the present data; experimental data by Marusic et al.

(2021) are black circles, while black squares denote their LES numerical data;

the straight line is the theoretical prediction obtained by combining the GQ model

(3.5) with the expression of %8= provided by Gatti & Quadrio (2013).

significantly interfere with the working mechanism of wall-based strategies for

drag reduction, confirming the predictive model based on Δ�∗ proposed by Gatti

& Quadrio (2016) and their results.

For a potential application of StTW to real world, not only the benefit but also

the cost of the actuation needs to be considered. Figure 3.2 reports for the same

parameters of figure 3.1 the net power saving %=4C , i.e. the balace between the

reduction of drag and the power spent to actuate the wall. Although we could not

confirm the improvement of the drag reduction rate with '4 measured by Marusic

et al. (2021), the increase of the net saving %=4C with '4 is verified, and it gives

to StTW a great potential to their exploitation for aviation. The control cost may

decrease with '4 at a faster rate than R, so that %=4C can actually increase with '4.

However, %=4C increasing with '4 can happen only for StTW parameters far from

the optimum (as for the present combination of parameters), where both R and %8=

contribute. Unfortunately, the portion of the StTW parameter space where %=4C is

maximum is dominated by R and hence exhibits similar '4-dependence.

3.2 Drag reduction and the Mach number

The second parameter which is of paramount importance in aeronautics and has

received limited attention so far for friction drag reduction studies is the Mach

number. The first comprehensive study of the compressibility effects on drag

reduction via spanwise forcing was carried out by Yao & Hussain (2019) who
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performed a set of DNS of a channel flow controlled by spanwise wall oscillation

at Mach number " = 0.3, 0.8, 1.5, at '4g = 200 and �+ = 12. They reported

R increasing with " until reaching relaminarization for slow oscillations. More

recently, Ruby & Foysi (2022) discussed the drag reduction for a channel flow at

'4g = 200 − 1000, at " = 0.3, 1.5, 3 forced by stationary waves at �+ = 12 and

they confirmed the beneficial effect of compressibility. We have extended their

work to the more general and more effective travelling waves, to investigate the

effect of compressibility both on drag reduction and net power saving to assess the

applicability of this drag reduction techniques to real scenarios.

Following the approach of the previous studies, we perform DNS of a com-

pressible channel flow for subsonic (" = 0.3), transonic (" = 0.8) and supersonic

(" = 1.5) speed at the baseline friction Reynolds number of '4g = 400 to avoid

relaminarization occurring at lower '4 due to the larger performance compared

to the incompressible case. When compressibility is accounted for, the picture

noticeably complicates and the problem of fairly compare results is not straight-

forward. When studying the drag reduction effect at different '4, the problem of

comparison relates to choosing the proper figure of merit to measure the reduction

of skin-friction drag that is '4-independent and to decide how to compare the

uncontrolled and controlled cases as well as different controls. The former is the

shift of the mean velocity profile Δ�. The latter can be either a scaling in nominal

or actual viscous units, i.e. employing the friction velocity of the uncontrolled or

controlled flow, respectively. When compressibility brings thermodynamics into

the picture, the problem of comparison complicates since more quantities come

into play implying more scalings available. Again it is fundamental to find the

correct way to compare drag reduction at different Mach numbers, but also to

compare the uncontrolled and controlled flows and the results at different control

parameters.

A turbulent flow confined by walls in a compressible regime requires char-

acterization through three distinct parameters: the Reynolds number, the Mach

number, and an additional parameter that delineates the thermal state of the wall.

In the context of channel flow, the relevant parameters are typically expressed as

bulk quantities, specifically the bulk density d1, the bulk velocity*1, and the bulk

temperature )1. The bulk Reynolds number, i.e. '41 = d1*1ℎ/`F, where `F is

the dynamic viscosity at the wall, is kept constant during each simulation, which

is run at a constant flow rate (CFR) (Quadrio et al., 2016a) where the pressure

gradient is adjusted at each time step to keep a constant *1. Being the control

wall-based and being the control parameters known to scale in viscous units (Gatti

& Quadrio, 2016), '41 is chosen so that the corresponding friction Reynolds num-

ber is fixed to the target value '4g = 400 for the uncontrolled simulations. For

the same reason, it is convenient to define the Mach number as " = *1/2F, in

which the velocity scale is *1 and the speed of sound 2F =
√
W')F is evaluated at
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Figure 3.3: Drag reduction rate (R) versus frequency l+ for the streamwise-

travelling waves at ^+ = 0.005, for ZBC (left) and CBC (right). Incompressible

data are in green: solid line without symbols from Gatti & Quadrio (2016) and

solid symbols from Hurst et al. (2014). The dashed lines data are for ZBC case.

Taken from Gattere et al. (2024).

the wall temperature )F. Following Yao & Hussain (2019), the Mach number is

varied as " = 0.3, 0.8, 1.5.

In a confined flow scenario, such as that observed in channel flow, the bulk

temperature is not fixed and can evolve freely until it attains an asymptotic state at

which the heat produced within the flow is balanced by the heat flux through the

isothermal walls. This methodology results in varying bulk temperatures across

different simulations, complicating the physical interpretation of the outcomes.

The discrepancies in heat transfer rates makes it difficult to discern the effects of

compressibility and wall cooling. Furthermore, the elevated heat transfer rates at

the wall do not accurately reflect the characteristics of typical external flows, which

is the context in which we aim to implement active techniques like spanwise forcing.

Exploiting this approach (the one followed by both Yao & Hussain (2019) and Ruby

& Foysi (2022)) that we dub Zero Bulk Cooling (ZBC), we find compressibility

having a favorable effect for most of the control parameters, especially for small

wavenumbers and frequencies. We explore 42 points on the (^, l) parameter space

located in the most interesting areas of the map (see Quadrio et al., 2009). The

left panel of figure 3.3 shows the drag reduction for some points of the parameter

space of StTW at " = 0.3, 0.8, 1.5 for the ZBC case for a fixed value of the

wavenumber ^+ = 0.005. The peak of R increases from 40% to 52% going from

the " = 0.3 to " = 1.5. However, to discern the direct effect of compressibility

and the indirect effect of changed thermodynamics due to the specific geometry
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Figure 3.4: Temperature profiles in the wall region of an uncontrolled compress-

ible channel flow at " = 0.3, 0.8 and 1.5, with ZBC (dashed lines) and CBC

(continuous lines) approaches. Taken from Gattere et al. (2024).

employed, we propose a second approach to compare the results. Following Cogo

et al. (2023) we suggest to keep the value of the so-called diabatic parameter,

defined as \ = ()F − )1)/()A − )1) where )F is the wall temperature, )1 the bulk

temperature and )A the recovery temperature, fixed across the values of the Mach

number, the uncontrolled and controlled cases and across the control parameters

of the StTW. Keeping \ constant means that a fixed portion of bulk flow kinetic

energy is converted into thermal energy for each simulation. To fix it constant

during the simulation we add to the energy equation a cooling source term, that

is computed and adjusted at each time step. It resembles the CFR technique to

advance the momentum equation for which the pressure gradient evolves in time to

keep a constant flow rate. This approach, we call Constrained Bulk Cooling (CBC)

leads to two desirable effects at the same time. First, it is an artifact to obtain an

internal flow (computationally cheaper) with a temperature profile that resembles

that on an external flow, which is the configuration the active techniques are meant

for. Second, the profiles of the thermodynamics quantities are such that their value

do not change much between the wall and the buffer layer, so that the parameters

of the control scaled in viscous units with the wall thermodynamics properties,

still have the same value in the buffer layer, where the spanwise Stokes layer

interacts with the near-wall structures to weaken them. Figure 3.4 shows for the

uncontrolled case the different temperature profiles of ) (H)/)F for both the ZBC

and CBC cases. On the right panel of figure 3.3, the results for ^+ = 0.005 with

the CBC approach shows the maximum of R increasing only from 40% to 43%

going from the subsonic to the supersonic case. Overall, spanwise forcing remains

fully effective in transonic and supersonic regimes, yet the increased performance

with " is substantial only with ZBC approach, whereas when R is compared at
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Figure 3.5: Drag reduction for the streamwise-travelling waves at ^+ = 0.005 and

−0.2 ⪅ l+ ⪅ 0.3 measured in the compressible regime versus drag reduction

of the incompressible regime when the control parameters are scaled with the

thermodynamic properties of each different case at H+ = 10. Open symbols are

for the ZBC case and solid symbols for the CBC case. Taken from Gattere et al.

(2024).

different " with CBC approach the increment in performance is very limited and

only marginal improvements are detected.

In conclusion, we find that when the control parameters are made dimension-

less with the actual (of each controlled case) thermodynamic properties in the

buffer layer, the altered effect of the thermodynamics is removed and drag reduc-

tion becomes constant with the Mach number. Figure 3.5 shows for the same

parameters of figure 3.3 the drag reduction measured by the present simulations

plotted against the drag reduction expected from incompressible case for the same

control parameters after being scaled with the actual (of each controlled case) ther-

modynamic properties in the buffer layer at H+ = 10. The majority of the points lie

on the diagonal line meaning that drag reduction becomes constant with the Mach

number, after removing the spurious effects of the changed thermodynamics. The

few outliers represent those points of the map where the drag reduction gradients

are extremely large, and the incompressible data by Gatti & Quadrio (2016) are

not sufficiently dense, thus they provide a poor interpolation. This result demon-

strates that, once the spurious thermodynamic changes due to the internal flow

configuration employed are factored out, compressibility has little to no effect on

the drag reduction performance of the StTW.

In the end, to assess the overall efficacy of StTW at increasing Mach number,

we also account for the cost of the actuation. Compared to the expression of
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equation (3.2), the CBC case also features an extra cost due to the additional

term added to the energy equation to cool the flow. However, this term serves

the purpose of yielding an internal flow with a temperature profile that resembles

an external flow; yet in true external flows cooling would occur naturally, so we

discard this additional term in the computation of %8=. Under the CBC approach,

%8= almost perfectly collapses for different values of " . This leads to %=4C being

practically constant with " , with a positive value for some parameters of the (^, l)

space; this result declares StTW effective also at large Mach number, making the

exploitation of this strategy interesting in aeronautics.

3.3 Drag reduction and the real world

When integrating drag reduction into real-world scenarios, two main issues come

into play.

First, although active techniques provide large drag reduction and power saving,

to date no actuators are available to enforce their control laws. On the other hand,

passive techniques reach smaller drag reduction but they can be actually produced

and installed. Classic passive drag reduction techniques involve small-scale orga-

nized roughness at the wall, which can be either arrays of small protrusions, e.g.

riblets (Walsh & Weinstein, 1979) or small indentations, e.g. dimples (Alekseev

et al., 1998) or compliant surfaces (Gad-el-Hak, 1996), where the surface moves

in response to the interaction with the flow above and adapts to reduce drag. Other

examples include permeable substrates (Abderrahaman-Elena & Garcı́a-Mayoral,

2017) made by coatings with anisotropic permeability, superhydrophobic surfaces

(Daniello et al., 2009) where air gaps form between the substrate and the liq-

uid fluid, and polymeric additives, which make the fluid in fact non-Newtonian

(Lumley, 1977). We are particularly interested in the classic passive techniques,

involving single-phase flow and a simple modification of the wall geometry, but

do not require slots, ducts or internal equipment of any kind. Riblets fall in this

category. They are among the most promising techniques and have already been

produced in the form of adhesive plastic films, laser machining and coatings. Ri-

blets are small. This not only translates into production and maintenance issues,

but becomes a burden whenever one is interested in an accurate numerical simu-

lation to predict their performance in terms of drag reduction. The use of DNS is

mandatory, but each riblet element needs to be properly resolved in the simulation

for quantitatively accurate results. The sharp riblet corner is a further obstacle to

their accurate numerical simulation.

Second, the plane channel flow employed so far is a simplified geometry which

does not exist in practice, and drag reduction techniques must be applied on bodies

that are way more complicated, e.g. transportation vehicles and wind turbines.

35



On one hand, relevant flow configurations for which drag reduction techniques

are meant for, are external flows, more computationally demanding to simulate

than internal flows. On the other hand, typical practical applications features

non-planar wall and three-dimensional geometry i.e. large-scale modifications of

the flat wall. Once again, riblets have already been extensively tested covering

the surface of airplanes by seminal experiments by Boeing (McLean et al., 1987),

Airbus (Coustols & Savill, 1992; Szodruch, 1991) and NASA (Walsh et al., 1989).

In 2022 and 2023 Boeing installed riblets on the first passenger and first cargo

planes on regular operations.

In this Section we deal with surfaces featuring either small-scale or large-scale

modifications of the flat wall. Thus, the drag reduction definition needs to account

not only for the skin-friction drag, but also for the pressure drag, i.e.:

R = 100 × �� − ��,0

��,0

(3.6)

where �� is the sum of the skin-friction coefficient � 5 and the pressure drag

coefficient �?. The former has been already defined in Chapter §2 as � 5 =

2gF/(dU2) with gF the average wall shear stress and the latter is defined as

�? = 2%/(dU2) with % the average pressure over the surface; the reference

density d and velocity U are typically defined as bulk quantities (d1,*1) for

internal flows (as used so far in this Thesis) or as free-stream quantities (d∞,*∞)

for external flows.

3.3.1 A novel immersed-boundary method for non-planar walls

Passive techniques that introduce a micro-scale pattern on an otherwise flat wall in

a sort of organized roughness can be studied numerically via DNS. This requires

sophisticated tools to measure drag reduction with proper quantitative accuracy.

To resolve the geometry of a non-planar surface, the mainstream solution is to

resort to a body-fitted computational grid, where the mesh adapts to the surface’s

shape. This is less than optimal, and an alternative approach exists, where the

discretization is operated on a Cartesian grid, with the solid body being “immersed”

in it: the contour of the body does not generally coincide with the grid points.

Cartesian grids offers significant benefits over body-conforming grids, including

easier structured mesh generation, simpler and more efficient solution algorithms

and parallel processing, as well as reductions in memory usage and computational

time. Given these advantages, we opt for this second approach and introduce an
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original immersed-boundary method (IBM) to simulate the turbulent flow above

a non-planar wall via DNS.

Our novel IBM for the incompressible Navier–Stokes equations employs a

discrete forcing formulation for a sharp discrimination of the solid-fluid interface,

based upon and tightly integrated with a second-order finite difference method

with a staggered grid.

To account for the presence of the solid boundary, the velocity value of the first

point inside the body is linearly extrapolated from the first point in the fluid and

the point on the real boundary (which has null velocity for a still body) only, both

along an arm of the computational stencil. This value is not actually computed nor

stored, but its contribution is accounted for implicitly by modifying the weight of

the central point of the stencil, pictured in the left panel of figure 3.6. The method

stands out for its simplicity and efficiency: only the weight of the center point of

the Laplacian stencil in the momentum equation of the Navier–Stokes equations

is modified, under the assumption that close to the boundary the viscous term is

dominant compared to the temporal and advection terms, and no corrections for

the continuity equation and the pressure are required. The method is implicit,

meaning that the point in the solid which is nearest to the interface is accounted for

implicitly; it is also implicit in time, when applied to time-dependent problems,

benefitting its stability and convergence properties.

The IBM is second-order accurate in space and preserves the temporal accuracy

of the underlying temporal discretization. We verify it by two examples with high

geometrical complexity: the turbulent flow in a channel with a sinusoidal wall, and

the flow in a human nasal cavity. The proof of the spatial second-order accuracy for

the latter example is shown in the right panel of figure 3.6, where the time-averaged

value of the flow rate & at the trachea of nasal cavity for the fixed pressure drop of

5%0 is observed as the spatial resolution is changed.

3.3.2 Dimples

We exploit the IBM solver described above to study dimples. In their simplest

geometry, dimples are small spherical caps imprinted on a surface with the recess

and the flat surface being smoothly connected to avoid sharp edges. They have

been extensively studied in the past for their ability to enhance the heat transfer

of a surface (Kiknadze et al., 1984), to influence the separation on bluff bodies

(e.g. golf balls) (Bearman & Harvey, 1976) and more recently to investigate their

possible drag reduction capabilities (Lashkov & Samoilova, 2002). Over the past

20 years, a few research groups have focused their efforts on the potential use of

dimples to reduce drag, trying to determine the ideal size and shape. Unfortunately,

there is still lack of agreement on the very possibility that dimples can lower skin-

friction drag, and on their working mechanism. Several studies have reported drag
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decrease.
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Figure 3.7: Instantaneous spanwise velocity component F on a wall-parallel plane

at H+ = 1.3 from the flat part of the wall. Lengths and velocities are made

dimensionless with ℎ and *1. The velocity field is computed by DNS for a

circular dimple, which actually yields drag increase. Taken from Gattere et al.

(2022b).

reduction, while several others have not. We have revised the whole literature

body on the topic, founding a great variety of results, ranging from 14% of drag

reduction to 20% of drag increase. This ambiguity stems from the absence of a

widely recognized standard for measuring drag and comparing various shapes with

the reference flat wall. There are unavoidable discrepancies between simulations

and experiments, as well as between internal (like plane channels) and external

(like boundary layers) flows. The inconsistent results can also be attributed to our

incomplete knowledge of how dimples impact the surrounding flow field.

Flow visualizations (see figure 3.7) show that, near the wall, streamlines coming

from a flat surface bend towards the dimple centerline in the recess’s upstream

portion, then away from it in the downstream part. This creates a converging-

diverging pattern, leading to an alternating spanwise velocity that resembles the

spanwise-oscillating wall. A minimum spanwise velocity is required for the active

technique to work. The amplitude of the spanwise velocity at the wall, �+, must

be of the same order of the natural spanwise velocity fluctuations in the near-wall

region, so that a threshold value is �+ ≈ 1.

Figure 3.7 shows an instantaneous flow field over a circular dimple; the values

of the spanwise velocity F are very large, up to 40% of the bulk velocity (or

F+ ≈ 6). However, in the spanwise forcing case, the spanwise velocity is homo-

geneous in the spanwise direction, different from what happens for the flow over

a dimple, for which patches of positive and negative F are detected. Moreover,

even with spanwise forcing, one should only be concerned with friction drag when

dealing with a flat wall. In contrast, the presence of dimples introduces both

viscous and pressure drag, complicating the measurement of small variations in
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aerodynamic drag, especially within turbulent flow conditions. When assessing

the drag characteristics of a reference flat surface against those of a rough surface,

it is crucial to be aware of the subtlety of the measurement. This includes the

necessity of precisely defining and controlling the Reynolds number, differentiat-

ing between internal and external flows, and accurately establishing the equivalent

“flat wall” flow to compare with.

After accounting for all these issues with precision, our computations at

2700 ⪅ '41 ⪅ 10400 using the most standardized circular dimples configu-

ration (Chen et al., 2012) cannot find any drag reduction for any of the tested

geometry parameters. We are also interested in understanding the scaling of drag

changes caused by circular dimples when their shape is maintained but only their

dimensions are altered. Only the value of the depth (either in inner or outer units)

has been varied independently, and all the other parameters did vary accordingly

to maintain the geometry similar. The findings suggest an outer scaling; this

outcome aligns with expectations, given that the examined dimples are relatively

deep, resembling a form of large-scale d-type roughness (Jiménez, 2004). In this

context, the large cavities effectively disrupt the near-wall layer, which is the only

region where inner scaling would be applicable.

3.3.3 Riblets on a flat plate

Among passive techniques, riblets are most promising, and currently under design

and test to be extensively applied on commercial airplanes. In their simplest con-

figuration, riblets are small two-dimensional streamwise-aligned micro-grooves

on the surface which have a periodic pattern in the spanwise direction. Riblets

have been extensively studied over the last 45 years, starting from the seminal

paper by Walsh & Weinstein (1979) and have been proven to achieve about 10% of

drag reduction at low Reynolds number. Experiments by Bechert et al. (2000) and

studies by Luchini et al. (1991) have clarified the essentials of the drag reduction

mechanism.

When riblets are extremely small compared to the characteristic length scales

of the near-wall turbulence, i.e. in the so-called viscous regime, the above flow

does not perceive the local geometry of the rough surface, but only a homogenized

effect of it. The homogenized effect experienced by the mean streamwise flow

is a flat plane where the velocity vanishes, situated at a depth beneath the riblet

tips. The distance between a reference plane (usually the riblet’s tip) and this

virtual wall is called parallel protrusion height ℎ∥ . In contrast, the turbulence

encounter a distinct virtual flat boundary; the distance between the reference plane

and the turbulence virtual wall is known as the perpendicular protrusion height

ℎ⊥. The latter is the virtual origin perceived by the quasi-streamwise vortices,

and it is defined by the plane where the spanwise fluctuations vanish. This lies
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on the assumption that QSV induce a transverse shear over their virtual origin,

but no wall-normal velocity, due to the spanwise velocity varying linearly and the

wall-normal velocity varying quadratically with the distance from the wall, just

above it. Luchini et al. (1991) proved that the effectiveness of riblets in reducing

drag depends on the difference of the two above mentioned protrusion heights

Δℎ = ℎ∥ − ℎ⊥ only. Whenever Δℎ > 0, the turbulence is impeded more than the

mean flow inside the riblets’ valleys, meaning that the quasi-streamwise vortices

are displaced away from the wall, leading to the decrease of the near-wall turbulent

mixing, thus to the reduction of skin-friction drag. The difference in the virtual

origin of the mean flow and the turbulence causes the shift of the logarithmic

portion of the mean velocity profile Δ�+ of Eq.(3.4); due to the linearity of the

viscous regime, Δ�+ ∝ Δℎ+ (Jimenez, 1994; Luchini, 1996).

More recently, Gómez-de-Segura et al. (2018) argued that the displacement of

the QSV would ultimately reach a saturation point, unless the shift of the origin

perceived by the spanwise fluctuations was accompanied by a corresponding shift

for the wall-normal fluctuations. In general, when the virtual origins perceived

by the two fluctuations differ, the QSV would experience an intermediate virtual

origin, whose distance from the reference wall is referred to as the turbulence pro-

trusion height ℎ) . If the definition of the protrusion height difference is corrected

as Δℎ+ = ℎ+∥ − ℎ+
)
, then Δ�+ = Δℎ+ is proved (Ibrahim et al., 2021).

In the viscous regime, the effectiveness of riblets increases linearly with their

dimension, measured as their cross-sectional area �6. However, for riblets larger

than their optimum size (
√
�+
6 ≈ 11) (Garcı́a-Mayoral & Jiménez, 2011), the

proportionality breaks down and riblets show a typical k-type roughness behavior

(Jiménez, 2004), increasing drag.

The IBM code introduced in §3.3.1 has been successfully employed (Gattere

et al., 2022a; Gatti et al., 2023; Cipelli et al., 2024) for the reliable prediction of

the drag reduction capabilities of two-dimensional riblets. Here the documented

spatio-temporal accuracy near a non-trivial boundary made possible by our IBM

implementation is crucial to obtain reliable measurements of the friction coeffi-

cients and of their differences (i.e. drag reduction). In fact, measuring (small,

sometimes very small) differences in� 5 is a challenging task, no less in numerical

simulations than in laboratory experiments. In the past, very few experimental

setups have managed to measure drag reduction reliably enough to give signifi-

cance to figures as small as 0.1 percentage point. A notable example is the Berlin

oil channel (Bechert et al., 1992), where the entire setup was designed around

the goal of measuring a drag difference directly instead than measuring two drag

forces and then taking the difference. Another example is the air channel at KIT

(Güttler, 2015; Gatti et al., 2015), where a combination of unconventional layout,

careful design and extremely controlled experimental procedures allow measuring
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Figure 3.8: Drag reduction curve for riblets of equilateral triangle shape. Triangles

are results from Cipelli et al. (2024) obtained for two different spanwise grid

resolutions ΔI+. IBM refers to immersed boundary implementation of §3.3.1,

COCO refers to the corner correction activated at geometrical singularity. The

gray area represents the temporal uncertainty. Orange circles are experimental

data from Bechert et al. (1997).

Δ� 5 within an uncertainty of 0.4%. In DNS, several issues plaguing the experi-

ments do not exist, but we have to deal with the geometric singularity at the sharp

tip of each riblet. Tip sharpness is essential for drag reduction (Garcı́a-Mayoral

& Jiménez, 2011), but obviously poses overwhelming requirements in terms of

space-time resolution. We have tackled the problem by following a method, orig-

inally proposed by Luchini (1991), that has been implemented on top of the IBM

solver. In this method, the local solution close to the singularity is analytically de-

termined and compensated for, so that a reasonable spatial resolution can be used.

The analytical solution hinges upon the observation that near the tip the velocity

gradients become infinitely large, leading to dominating viscous effects and to a

local solution that is well described by the Stokes equations. The IBM augmented

with the corner correction has made possible the results shown in figure 3.8, where

drag reduction data for a given riblet geometry are obtained that not only compare

very well with the high-quality experimental reference, but also are robust with

respect to a large change in size of the computational grid.
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3.3.4 Riblets on a three-dimensional body

The last considered topic is the outcome of friction drag reduction techniques

applied on realistic, non-planar geometries. Applying e.g. a friction-reducing

textured surface to a complex body, such as an aircraft or the blades of a wind

turbine, could bring to light secondary effects compared to the application on a flat

wall. Banchetti et al. (2020) demonstrated via DNS the beneficial effect of StTW

not only on skin-friction drag but also on pressure drag when applied to a simple

bump over an otherwise flat wall. Quadrio et al. (2022) studied by DNS the StTW

applied to a portion of a wing in transonic flight, finding that a localized actuation

has the potential to boost the aerodynamic efficiency of the whole aircraft. These

are very promising results which open up the possibility to effectively install drag

reduction techniques on airplanes not only to reduce skin-friction drag but also to

exploit positive secondary effects.

The use of reliable numerical tools such as DNS is, once again, unavoidable.

However, at the moment, DNS can only be used for simple cases. The simulations

are too costly for complex, high-Reynolds-number aeronautical configurations,

like for an entire aircraft.

Therefore, numerical simulations of complex shapes are usually based on the

Reynolds-averaged Navier–Stokes equations (RANS) equipped with a turbulence

model. Gadda et al. (2017) simulated the effect of travelling waves on the surface

of a modern transport aircraft at '4 = 3×106 in transonic flight. The forcing could

not be introduced directly, but it was accounted for via a modified wall function

which provides the shift in the mean velocity profile Δ�. They found a decrease

in the skin-friction drag as expected and also an additional positive effect in the

pressure drag reduction for certain angles of attack. These results lead to two

indirect positive effects, i.e. a delay in the onset of the shock, and a lift increase.

Having considered riblets on a flat wall with DNS in §3.3.3, we also test the

effectiveness of riblets on aeronautical configurations with RANS. Aupoix et al.

(2012) modified the Spalart–Allmaras turbulence model to account for riblets by

using smooth-wall geometry, and Koepplin et al. (2017) extended this model to

describe riblets which are locally misaligned with the mean flow and to account

for mean pressure gradients. Similarly, Mele et al. (2016) introduced a modified

boundary condition for the : −l turbulence model; it correctly simulates standard

riblets, but fails to account for devices inducing larger drag reduction, such as

spanwise forcing.

More recently, Mele & Tognaccini (2018) developed a new model based on the

slip-length concept, whose application can be extended to model all surfaces with

passive/active treatments that have as a main effect a shift of the mean velocity

profile Δ� in the turbulent boundary layer. The effect of the shift of the mean

velocity profile can be equally seen as a shift of the wall, which is the place where
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Figure 3.9: Geometry of the UAV. Taken from Cacciatori et al. (2022).

the velocity vanishes due to the no-slip constraint. A shift of the zero-velocity

plane (H=>−B;8?) implies that the velocity at the geometric wall (H = 0) is different

from zero; therefore, a slip condition should be applied there. The velocity at the

geometric wall can be extrapolated as

D+(H = 0) = D+(H = H=>−B;8?) + Δ�+ m*
+

mH+

����
H=0

,

where D+(H = H=>−B;8?) = 0. In the viscous sublayer the velocity is linear with the

distance from the wall, i.e. D+ = H+. This implies that ΔH+ = Δ�+, where Δ�+

is the shift of the mean velocity profile (see §3.1). Knowing that in the viscous

sublayer ΔH+ = Δ�+ equals the protrusion height difference Δℎ+ (see §3.3.3), we

get

D+(H = 0) = Δℎ+
m*+

mH+

����
H=0

,

which is the partial-slip boundary condition to apply at the geometric wall to

account for the shift of the mean velocity profile due to the manipulation of the

surface with drag reduction control.

We leverage the partial-slip boundary condition to study the effects of riblets on

the surface of a simplified geometric model of an Unmanned Aerial Vehicle (UAV),

depicted in figure 3.9, at flight Reynolds number '4 = *∞2d∞/`∞ = 5 × 105,

where 2 is the chord length, employing RANS simulations. We imagine covering

the surface of the UAV with the best performing riblets which can attain roughly

R ≈ 10% at low '4 which translates through Eq.(3.5) into a shift of Δ�+ ≈
1. Fixing the shift in viscous units means assuming riblets are locally optimal

everywhere, thus they change their physical size along the body depending on the

local friction velocity of the flow. The discrete counterpart of the above boundary

condition with derivatives approximated with finite differences reads:

D0 = D1
Δℎ+

Δℎ+ + (H1 − H0)
,

where the subscript 0 and 1 refer to the grid point at the wall and the first grid

point in wall-normal direction, respectively.
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The application of simulated riblets to the UAV has revealed indirect and

beneficial effects that extend beyond merely decreasing friction drag. This makes

the implementation of a friction-reduction mechanism particularly appealing in

low-speed scenarios. Specifically, riblets alter the pressure distribution over the

aircraft’s wing, resulting in a notable decrease in form drag and an increase in lift.

While this increase in lift naturally leads to a rise in lift-induced drag, the necessity

for the aircraft to maintain a specific lift during cruise operations necessitates a

lower angle of attack, which further aids in drag reduction. Ultimately, the use

of riblets can achieve a total drag reduction of up to 3% for the aircraft during

cruise conditions. This result derives from a combination of a friction drag (which

contributes to 32% of the total drag) reduced by 6.1 % and a pressure drag (which

contributes to 68% of the total drag) reduced by 1.5 %.

Cost-effective simulations can elucidate the potential drag reduction associated

with specific extents and placements of riblets coverage on the aircraft’s surface.

To this aim, we have designed a set of simulations to explore partial coverage of

the aircraft surface with riblets. The amount of coverage is quantified by the ratio

V between the riblets-covered area and the total area, with V = 1 indicating total

coverage. In these simulations, the full aircraft is considered, but riblets coverage

varies. Figure 3.10 illustrates the pressure, friction and total drag reduction for

the various coverage scenarios: (A) the exclusion of riblets from the trailing edge

surface only, (B) from the boom surface only, (C) from the entire surface except

for the wings, and (D) from the entire surface except the wings’ suction side.

Given the significant role of secondary effects in diminishing pressure drag due to

riblets, almost 2/3 of the maximum drag reduction achieved with full coverage can

be achieved with the coverage of the suction side of the wings only, accounting

for 1/3 of the total area. Furthermore, the costs associated with the production,

application, and maintenance of riblets are directly proportional to the surface area

covered. This particular configuration not only yields a favorable cost-benefit ratio

but also preserves the integrity of the UAV fuselage, where various systems such

as sensors, cameras, and transmitters are intended to be installed.
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A: no wing TE B: no booms C: only wing D: only wing,

suction side

Figure 3.10: Pressure, friction and total drag reduction contributions for different

configurations of riblets coverage. V = 1: full coverage; V = 0.953: riblets on

the whole aircraft except the wings’ trailing edge; V = 0.935: riblets on the whole

aircraft except the booms (B); V = 0.524: riblets on the wings only (C); V = 0.289:

riblets on the suction side of the wings only (D).
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4 Conclusions and outlook

In this Thesis, we have considered some of the unresolved issues concerning

wall-bounded turbulence and its control for drag reduction. Inhibiting the self-

sustainment of near-wall turbulence, possibly up to a point where the flow becomes

laminar again, requires a comprehensive understanding of the physics involved,

and the ability to alter it effectively.

Some novel, dedicated tools can be profitably used towards this goal. A

rigorous statistical description of the channel flow system via the linear response

function, as well as a somewhat less rigorous spanwise forcing devised irrespective

of its practical realization, have led us to understand a little more of the turbulent

flow, and to put into focus additional interesting questions that motivate further

research.

The linear impulse response function (LIRF), i.e. the linear relationship be-

tween the input and the output of a dynamical system, has been defined and

measured for a turbulent channel flow, with the input being a body force placed

at different distances from the wall. The LIRF contains a large amount of infor-

mation, yet it answers simple questions, and for example identifies the optimal

location and manner to apply volume forces to achieve a desired effects anywhere

in the system. As such, it is of particular interest for the design of feedback control

laws, where a linear model of the plant (the turbulent channel flow) is needed;

within the linear approximation, the LIRF is the best possible plant model.

The conceptual experiments carried out with the extended Stokes layer (ESL)

fully belong to the non-linear regime. It is important to note, once again, that

while the time-dependent spanwise velocity profile was straightforwardly enforced

in the DNS, in principle one could solve the Navier–Stokes equations with a non-

homogeneous boundary condition (made by the conventional oscillating wall in

our case) complemented with a suitable wall-normal distribution of spanwise

body force. Using an ESL has been instrumental to discriminate the effects of

its temporal ()) and spatial (X) scales. Our findings suggest that the widely

recognized optimal period for minimizing skin-friction drag, namely )+ = 100,

may lack physical significance as a time scale, and simply represents the parameter

combination nearest to the global optimum, that is permissible under the constraints
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of the oscillating wall. Both ) and X play a role in the reduction of drag, with

larger performance achieved when their values are inversely related: while a large

frequency is beneficial, the influence of the SL should extend further from the wall

into the bulk flow. The key take-away of this experiment is the finding that we

should think of the oscillating wall not as an actuation strategy, but simply as a

(possibly far from optimal) means to modify the flow to achieve drag reduction.

What is the crucial flow modification needed to achieve the goal is still unclear,

and the search for a feasible actuator should be postponed until such a fundamental

piece of information is obtained.

The two tools mentioned above could also be combined. The LIRF lends

itself to testing flow control ideas in a quick and simple way, dispensing with

the need of lengthy and costly simulations. By aggregating information obtained

from these approaches, linear and non-linear effects can be discriminated, thereby

highlighting the main pathway to drag reduction. This could be interesting also for

near-wall turbulence in general; in fact, generation of the streaks from the vortices

is a linear process, while the regeneration of the vortices from the streaks needs a

non-linear mechanism.

To obtain a complete view of how flow control interacts with turbulence, the

multiscale, inhomogeneous and anisotropic nature of the latter must be properly

represented. To this purpose the anisotropic generalised Kolmogorov equations

(AGKE) seem the perfect tool; they are budget equations for the second-order

structure function tensor, and represent the Reynolds stresses in the compound

space of scales and positions. Since most of active (e.g. oscillating wall) and

passive (e.g. riblets) drag reduction techniques possess a coherent (in time and/or

in space) deterministic component, the AGKE have been extended to their phase-

aware version (i-AGKE). The i-AGKE include, thanks to a triple decomposition,

the mean, coherent and stochastic parts of a flow field, and describe their in-

teraction. In a sense, while tools like LIRF and ESL are made to understand

and optimize the input of the drag reduction process (i.e. the forcing itself), the

i-AGKE are made to understand the output, i.e. the turbulent flow with drag

reduction.

Although the physical mechanism underlying drag reduction through span-

wise forcing remains partially understood, the effectiveness of spanwise forcing is

empirically evident. Therefore, it makes sense to also consider the applied side

of the problem. Current studies have been conducted mostly in simplified flow

set-ups, such as incompressible channel flows at low Reynolds number, and further

research is needed to determine the advantages of spanwise forcing in practical ap-

plications, especially in aviation, where even a tiny reduction of skin-friction drag

could provide huge environmental and economic benefits, but the configuration

is quite far away from the incompressible, low-'4 plane channel flow. We have

verified to what extent the drag reduction rate is still effective at high Reynolds
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numbers (up to '4g = 6000) and in the supersonic regime (up to " = 1.5).

We have found that the reduction of drag remains comparable to that observed in

incompressible and low-'4 conditions, as long as the drag reduction figures are

properly compared. This indicates that: i) the underlying physics of drag reduction

via spanwise forcing is independent of both Reynolds and Mach numbers (under

the tested flow conditions and geometries); ii) spanwise forcing retains its utility

under realistic flow conditions, paving the way for its exploitation in aviation.

From a practical standpoint, the most relevant metric for evaluating the effec-

tiveness of a drag reduction technique is the net power saving, which represents

the trade-off between the advantages of actuation (i.e., drag reduction) and the

associated costs (i.e., power required to implement the control law). Our analysis

has revealed that net power saving remains almost constant as Reynolds and Mach

numbers increase; under specific control parameters, significant net power savings

can be realized, thereby enhancing the potential of spanwise forcing.

We have also explored the performance of drag reduction methods in specific

applications. Active techniques, such as spanwise forcing, demonstrate signifi-

cant drag reduction capabilities but, to date, suitable actuators are not available.

Therefore, passive techniques, which do not require actuation while yielding com-

paratively modest reductions in drag, are worth considering. Presently, riblets

stand out as the most promising passive method, having undergone extensive

numerical and experimental testing. They can achieve drag reductions of approxi-

mately 7-10% at low Reynolds numbers and are already in use on aircraft surfaces

during regular operations.

Using a boundary condition that indirectly accounts for the effects of riblets

without the need of describing their geometry, the performance of riblets on an

unmanned aerial vehicle (UAV) has been studied with RANS. This study has led

to the expected local reduction in skin-friction drag, accompanied by additional,

indirect benefits, including decreased pressure drag, increased lift, and an overall

enhancement in aerodynamic efficiency. Although our measurements indicate that

riblets continue to provide drag reduction in complex, realistic configurations, the

most effective riblets can only reduce total drag by up to 3% for the tested UAV at

a chord-based '4∞ = 5× 105. This level of reduction rate may not justify the high

costs associated with their production, application, and maintenance, particularly

given the riblets’ extremely small size (whose optimal dimension scales in viscous

units) and the requirement for a sharp tip to function effectively. This calls for

a further optimization process, that stems from understanding that the benefit

of covering the unit surface area of the aircraft with riblets is not uniform. A

model boundary conditions and the ability to use cheap RANS to simulate various

configurations become essential tools to carry out such optimization.

Of course, the enhancement of the current passive techniques is another road

to explore. To achieve this, insights gained from spanwise forcing techniques,
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which are capable of delivering substantial drag reduction and energy saving also

at high Reynolds and Mach numbers, could be taken advantage of. The obvious

example is three-dimensional riblets, whose tip could vary its spanwise position

along the streamwise direction to mimic spanwise forcing. Sinusoidal riblets has

been already studied numerically with LES (Peet et al., 2008) and experimentally

(Cafiero & Iuso, 2022), arriving at conflicting conclusions. Current research

efforts are focused on improving the drag reduction capabilities of sinusoidal

riblets in turbulent flows. This involves modifying the riblet tips to accurately

capture the effects of singularities without necessitating an excessively fine mesh

Luchini (1991), while also maintaining precision in skin-friction measurements.

Preliminary findings have been reported by Gattere et al. (2022c); Gatti et al.

(2023); Cipelli et al. (2024) and found a relative improvement of about 30%

with sinusoidal riblets with a streamwise wavelength of about _+ = 1500 and an

amplitude �+ ≈ 8. However, only two combinations (_, �) have been tested and

a parametric study could bring up larger performance. While work in this field

is just starting, it is important to stress how the numerical method that has been

developed, with extreme control of its accuracy near the boundary and the ability

of taking care of the geometrical singularity corresponding to the riblet tip, is an

enabling step, without which future numerical experiments would just produce

another data point in a confusing data set.

Different types of surface patterns, such as dimples, may offer a suitable

framework for passive spanwise forcing. Dimples do not present sharp tips, and

therefore are much easier to produce and maintain (and study). After reviewing the

limited and often contradictory literature on this subject, we have concluded that

there is no evidence that circular dimples, the most commonly studied shape, do

yield drag reduction. However, we do not dismiss the possibility that alternative

dimple shapes could produce favorable outcomes. A systematic investigation,

however, is essential to discover an optimal design.

Drag reduction in practical turbulent flows is still quite a far fetched goal,

yet the efforts of the research community are making this goal progressively less

unfeasible. While is difficult to underestimate the tremendous challenge posed by

the development of suitable technologies, the limited understanding of the physics

of turbulence and of the drag-reduced turbulent flows constitutes an even more

important and more fundamental obstacle. I hope that the research effort spent

during this PhD represents a contribution, however minor, in the right direction.
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Channel Flow

Abstract

The mean linear response of a turbulent channel flow to a small enough, impulsive

(in space and time) body force is defined and measured through direct numerical

simulations, by considering the continuous range of wall distances from the wall to

the centerline. A zero-mean, white-noise body force is used to probe the turbulent

flow, and the response function is obtained efficiently by accumulating the space-

time correlation between the white forcing input and the velocity field obtained

as output. Three different responses are measured, at the same Reynolds number,

for a laminar channel flow, a channel flow where the mean velocity profile has the

turbulent shape but no turbulence is present, and a true turbulent channel flow.

The impulse response analysis leads to confirming and extending some important

results known in literature in the laminar case. However, the amplitude and shape

of the responses to the laminar and turbulent flows are not identical. The mean

effects of the turbulence, including turbulent diffusion, are needed to be consider

to completely characterize the linear behavior of a turbulent flow.

1.1 Introduction

The linear impulse response function (LIRF) is a classic tool for the description of

linear, time-invariant dynamical systems. Its use in relation to physical phenomena

that involve moving fluids is not particularly widespread, as it is well known that

the Navier–Stokes equations which govern the fluid motion are highly non-linear.

However, instances in fluid mechanics exist where the LIRF concept has been used,

including the study of turbulent flows.
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The analysis of the LIRF of the flow to small perturbations is a natural approach

in the (linear) hydrodynamic stability theory. A comprehensive review of the latest

developments in the field has been given by Schmid (2007). In this context, the

Navier–Stokes equations are linearized about an equilibrium solution, the base

flow. The non-normal nature of the linearized Navier–Stokes (LNS) operator

in wall-bounded shear flows implies the possibility for a transient growth of the

perturbation energy, which explains how e.g. the Hagen–Poiseuille flow or the

plane Couette flow undergo laminar-to-turbulent transition even though the linear

modal stability theory predicts that the critical Reynolds number for transition is

infinite.

The importance of transient growth in shear flows has been fully appreciated

in recent years, starting with the seminal contribution by Butler & Farrell (1992);

Farrell & Ioannou (1993); Trefethen et al. (1993). In this context, Jovanović &

Bamieh (2005) examined the input-output properties of the LNS equations for

a plane channel, and described the spatio-temporal response of the flow to an

impulsive body force. They showed that the flow features typically observed

during transition can be interpreted as input-output resonances of the LIRF. Under

the limitation of a linearized setting, they were also able to rank the body force

components in terms of their potential for transient energy amplification, finding

that body forces acting along the spanwise and wall-normal directions entice

the strongest response, with the streamwise velocity component being the most

affected.

The importance of transient growth for the transition to turbulence prompted

researchers to consider whether such linear mechanisms play an important role

also in the dynamics of fully-fledged turbulent flows. Here, the obvious difficulty

is that turbulence is highly non-linear, implying that the stochastic “background”

turbulence can affect the amplified disturbances. In the context of LNS, the effect

of turbulent fluctuations on the disturbances is usually neglected, and turbulence

is simply taken into account (as done e.g. by Högberg et al., 2003) by linearizing

about the turbulent mean flow, although this is not a solution of the Navier–Stokes

equations. The resolvent analysis for wall bounded turbulent flows introduced by

McKeon & Sharma (2010) relies on this assumption. It interprets the turbulent

velocity field as the output of the Navier–Stokes equations linearised about the

mean turbulent flow profile, with their non-linear terms acting as an external

forcing. The modal analysis of the linear transfer function (the so-called resolvent)

of the system describes the linear amplification mechanisms for each structure

within the turbulent flow. In some cases, the average effect of the Reynolds

stresses is modelled by augmenting the linear governing equations with an eddy

viscosity (Hussain & Reynolds, 1972) defined a priori (see, for instance, del Álamo

& Jiménez, 2006). A recent review by McKeon (2017) summarizes the recent

efforts in the analysis of the LNS, which confirms how transient amplification
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plays an essential role in the self-sustainment of turbulence (Kim & Lim, 2000),

and connects it to properties of some small- and large-scale coherent structures

observed in turbulent flows (see, for instance, Schoppa & Hussain, 2002; del Álamo

& Jiménez, 2006; McKeon & Sharma, 2010; Davis et al., 2019). However, mean-

flow-based linear analysis is non-unique since the characteristics of the linearised

operator depend on the state variables considered (Karban et al., 2020).

Recently, Vadarevu et al. (2019) considered the evolution of velocity fluctu-

ations due to an isolated spatio-temporal impulse using the LNS equations aug-

mented with eddy viscosity (eLNSE) in a channel flow at a friction Reynolds

number of '4g = 10 000. They found that the impulse response evolves into

self-similar coherent structures, which remain attached to the wall and are rem-

iniscent of the so-called attached eddies discussed by Townsend (1976), which

populate wall-bounded turbulent flows. Such structures could not be observed

when the same experiments was repeated with the same base flow but without

eddy viscosity. Madhusudanan et al. (2019) confirmed the previous results by

showing that LNS are capable to predict the three-dimensional velocity field given

two-dimensional information obtained from direct numerical simulation (DNS) of

turbulent channels only when eddy viscosity was taken into account.

Provided the disturbances have a small enough amplitude, a linear response of

the flow to an external disturbance can be defined, albeit in a time-averaged sense,

even in a fully non-linear setting. If avoiding to resort to the LNS means that the

influence of non-linear turbulence on the linear response can be fully accounted

for. The importance of accounting for the turbulence effects has been recently

emphasized by the results obtained by Russo & Luchini (2016). They measured

the LIRF of a turbulent channel flow to a steady volume force, and compared

their results to the prediction obtained on the basis of the LNS equations. They

found that the two linear responses are significantly different, which implies that

the “background” turbulence has a non-negligible impact on the linear response.

Moreover, they demonstrated that it is impossible to conceive a (positive and finite)

eddy viscosity that makes the results obtained with eLNSE compatible with the

true measurement.

Prompted by the previous studies, the present works aims at measuring the time-

mean response of a turbulent channel flow to a impulsive body force in space and

time, while accounting for the full non-linearity of the system. Beside assessing

the importance of non-linear turbulent transport, the mean impulse response is

of greatest interest, thanks to the aforementioned relevance of linear mechanisms

in turbulent flows and the potential for assisting in the design of control laws for

turbulence. The measurement is carried out numerically, with a fully non-linear

code for the direct numerical simulation (DNS) of the Navier–Stokes equations.

The importance of properly defining and measuring the channel flow LIRF

goes beyond what discussed above. In fact, the response contains full information
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of the linear, time-invariant system and as such could be exploited in flow control

algorithms, where the LIRF is a complete model of the plant. With that, one would

possess the information on where and how a control should be applied to achieve

the desired mean effect. It was suggested (see for example Kim & Lim, 2000) that

linear mechanisms are central to the near-wall turbulence regeneration cycle, and

that linear models of turbulence may suffice for flow control purposes. Among

the several attempts appeared in the literature along this direction (Kim & Bewley,

2007), some used the LIRF concept: Luchini et al. (2005) and later Martinelli

(2009) established the basis for a Wiener–Hopf feedback controller, where the

observer and the controller could be both designed thanks to the knowledge of the

LIRF.

In a non-linear setting, the linearity of the response is only guaranteed by the

small amplitude of the forcing. In doing so, at least in the turbulent case, the

problem arises that the small forcing allowed by linearity is much smaller that the

natural turbulent fluctuations, leading to an extremely low signal-to-noise ratio.

To circumvent this problem, in this work we resort to the approach introduced by

Quadrio & Luchini (2002) and Luchini et al. (2006) when measuring with DNS the

mean linear impulse response of a turbulent channel flow to blowing/suction ap-

plied at the wall. Instead of applying an impulsive forcing, they used a zero-mean,

white-noise signal as an input, and computed the space-time correlation between

the input (blowing/suction at the wall) and the output (the whole flow): since the

input signal is random and therefore uncorrelated to the turbulent fluctuations, the

input-output correlation immediately provides the LIRF, with the advantage of a

much higher signal-to-noise ratio. The same strategy was later applied by Carini

& Quadrio (2010) to measure the LIRF in an homogeneous and isotropic turbulent

flow to an impulsive body force, thus providing direct access to a quantity central

in the Direct Interaction Approximation theory developed by Kraichnan (1959).

In the present work, the mean LIRF is properly defined and subsequently

measured with DNS in a channel flow, to provide the complete description of the

relationship between a generic body force input and the resulting velocity field. In

doing so, we will consider: i) the impulse response in absence of turbulence, i.e. the

laminar impulse reponse; ii) the impulse response when the equations are linearized

about the turbulent mean velocity profile and turbulence is neglected, i.e. with an

approach similar to that of the resolvent analysis; iii) the full impulse response,

which includes the mean diffusive effects of turbulence, and whose linearity only

derives from the small amplitude of the forcing. A detailed comparison of the

three responses is instructive to understand the propagation mechanism of small

perturbations in a turbulent flow, and has a foundational interest for applications

regarding flow control and turbulence modelling.

The structure of the paper is as follows. After this Introduction, section §1.2

defines the LIRF and describes how to measure it. The computational details
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Figure 1.1: Sketch of the plane channel with reference system and definition of

quantities related to the response function.

employed in the study are presented in §1.3 and the validation of the present

approach against existing literature is reported in §1.4. Sections §1.5 describes

the characteristics of the impulse response both in wavenumber and physical space

and §1.6 apply it to a test case; finally, a brief concluding discussion is elaborated

in §1.7.

1.2 The LIRF of the turbulent channel flow

1.2.1 Definition of LIRF

We begin with the definition of the LIRF for a turbulent channel flow, followed

by the approach employed for measuring it via DNS, and by the description of the

discretization choices.

The linear impulse response function H (in the frequency or the time domain)

is defined for a non-linear system, under the condition that the input is small

enough. In the simplest scalar and purely temporal case, H links the input 5 and

the output @ of a system in the time domain through a convolution, i.e.:

@(C) =
∫ +∞

−∞
H(C − g) 5 (g) dg, (1.1)

or, equivalently, in the frequency domain as @̂(B) = Ĥ (B) 5̂ (B), where the hat

indicates Fourier transform in time. By setting the input to a Dirac delta function

X(g), equation (1.1) immediately shows that @(C) = H(C), hence the name LIRF.

The extension to the plane channel flow system is relatively straightforward.

Instead of a generic linear system, we consider an incompressible (laminar or

turbulent) flow in an indefinite channel, bounded by two plane parallel walls,

located at H = 0 and H = 2ℎ. The velocity components D in the streamwise G
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directions, E in the wall-normal H direction and F in the spanwise I direction are

also indicated throughout the paper as D8, with 8 = 1, 2, 3. The channel and the

reference system are sketched in figure 1.1.

The flow is governed by the incompressible Navier–Stokes equations, here

written in dimensionless form:

∇ · u = 0 (1.2)

mu

mC
+ u ·∇u = −∇? + 1

'4
∇2u + f (1.3)

and the LIRF now becomes a second-order tensor that links an impulsive body

force input vector f to the output vector u. Besides the increased dimensionality

in comparison to the SISO linear system described by equation (1.1), two main

differences need to be emphasised. One is that, being the governing equations

non-linear, the linearity of the LIRF tensor is not guaranteed, but is conditional

on the input being sufficiently small. The second is that, in the turbulent case, the

LIRF needs a statistical description, i.e. we seek for the mean LIRF. By assuming

that the external forcing is small enough for linearity to hold, one obtains:

⟨D 9 (G, H, I, C)⟩ =
∫ !G

0

∫ 2ℎ

0

∫ !I

0

∫ +∞

−∞
⟨H8→ 9 (G − b, H − [, I − Z, C − g) 58 (b, [, Z , g)⟩ dg dZ d[ db

(1.4)

where ⟨·⟩ represents the average over time. We define the function H8→ 9 as the

mean impulse response so it already embed the time average and the forcing is

known a priori so it does not need to be averaged, thus to ease the notation the

symbol ⟨·⟩ is dropped. Eq.(1.2.1) shows that the LIRF tensor H8→ 9 linearly relates

the impulsive input 58 to the velocity output ⟨D 9 ⟩ of the flow.

Further simplifications are possible owing to the symmetries of the plane

channel flow, for which the G and I directions are homogeneous and the flow is

stationary (in the statistical sense in the turbulent case). Hence the above definition

can be simplified, converting the relevant convolutions into products, as:

⟨D̂ 9 (U, H, V, C)⟩ =
∫ 2ℎ

0

∫ +∞

−∞
Ĥ8→ 9 (U, H − [, V, C − g) 5̂8 (U, [, V, g) dg d[ (1.5)

where the hat now indicates quantities spatially Fourier-transformed along the

wall-parallel directions.

The impulsive forcing is localised in the wall-normal direction, hence its

expression can be further specialised as:

5̂8 (U, H, V, C) = f̂8 (U, V, C)X(H − H 5 ) (1.6)
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where H 5 is the wall-normal location of the impulsive forcing. If this functional

form is substituted into Eq.(1.5), one obtains:

⟨D̂ 9 (U, H, V, C)⟩ =
∫ +∞

−∞
Ĥ8→ 9 (U, H − H 5 , V, C − g)f̂8 (U, V, g, H 5 ) dg. (1.7)

In the following, to indicate the mean LIRF we will employ the notation

Ĥ8→ 9 (U, H, V, C; H 5 ) to emphasise that, because of the non-homogeneous wall-

normal direction, the dependence on the forcing position is an important indepen-

dent variable, which we will consider as a parameter.

1.2.2 How to measure the LIRF

As explained by Quadrio & Luchini (2002), in the present context there are diverse

and equivalent strategies to measure the LIRF. They are briefly described below.

1.2.2.1 Measuring the LIRF in the frequency domain

In this approach, used for example by Hussain & Reynolds (1972) in a laboratory

experiment, one measures the frequency response of the system. For the simple

SISO system of equation (1.1) it means employing the following form for the

forcing:

f(C) = n sin(l 5 C) (1.8)

where n is the amplitude of the forcing, and l 5 is assigned values of frequency.

Its extension to the MIMO plane channel flow system of equation (1.2.1) implies

the forcing to be:

f8 (G, I, C; H 5 ) = n8 sin(U 5 G) sin(V 5 I) sin(l 5 C) (1.9)

where n8 is not a scalar but a vector of small enough amplitudes, one for each

direction of the forcing 58, and U 5 , V 5 and l 5 are assigned values of wavenumbers

and frequency. In a noiseless system like a laminar flow, this type of forcing leads

to a straightforward and direct observation of the LIRF, and repeated observations

for different values U 5 , V 5 and l 5 enable the complete characterisation of the

tensor H8→ 9 . When statistical noise is present, as in the turbulent case where

the natural turbulent fluctuations act as noise, a phase-locked average in principle

enables separating the deterministic part of the response from the random part.

The obvious drawback of this approach is that a single experiment only yields the

LIRF in a single point of the three-dimensional (U, V, l) space.
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1.2.2.2 Measuring the LIRF in the physical domain

An alternative approach that yields the entire LIRF at once consists in using a

Dirac delta function as input, which, for a SISO system, leads to the following

form for the forcing in the physical domain:

f(C) = nX(C − C 5 ).

For a noiseless (laminar) system, this provides the entire LIRF. In fact, substituting

this in Eq.(1.1), the response reads:

@(C) =
∫ +∞

−∞
H(C − g)nX(g − C 5 ) dg = nH(C − C 5 ).

so that:

H(C − C 5 ) =
@(C)
n

.

The same reasoning holds for the present specific case of plane channel flow,

for which the external forcing in physical domain reads:

f8 (G, I, C; H 5 ) = n8X(G − G 5 )X(I − I 5 )X(C − C 5 );

in Fourier space the above forcing becomes f̂8 (U, V, C 5 ) = n8X(C − C 5 ) which substi-

tuted into Eq.(1.7) provides

⟨D̂ 9 (U, H, V, C; H 5 )⟩ =
∫ +∞

−∞
Ĥ8→ 9 (U, H − H 5 , V, C − g)n8X(g − C 5 ), dg (1.10)

= n8Ĥ8→ 9 (U, H, V, C − C 5 ; H 5 ),

so that the LIRF is directly proportional to the response of the system:

Ĥ8→ 9 (U, H, V, C − C 5 ; H 5 ) =
⟨D̂ 9 (U, H, V, C)⟩

n8
. (1.11)

Unfortunately, the obvious advantage of getting the whole LIRF with a single

measurement is overwhelmed by the need to obey linearity constraint, which

mandates extremely small amplitudes n8. Although inconsequential in the noiseless

laminar case, this limitation makes the approach highly unpractical in the turbulent

case. Turbulent fluctuations are akin to noise, which can be averaged out by

employing ensemble averaging, or at least an average over periodic repetitions of

the same impulsive forcing over a long enough simulation time. Unfortunately,

the forcing amplitudes required for linearity are much smaller than the natural

turbulent noise, so that the simulation time required to bring down the statistical

noise at a level at which the deterministic part of the response appears is simply

not affordable.
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1.2.2.3 Measuring the LIRF as an input-output correlation

The third approach combines a decent S/N ratio (as in the first approach) with the

ability to carry out a complete measurement in one shot (as in second approach).

The approach, originally introduced by Luchini et al. (2006), relies on a well-

known result in signal theory: they forced the flow with a zero-mean white-noise

signal as an input, and instead of the actual velocity output they measured the

space-time correlation between input and output. This exploits the well-known

result from signal theory that, when a white noise (i.e., a delta-correlated signal)

is passed through a linear system, the correlation between input and output is

proportional to the impulse response of the system.

The correlation between the input and the output, exploiting the definition of

Eq. (1.1) reads:

⟨@(C) 5 (g − ))⟩ =
∫ +∞

0

⟨H (C − g) 5 (g) 5 (g − ))⟩ dg (1.12)

Being the system forced with a white-noise signal, i.e.:

5 (C) = nl(C), (1.13)

and recalling that ⟨l(C)l(C − g)⟩ = X(g), the correlation of Eq. (1.12) becomes:

⟨@(C) 5 (g − ))⟩ =
∫ +∞

0

H(C − g)n2X()) dg = n2H(C − (g − ))) (1.14)

As a result, after redefining T = C − (g − )), the impulse response function from

time 0 to time T can be computed as the correlation between the output and the

white-noise input, as:

H(T) = ⟨@(C) 5 (C − T)⟩
n2

. (1.15)

In the case of plane channel flow, the correlation between the input and the

output, exploiting the definition of Eq. (1.7) reads:

⟨D̂ 9 (U, H, V, C) f̂
∗
8 (U, V, g−))⟩ =

∫ +∞

0

Ĥ8→ 9 (U, H−H 5 , V, C−g)⟨f̂8 (U, V, g) f̂
∗
8 (U, V, g−))⟩ dg

(1.16)

where (·)∗ is the conjugate transpose. Forcing the system with a white noise

l8 (U, V, C) leads to the correlation of Eq. (1.16) becoming:

⟨D̂ 9 (U, H, V, C) f̂
∗
8 (U, V, g−))⟩ =

∫ +∞

0

Ĥ8→ 9 (U, H− H 5 , V, C−g)n2
8 X()) dg, (1.17)

resulting, after defining T = C − (g − )), in the impulse response as a function of

the correlation between the output and the white-noise input, as:

Ĥ8→ 9 (U, H, V,T ; H 5 ) =
⟨D̂ 9 (U, H, V, C; H 5 ) f̂

∗
8 (U, V, C − T)⟩

n2
8

. (1.18)
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1.3 Computational details

1.3.1 Discretization of the DNS

We employ the pseudo-spectral DNS solver introduced by Luchini & Quadrio

(2006), which is based on a mixed discretization where variables in the homoge-

neous directions are represented with Fourier modes, whereas collocation points

are used in the wall-normal direction, and derivatives are discretized with fourth-

order accurate, compact explicit finite-difference schemes. Temporal integration

is partially implicit with a low-storage Runge-Kutta explicit scheme for the con-

vective terms and a Crank-Nicolson implicit scheme for the viscous terms.

Three sets of simulations are carried out: a laminar flow, a fully turbulent flow,

and a pseudo-turbulent flow where turbulence is absent but the base flow is the

mean flow of the turbulent case. In each set of simulations, independent cases are

run where the impulsive forcing is placed at different distances H 5 from the wall

(see figure 1.1).

A first set of parameters concerns the baseline channel flow DNS simulation.

The Reynolds number is set at '41 = *1ℎ/a = 2280, where*1 is the bulk velocity,

ℎ the channel half-height and a is the kinematic viscosity of the fluid. It corresponds

to a friction Reynolds number of '4g = Dgℎ/a = 150, with Dg =
√
gF/d, being gF

the shear stress at the wall and d the density; it is quite low in consideration of the

demanding computational study.

The computational domain has dimensions of !G = 4cℎ, !H = 2ℎ and !I =

2cℎ. The wall-normal direction is resolved with #H = 128 points for all the cases.

The homogeneous directions are discretized with #G = #I = 64 modes (further

increased by a factor of 3/2 for dealiasing) for the laminar and pseudo-turbulent

cases. The turbulent case is more demanding in terms of spatial discretization,

and employs #G = #I = 192 modes plus de-aliasing; in terms of viscous units,

the equivalent grid has a spacing of ΔG+ = 9.8 and ΔI+ = 4.9 (or ΔG+ = 6.5 and

ΔI+ = 3.3 with dealiasing) and 0.6 < ΔH+ < 4.

In the turbulent case, the deterministic response emerges progressively av-

eraging out the noise from the turbulent fluctuations while the simulation runs.

Hence, the simulation needs to be run as long as possible and in the present case is

remarkably large at 20000ℎ/*1 (or, equivalently, 2× 105 viscous time units). The

temporal discretization uses a fixed time step of ΔC = 0.02ℎ/*1, which keeps the

CFL number far from the stability limit of the Runge–Kutta scheme. The other

simulations, where turbulent fluctuations are absent, do not require averaging, and

are carried out for as long as the response function needs to be observed equal to

T = 100ℎ/*1 convective time units, with a fixed time step ΔC = 0.01ℎ/*1.

The forcing amplitude of the forcing is set to n8 = n = 0.0001 for both the

laminar and pseudo-turbulent case and n8 = n = 0.001 for the turbulent case. The
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choice of the these values is delicate due to the linearity constraint to which this

approach builds on; a brief discussion is presented in §1.4.2.

1.3.2 Computation of the response

For the laminar and pseudo-turbulent cases the mean impulse response function is

directly computed in the physical domain as described in §1.2.2.2.

For the fully turbulent case the above approach is unfeasible and the LIRF is

measured by the input-output correlation introduced in §1.2.2.3. The mean LIRF

is computed as the correlation between the forcing white-noise input and the output

velocity. The discrete counterpart of Eq.(1.18) reads:

Ĥ8→ 9 (U, H, V, :ΔC; H 5 ) =
1

n2
8

1

#

#−1∑

==0

D̂8 (U, H, V, (=+:)ΔC) 5̂ ∗8 (U, V, =ΔC; H 5 ) (1.19)

with =, : ∈ N, ΔC is the time step on the n-th instant, and T = #ΔC when constant

ΔC is employed, where N is the maximum number of time steps. A white-noise

input is enforced in the system and reads:

5̂8 (U, V, =ΔC; H 5 ) = n84
�2crand(=ΔC) (1.20)

where � at the superscript is the imaginary unit and rand(=ΔC=) is a random number

between 0 and 1 at the time =ΔC.

Most frequently used algorithm, required the knowledge of the whole time

history of both the correlating elements. This traditional approach is unfeasible in

a DNS simulation, because the memory storage of the whole history of the velocity

field clearly overshoot the limits. Therefore, only the forcing history 58 is saved

each updating time step ΔC sample. It is computed as:

{
F 8C (U, V, 1) = 5̂ ∗8 (U, V, =ΔC)
F 8C (U, V, ; + 1) = F 8C−1(U, V, ;) for ; = 2..#ΔC

(1.21)

Correlation computation simply becomes a sum, between the old term and the

product of the velocity field and the forcing history 58. At the update iteration 8C,

the LIRF is updated as:

Ĥ 8C
8→ 9 (U, H, V, :ΔC) = Ĥ 8C−1

8→ 9 (U, H, V, :ΔC) +
1

n2
8
#
D̂8C8 (U, H, V, 0)F 8C

8 (U, V, :ΔC)

(1.22)

for : = 0..# and for each U, V, H. Proceeding this way only the instantaneous

velocity field is required, since the previous fields are implicitly considered in the

LIRF of the previous time-step.
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1.3.3 Discretisation of the response

Peculiar to the present study is the need to discretise the response function. Given

the focus of the present work on the position H 5 where the forcing is located, in

the wall-normal direction H8→ 9 is discretised with the same resolution and on the

same collocation points used for the velocity, and the parameter H 5 is varied from

the first inner point to the centreline. However, the statistical symmetry of the

plane channel allows the forcing locations H 5 to vary only in one channel half,

i.e. 0 < H 5 ≤ 1. Hence, for ech of the three considered cases, 64 independent

simulations have been carried out by varying the parameter H 5 .

The response function, which is known to be significant at relatively large

wavenumbers only, is also truncated spatially with respect to the modes used in

the DNS. Based on previous experience, the response is stored for the highest 64

modes in both streamwise and spanwise direction.

Previous experience has also been useful to decide the temporal extent for

which H is observed. All the measured response functions are truncated after a

delay of T = 100 convective time units ℎ/*1. However, the temporal changes

of the response manifest themselves at a highly variable rate, with fast changes

at short times followed by a slower evolution. Hence, a non-uniform temporal

discretization is useful to minimise storage requirements, by using 100 time instants

non-uniformly distributed to increase resolution where the changes take place at

the highest rates.

Since the phenomenology of the impulse response is more meaningful in

the first transient instants, a finer time discretization should be preferable at the

beginning. In the laminar and pseudo-turbulent case, the time step at which the

response is computed changes as follow:

ΔC =





0.01, : ≤ 100

0.05, 100 < : ≤ 200

0.1, 200 < : ≤ 300

1, 300 < : ≤ 384.

(1.23)

In the turbulent case, the response time step changes as follows

ΔC =




0.02, : ≤ 24

0.08, 25 < : ≤ 56

0.32, 57 < : ≤ 87

5.12, 88 < : ≤ 104.

(1.24)
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1.3.4 Visualisation of the response

The impulse response function Ĥ8→ 9 (U, H, V,T ; H 5 ) of a turbulent channel flow

depends, for a given value of the parameter H 5 , on the wavenumbers U, V in the

homogeneous directions, on the position H in the wall-normal direction, and on

the time T elapsed after the impulsive forcing.

A sort of aggregation of such a large amount of data is needed to visualise the

response. Following Jovanović & Bamieh (2005), one can visualise the response in

wavenumber space and quantify which modes are more amplified by a disturbance

after averaging the response in time and wall-normal direction. The temporal and

wall-normal dynamics are thus aggregated by taking the �2 norm of H in the time

domain and along H, as:

∥Ĥ8→ 9 (U, V; H 5 )∥2
2 =

1

2c

∫ ∞

0

1

2ℎ

∫ 2ℎ

0

Ĥ8→ 9 (U, H, V, C; H 5 )Ĥ ∗
8→ 9 (U, H, V, C; H 5 ) dC dH

(1.25)

The linear response can be also aggregated further by averaging over all the forcing

locations H 5 .

The impulse response measure presented by Jovanović & Bamieh (2005) is

based on a linearization of the Navier–Stokes equations solved within the state-

space framework. One of the main benefits of the DNS-based measurement

employed in this work, is the possibility to visualize the impulse response not only

in the wavenumber space, but also in the physical space. It can be done either by

taking the absolute maximum over the wavenumbers, the wall-normal positions

and the position of the forcing and analyzing its variation over time:

H8→ 9 ,< (C) = max
U,H,V,H 5

|Ĥ8→ 9 (U, H, V, C; H 5 ) |, (1.26)

or alternatively by taking the absolute maximum over the wavenumbers, time and

wall-normal position to describe its dependence on the forcing position H 5 :

H8→ 9 ,< (H 5 ) = max
U,H,V,C

|Ĥ8→ 9 (U, H, V, C; H 5 ) |. (1.27)

Finally, a more complete comparison is performed by looking at the isosurfaces

of the response in three dimensional space.

To fairly compare the laminar and pseudo-turbulent cases to the turbulent case,

the LIRF of the latter is divided by 2, to account for the different time window

for which the forcing is applied, namely ΔC = 0.01 for the former regimes and

ΔC = 0.02 for the latter.
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1.4 Validation

Despite the novelty of the LIRF concept in turbulent flows, and of the technique

employed in the present work for its measurement, a validation is possible in the

laminar case. Analogous results exist in the literature, and cross-validation can be

achieved by comparing the outcome of alternative approaches.

In the following, the analogies between this work and the available literature

information are first addressed; the response functions measured in the laminar

flow via direct impulsive forcing and via the input-output correlation are then

compared. Lastly, the linearity constraint is addressed, and the amplitude of the

white-noise forcing is discussed.

1.4.1 Comparison with literature and alternative approaches

Previous works considered the effects of body force perturbations with different

aims, such as: the transient energy growth and input-output analysis (Reddy et al.,

1998; Jovanović & Bamieh, 2005), the pseudo-spectral analysis (Trefethen et al.,

1993), and the amplification of stochastic excitations (Farrell & Ioannou, 1993;

Bamieh & Dahleh, 2001).

In particular, as far as the laminar case is concerned, the present work is closely

related to that by Jovanović & Bamieh (2005), who studied the spatio-temporal

response of the linearised Navier–Stokes equations in a laminar channel flow to

an impulsive body force. In their dynamical system formulation, the response is

obtained from the algebraic Lyapunov equation, for an impulsive input which is

white-noise distributed in wavenumber and frequency, while a discretised delta

function centered at H 5 is employed among the wall normal direction, so that

the compound response function turns out to be H̃8→ 9 = H8→ 9 (U, V, H, C). Their

temporal and wall-normal dynamics are further aggregated by taking the �2 norm

of H̃8→ 9 in the time domain and along y, according to Eq.(1.25).

More information are provided by the present measurement technique, namely

the description of the response both in the Fourier and in the physical space, the

effect of the forcing wall-normal distance H 5 on the LIRF and the behaviour of the

LIRF in time.

To compare the results of the reference paper with the �2 norm of the full

response computed in the present work, we run two dedicated DNS laminar sim-

ulations to match their '42 = *2ℎ/a = 2000 where *2 is the centerline velocity.

Within the linearity constraint (see below §1.4.2 for the linearity check), the forc-

ing location H 5 is made to span all the available wall distances. The laminar cases

are used to validate two alternative measurement techniques: the lack of noise

(i.e. turbulence) allows both the impulsive forcing described in §1.2.2.2 and the
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Figure 1.2: Plot of log10 ∥ĤH→D∥2 as a function of the wavenumbers U and V.

Comparison of three measurement techniques: a) the method by Jovanović &

Bamieh (2005); b) DNS-based direct impulsive forcing, §1.2.2.2; c) DNS-based

measurement of the input-output correlation with white-noise input, §1.2.2.3.

input-ouput correlation described in §1.2.2.3 to be used.

Figure 3.1 compares the three LIRF in terms of its ĤH→D component. (Similar

results are obtained by comparing the other components). The leftmost panel

shows the results by Jovanović & Bamieh (2005), reproduced by following their

methodology by running the Matlab script (kindly provided to us by M. Jovanović);

the central and rightmost panels show the output of the present simulations, where

equation (1.25) is used to compute the norm ∥Ĥ8→ 9 ∥2 for the impulsive forcing and

the statistical white-noise measuring technique, respectively. To match the results

of Jovanović & Bamieh (2005), the response is nomalised by the time step of the

forcing and by (ΔH2)2, where ΔH2 is the size of the discretization in wall-normal

direction at the centreline.

The comparison of the three panels demonstrates an excellent qualitative and

quantitative agreement between such diverse measurement methods. In particular,

figure 3.1 shows an extremely good agreement between the response obtained by

impulsive forcing in panel (b) and the response obtained by the white-noise method

in panel (c). The latter appears slightly more noisy than the others, which is to

be expected given the statistical nature of the measurement. In the remainder of

this paper, we use results from the direct impulse when referring to laminar and

pseudo-turbulent case.

1.4.2 Linearity of the impulse response in a non-linear system

The cornerstone of the H8→ 9 measurement is the linearity hypothesis, which

mandates a careful choice of the forcing amplitude n8 in equation (1.9). The forcing

amplitude must be empirically determined as the largest forcing that guarantees

linearity, to maximise the S/N ratio and/or minimise the averaging time.
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Figure 1.3: Temporal evolution of the spatial absolute maximum HI→F,< (C; H 5 ) of

the laminar (left), pseudo-turbulent (center) (both computed with impulsive forc-

ing, but same results holds for the input-output correlation strategy) and turbulent

(right) response at various forcing amplitudes and forcing positions. Top row: first

near-wall position at H 5 = 0.0042; bottom row: centerline at H 5 = 1.
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A systematic campaign of tests has been carried out to identify the largest

admissible n8, for each forcing direction 8 and for a subset of forcing locations

H 5 , for the laminar, pseudo-turbulent and turbulent cases. Indeed, the two former

cases are less critical: the tests themselves are cheaper, and the S/N ratio is not

important as the production simulations are noiseless.

Figure 1.3 reports an example result that we used to determine the forcing

amplitudes for the rest of the study. Laminar, pseudo-turbulent and turbulent

cases are considered, at six values of H 5 , from the very-near-wall region to the

centerline; however, figure 1.3 only reports two values of H 5 , namely H 5 = 0.0042

and H 5 = 1. Moreover, although figure 1.3 only concerns the component HI→F,

every component of the response tensor was considered.

It can be seen that, for both distances, linearity is guaranteed by all the three

forcing amplitude for the laminar and pseudo-turbulent cases (see the left and

middle columns of figure 1.3). However, for the turbulent case, close to the wall

the two amplitudes considered perfectly match until T ≈ 1. For larger T the

smallest forcing amplitude shows a lower bound which represents the background

noise overwhelming the deterministic part of the response. This noise floor is due

to the finite horizon of the response computation and its magnitude changes for

different components of the LIRF tensor.

1.5 Results

1.5.1 The shape and intensity of the LIRF

The impulse response is highly anisotropic, both among different components of

the response tensor and depeding on the wavenumbers. We start with figure 1.4,

where the �2 norm of the nine components of Ĥ8→ 9 for the laminar case is plotted,

after averaging over the forcing location. This figure emphasises the anisotropy

of the LIRF, and shows that the components with the largest energetic content are

always those related to the streamwise velocity component, and in particular the

components ĤH→D and ĤI→D, whose maxima are at least one order of magnitude

larger than the maxima of the other components. They also share a similar shape

in the (U, V) plane, with their maximum located at U = 0. The same features

was noted by Jovanović & Bamieh (2005), who interpret these responses as the

amplification of the streamwise elongated structures. A similar tendency for a

maximum at U = 0 is shown by ĤH→F and ĤI→E. Since they involve wall-normal

and spanwise velocities, we connect them to the amplification of the perturbations

that lead to the quasi-streamwise vortices. The components ĤG→E and ĤG→F

have their maximum at V = 0, and thus their physical space representation re-

calls structures with spanwise elongated shape. Jovanović & Bamieh (2005) relate
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Figure 1.4: Plot of log10 ∥Ĥ8→ 9 ∥2 for the laminar case averaged among forcing

locations. The contour lines correspond to log10 ∥Ĥ8→ 9 ∥2 = −4,−3,−2.5,−2,−1.

Axes are in base-10 logarithmic scale. Colormap is between −4.55 and −0.81.

Columns: forcing direction 5G , 5H, 5I, rows: response velocity component D, E, F.
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Figure 1.5: Plot of log10 ∥ĤI→D∥2 for the laminar (left), pseudo-turbulent (centre)

and turbulent (right) case averaged among forcing locations. The contour lines

correspond to log10 ∥Ĥ8→ 9 ∥2 = −5,−4.5,−4,−3.5,−3,−2.5. Axes are in base-10

logarithmic scale. Colormap is between −5.48 and −2.35.

these response components to the amplification of the Tollmien–Schlichting waves.

Similarly ĤH→E is slightly preferentially large along the spanwise wavenumbers,

but it presents also non negligible amplification for large values of U. The remain-

ing two components whose energy is equally distributed in U and V are related

by those authors to the oblique waves. This picture is consistent with Jovanović

& Bamieh (2005) showing that the energy in the oblique waves and streamwise

streaks are larger than the TS-wave.

Figure 1.5 plots the �2 norm of ĤI→D for the laminar, pseudo-turbulent and

turbulent case. To make a fair comparison the turbulent case response is halved

to account for the different time for which the forcing is injected in the system

(ΔC = 0.01 for laminar and pseudo-turbulent cases and ΔC = 0.02 for the turbulent

case). First we notice that for all the three regimes ĤI→D has a peak for U = 0

and V ≈ 3, although the turbulent case show a larger influence of the streamwise

wavenumber up to one order of magnitude larger intensity compared to the other

two regimes. Although more intense, the turbulent response is more spreaded in the

wavenumber space and highlights a non-negligile contribution of the streamwise

wavenumber.

The shape and intensity of the impulse response is also investigated in the three-

dimensional physical space, without averaging over the wall-normal direction H.

In figure 1.6), the isosurfaces of each component of the turbulent LIRF H8→ 9 are

plotted for a fixed value H+
5
= 15 of the forcing position, at the fixed time T = 0.48.

The components HH→ 9 and HI→ 9 show that the forcing acts on the structures

of the near wall-cycle. The streamwise component of the response yields struc-

tures elongated in the streamwise direction, with alternating positive and negative

sign in the spanwise direction. Such structures are compatible with the amplifica-
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Hx→u Hx→v Hx→w

Hy→u Hy→v Hy→w

Hz→u Hz→v Hz→w

Figure 1.6: Isosurfaces of the response tensor H8→ 9 at the non dimensional time

T = 0.48 for the turbulent case. The forcing is at the wall-normal distance

H 5 = 0.1ℎ or H+
5
= 15. All the isosurfaces are at the value ±0.5 except for the

diagonal components, HH→D and HI→D which are at the value ±1. Red is for

positive values, blue for negative ones.
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Figure 1.7: Isosurfaces of the response tensor HI→D at the non dimensional time

T = 0.48 for the laminar (left), pseudo-turbulent (centre) and turbulent (right)

case. The forcing is at the wall-normal distance H 5 = 0.1ℎ or H+
5
= 15. All the

isosurfaces are at the value ±1.

tion of the near-wall high- and low-speed streaks. The wall-normal and spanwise

components of the response identify alternated vertical and spanwise fluctuations

typical of the turbulent quasi-streamwise vortices (QSV). The relative position of

HH→ 9 with 9 = D, E, F indicate the simultaneous presence of streaks and QSV,

which mutually interact in the cycle for the self-sustainment of turbulence. This

picture is compatible with the peak in the wavenumbers plane. The most ampli-

fied disturbancies of HH→ 9 and HI→ 9 were found to be either oblique waves or

streamwise perturbations which yields after transition to turbulence to stremwise

streaks and quasi-streawise vortices. Similarly, the relative position of the isosur-

faces of HG→ 9 suggests that the streamwise forcing acts on the hairpin vortices

(Theodorsen, 1952) near the wall, as highlighted by Vadarevu et al. (2019) by

eLNSE. This agrees with the idea that the Tollmien–Schlichting waves (see HG→E

and HG→F in figures 1.4) evolves into 3D hairpin vortices in the late stage of

transition to turbulence.

Figure 1.7 plots the isosurfaces of HI→D for the laminar, pseudo-turbulent and

turbulent case. Again, as mentioned before, the turbulent case response is halved

to be compared to the other two responses obtained at a halved 3C.

The shape of the turbulent LIRF reseambles the shape of the structures typical

of the near-wall turbulent cycle such as streamwise streaks, quasi-streamwise

vortices and hairpin vortices. However, even the same response shape is shared

by all the investigated regimes, the shape and intensity of the response have non-

negligible differences. We conclude that the dynamics of the impulse response

in the turbulent regime has a laminar component, yet this is not sufficient for its

complete description.

1.5.2 The LIRF as a function of the forcing location

The results by Jovanović & Bamieh (2005) are extended in this work to consider the

effect of the forcing location, that so far has not been considered either averaging

the response across every H 5 (see figure 1.4) or fixing a constant value of H 5 (see
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Figure 1.8: Absolute maxima H8→ 9 ,< (H 5 ) in the physical space as a function of

the forcing position H 5 for the laminar, pseudo-turbulent and turbulent cases.
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figure 1.6).

How H8→ 9 depends upon the forcing distance is shown in figure 1.8 for all the

regimes. Here the maximum over time, wavenumbers and in wall-normal direction

is considered for each component of the LIRF. Even though some components

present a slightly non-monotonic trend, the general picture is that the position

nearest to the wall yields the smallest response, and the centreline yields the

largest.

The diagonal components are the largest. The component HH→E differs from

the other two, and shows a gradual increase toward the centreline maximum (which

is the lowest of the three); the three LIRF coincide in this representation. The other

two diagonal components HG→D and HI→F, instead, present a weak but noticeable

non-monotonic trend; the latter, in particular, peaks at H 5 ≈ 0.2, with a tendency

for the peak to move slightly off-wall in the turbulent case. For both the components

the laminar and the pseudo-turbulent cases perfecly match, wheres the turbulent

case shows a smaller response at every H 5 .

The off-diagonal components HG→E,HI→E and HH→F are quite similar, with

a local minimum very close to the wall and then a monotonic increase up to the

centreline. Instead, the component HG→F monotonic increases from the wall up

to the centerline.

The component HI→D is similar to the previously described off-diagonal com-

ponents with a small peak, but the spikes of the three cases are quite different. The

laminar case shows an almost negligible local maximum very close to the wall,

the pseudo-turbulent case has a wider and larger local maximum for H 5 ≈ 0.04

(H+
5
= 6), and the turbulent case has an intermediate behaviour at a H 5 between the

other two. The three curves then tend to collapse for larger values of H 5 .

The component with the most interesting behaviour is HH→D. The three cases

present an evident peak, each at different H 5 . Except for the very first forcing

position close to the wall, the laminar response monotonically increases until its

maximum is reached at H 5 ≈ 0.4, then decreases until H 5 ≈ 0.75 and then stays

constant up to the centreline. In the pseudo-turbulent case, the peak is sharper and

observed at a lower wall-normal forcing position, namely H 5 = 0.08 (or H+
5
= 12).

Lastly, the turbulent case is qualitatively similar to the pseudo-turbulent one, but

presents a less intense peak closer to the wall at H 5 = 0.065 (or H+
5
≈ 10). Position-

wise, the peaks of the pseudo-turbulent and turbulent cases are compatible with

the amplification of the streaks of the near-wall cycle.

Hence, HH→D and HI→D being the largest response and peaking for a forcing

placed close to the wall complies with the idea that an external forcing in the buffer

layer directed either in wall-normal direction (e.g. blowing and suction (Mickley

et al., 1954), opposition control Choi et al. (1994)) or in the spanwise direction

(e.g. spanwise forcing (Akhavan et al., 1993), (Quadrio et al., 2009)) are the most

effective techniques to perturb the streamwise velocity field, e.g. with the aim to
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reduce the drag in the turbulent regime.

1.5.3 The LIRF as a function of time

Observing the temporal evolution of the component-wise maxima of the LIRF in

physical space is an effective means to appreciate its anisotropy. Figure 1.9 presents

these quantities in comparative form among the laminar, the pseudo-turbulent and

the turbulent LIRF: for each tensor component, the maximum (in absolute value)

in the whole space and across all forcing position H 5 is tracked, following the

definition of Eq. (1.26).

The largest maxima are invariably those related to the diagonal terms of the

LIRF tensor. At zero time, these components present peak values that are one

order of magnitude larger than those of the other components. For the diagonal

terms, laminar, pseudo-turbulent and turbulent maxima all decrease monotonically

in time; laminar and pseudo-turbulent cases almost perfectly overlap, whereas the

turbulent curves consistently lie below the others, at any time. This behaviour,

which can actually be observed for every component of Ĥ8→ 9 , is the direct man-

ifestation of the (mean) diffusive action of turbulence, entirely neglected in the

laminar and pseudo-turbulent cases. The maxima of both ĤG→D and ĤI→F for the

three cases take place at T = 0, and reduce by 50% quickly, within T = 0.5; a

95% reduction requires an elapsed time of T ≈ 6.5 − 7. The peak value of ĤH→E

decreases more gently in time.

As far as the off-diagonal terms are concerned, only ĤI→E decreases mono-

tonically (in all cases). The off-diagonal components associated to the G forcing

or to the F response are monotonically decreasing for the pseudo-turbulent and

turbulent case, but a local maximum for the laminar case is registered at T ≈ 2−3.

The off-diagonal components associated to the D response show a non-monotonic

behaviour for all curves. The laminar LIRF shows a local maximum at T ≈ 2.5,

the pseudo-turbulent LIRF presents it earlier at T ≈ 1 − 2, and turbulent one even

earlier at T ≈ 0.5 − 0.6. For ĤH→D, the growth rate of the maximum over time

is approximately constant across the three LIRF, so that the maxima occurring

later are also the largest. This is clearly not the case for ĤI→D, for which the

pseudo-turbulent peak is the largest, but the laminar one occurs last.

The largest non-monotonic behavior, i.e. that of ĤH→D, can be explained by

recalling the non-normal property of the eigenvectors of the Orr–Sommerfeld’s

linearized system, as done by Orr (1907) and Schmid (2007). Here, however, we

are constrained by linearity, and the relative growth maxes out at 2-3 times. The

turbulent diffusion, which lacks in the laminar and pseudo-turbulent cases damps

the turbulent response faster such that it shows a considerably smaller transient

growth compared to the other two cases.
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Figure 1.9: Absolute maxima H8→ 9 ,< (C) in the physical space as a function of the

non-dimensional time T for the laminar, pseudo-turbulent and turbulent cases.
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T = 0.02 T = 0.24 T = 0.48

Figure 1.10: Isosurfaces of the response component HH→D at the non-dimensional

time T = 0.02 (left column), 0.24 (center column) and 0.48 (right column) for the

forcing locations H 5 = 0.065ℎ, 0.4ℎ and ℎ for the laminar (top), pseudo-turbulent

(middle) and turbulent (bottom) LIRFs. All the isosurfaces are at the value ±1.

Red is for positive values, blue for negative ones.

1.5.4 The LIRF in the whole space-time domain

The whole LIRF, plotted in the form of isosurfaces, already shown in figure 1.6

and 1.7 has also been investigated in their evolution in time and depending on

the forcing location H 5 . Figure 1.10 represents the HH→D component at different

elapsed time (columns), for three values of H 5 (namely H 5 = 0.065, H 5 = 0.4

and H 5 = 1.0), in comparative form between the three LIRF (rows). A short time

after the impulsive forcing, namely at T = 0.02, the response is symmetric with

respect to the spanwise direction and anti-symmetric with respect to the streamwise

and wall-normal directions. The near-wall response is below the threshold and

therefore not visible for the laminar and pseudo-turbulent cases, while it is small

but visible for the turbulent case. The asymmetry of the response to the impulsive

forcing at H 5 = 0.065 is due the presence of the solid wall. At larger times, the

response to the forcing at H 5 = 1 remains almost symmetric and only slightly

damped for all the regimes. The convection velocity matches the mean velocity,
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thus the laminar response is convected faster than the turbulent one owing to the

larger centerline velocity of the laminar profile compared to the turbulent one. It

is worth recalling that pseudo-turbulent and turbulent cases share the same mean

velocity profile, thus the same convection velocity of the response. Differently the

response to the forcing at the intermediate position H 5 = 0.4 changes depending

on the regime: in the turbulent and pseudo-turbulent cases it gets progressively

damped, with the positive part vanishing sooner; however, in the laminar case the

two negative regions merge into one which is surrounded by two smaller positive

regions at both sides at T = 0.48. At H 5 = 0.4 the structure are convected roughly

at the same speed for all the cases, being the laminar and turbulent mean velocity

profile almost matching. Close to the wall, the response is amplified in time and

show a central negative region with a positive region at each side, resembling the

structure of positive and negative streamwise streaks. The amplification is largest

for the turbulent case and smallest for the laminar case. Turbulent and pseudo-

turbulent cases are advected at larger velocity in this region, owing to the largest

shear and therefore largest near-wall velocity.

1.6 A posteriori validation

The full time-space structure of (mean) linear response computed and measured in

the present work by DNS is the best estimator of the linear dynamics of the laminar,

pseudo-turbulent and turbulent channel flow when a body forcing is impulsively

applied. Once the response function is computed it can be used to predict the

response of the system through direct convolution of the LIRF itself and a given

input forcing, i.e.:

⟨D̂ 9 (U, H, V, C; H 5 )⟩ =
∫ +∞

0

Ĥ8→ 9 (U, H, V, C − g; H 5 ) 5̂8 (U, H − H 5 , V, g) dg. (1.28)

This approach is also useful to assess whether the computed LIRF is a good

linear estimator of the system by comparing the output of the direct convolution to

the velocity field computed by a DNS with the same forcing. In the present case,

the channel flow is forced by a periodic body force in the spanwise direction:

5I (G, I, C; H 5 ) = n2>B(2cG)2>B(2cI)B8=(2cC), (1.29)

which, in the wavenumber space reduces to

5̂I (U, V, C; H 5 ) = n B8=(2cC). (1.30)

We set the parameters as U = 1, V = 4, H 5 = 0.1 (corresponding to H+
5
= 15 in

the turbulent case) and a finite ampitude n = 0.001 for the laminar and pseudo-

turbulent case, whereas n = 0.1 for the turbulent case. The same discretization
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Figure 1.11: Fourier coefficient of the spanwise velocity F̂(U = 1, V = 4, H =

0.1, C) as a response to a periodic forcing 5̂I (U = 1, V = 4, H 5 = 0.1, C) as a

function of the non-dimensional time T for the laminar (left), pseudo-turbulent

(middle) and turbulent (right) cases obtained by convolution with HI→F (solid

line) and by DNS (dashed line).

used to compute H8→ 9 (see §1.3.3) is used for the DNS. The time discretization is

set to ΔC = 0.01 for the laminar and pseudo-turbulent cases and to ΔC = 0.02 for

the fully turbulent case as in §1.3.1. To match the same time discretization of the

DNS, the unequally time-spaced LIRF is linearly interpolated in time.

Figure 1.11 shows the Fourier coefficient of the spanwise velocity F̂(U =

1, V = 4, H = 0.1, C) for the laminar (left), pseudo-turbulent (middle) and turbulent

(right) channel flow as a response to the periodic forcing of Eq. 1.30 both by direct

convolution with HI→F and by DNS up to a time of T = 3.

Due to the linearity of H8→ 9 , we expect the output to be periodic with the

same frequency of the forcing input. For laminar and pseudo-turbulent cases the

response perfectly match the frequency of the input and the results obtained by

convolution and DNS are identical meaning that the LIRF perfectly describes the

behaviour of the channel flow.

The comparison between direct convolution and DNS, which is straighforward

in the laminar and pseudo-turbulent cases becomes challenging when turbulence

plays a role. For the turbulent case the measure are not deterministic but can

only be computed in a statistical sense, with a time average that can be very long

for the statistics to converge. To compute the response by DNS, 250 simulations

of the forced channel are run starting from different uncorrelated initial turbulent

fields; ten equally spaced flow fields are saved for each period of oscillation up

to the desired simulation time and then an ensable average is computed. The

very good match both in terms of frequency and amplitude between the response

obtained through direct convolution and through DNS means that once the LIRF

is computed, it can be leveraged to predict the response of the channel flow to
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whatever forcing at a fraction of the cost of a DNS.

In the present work the diagonal component HI→F is chosen to be shown

here for two reasons. First, diagonal components of the LIRF tensor are the ones

showing a smaller noise floor so that we are capable to catch the signal for a longer

response time (see 1.9). Second, diagonal components show a larger amplification

of the input so that in the turbulent cases averaging over 250 simulations is enough

for the response to emerge from the turbulent noise. This highlights the potential

of having a response function which describes the mean linear behaviour of a

turbulent channel flow and after being computed once, it allows to accurately

predict the response to any forcing.

1.7 Conclusions

The present work has introduced the first DNS based measurement of the mean lin-

ear impulse response function (LIRF) for a channel flow, considering the response

to an impulsive body force locate at various wall-normal positions, thus extending

the work of Luchini et al. (2006), where an impulsive wall-normal velocity forcing

at the wall was considered.

Our primary interest resides in the fully turbulent case, but for comparison

purposes we have also measured the LIRF of the laminar Poiseuille flow, and what

we call the pseudo-turbulent LIRF, where there is no turbulence but the base flow

is the mean turbulent profile.

The equivalent laminar and pseudo-turbulent LIRF could be computed rather

easily, as the system is noise-less and it is straightforward to literally apply the

impulsive forcing and to examine the outcome via DNS. This approach, however,

becomes unfeasible in the turbulent case, which contains significant turbulent

fluctuations which act as a noise that overcomes the forcing, whose amplitude

must be tiny because of the linearity constraint. Even though the problem can

be solved in principle by resorting to phase averaging, the averaging time needed

for the deterministic response to emerge out of the statistical noise is impractical.

Therefore, we apply here the same workaround exploited by Luchini et al. (2006),

who measured the LIRF of a turbulent channel flow by computing the input-output

correlation between a zero-mean white-noise input signal and the output made by

the DNS-computed flow field.

The measurement approach has been validated in the laminar case, where the

lack of statistical noise allows comparing the impulsive forcing and the input-output

correlation. Moreover, in that case the algebraic Lyapunov equation approach

introduced by Jovanović & Bamieh (2005) provides an independent verification.

The LIRF is a four-dimensional tensor with four independent variables, plus

one parameter made by the wall-normal position H 5 where the forcing is applied. Its
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description is therefore non-trivial. In the Fourier space, the response is visualised

through its �2 norm after averaging over time, the wall-normal direction and all

the forcing locations. Examining the wavenumber content of the various LIRF

brings to light their anisotropic character, as every component of the LIRF tensor

differs in terms of both wavenumber distribution and intensity.

The components of the LIRF eventually decay, but some exhibit a transient

amplification at finite times. The laminar and pseudo-turbulent LIRF are nearly

identical in terms of those components which go to zero monotonically. However,

the laminar LIRF shows a local maximum that is not present in the other cases.

The turbulent LIRF is always smaller than the others, reflecting the presence of

turbulent diffusion.

About the forcing location yielding the largest response, the majority of the

cases suggest the best forcing location to be at channel centre. However, most

of the components of the response show a local (or global for the solely ĤH→D)

maximum for H 5 closer to the wall; the precise position varies depending on the

LIRF type.

The LIRF can be also observed in the three-dimensional space and in time. Per-

turbations leading to the formation of turbulent structures typical of the near-wall

turbulence cycle, namely the low- and high-speed streaks, the quasi-streamwise

vortices and the hairpin vortices are the most amplified. The three-dimensional

structure of the response is similar across the laminar, pseudo-turbulent and turbu-

lent cases, yet the amplitude is different. The time evolution of the LIRF depends

on the LIRF type; the advection velocity of the structures reflects the different

shape of the base flow profile.

The full time-space structure of mean linear response computed and measured

in the present work by DNS is the best estimator of the linear dynamics of the

turbulent channel flow when a body forcing is impulsively applied. This is of

particular interest for the design of a feedback control for which the model of

the plant (the channel flow in this case) is needed. This study highlights that

relying on the impulse response of a laminar or a pseudo-turbulent (laminar with

a superimposed base mean flow of the turbulent flow) case to model the dynamics

of a turbulent channel flow can be useful to approximate the behaviour of the

response, yet it fails to capture some of its distinctive behaviours. Thus, the

approach presented here paves the way to more reliable estimation of the linear

response of the turbulent flow and consequently a more effective control design.
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Structure function tensor equations

with triple decomposition

Abstract

Exact budget equations are derived for the coherent and stochastic contributions to

the second-order structure function tensor. They extend the anisotropic generalised

Kolmogorov equations (AGKE) by considering the coherent and stochastic parts of

the Reynolds stress tensor, and are useful for the statistical description of turbulent

flows with periodic or quasi-periodic features, like e.g. the alternate shedding

after a bluff body. While the original AGKE describe production, transport, inter-

component redistribution and dissipation of the Reynolds stresses in the combined

space of scales and positions, the new equations, called iAGKE, contain the phase

i as an additional independent variable, and describe the interplay among the mean,

coherent and stochastic fields at the various phases. The newly derived iAGKE are

then applied to a case where an exactly periodic external forcing drives the flow:

a turbulent plane channel flow modified by harmonic spanwise oscillations of the

wall to reduce drag. The phase-by-phase action of the oscillating transversal Stokes

layer generated by the forcing on the near-wall turbulent structures is observed,

and a detailed description of the scale-space interaction among mean, coherent

and stochastic fields is provided thanks to the iAGKE.

2.1 Introduction

Understanding the multiscale nature of turbulence and the sustaining mechanisms

of turbulent fluctuations is a long-standing effort in fluid mechanics, motivated by

the ambition to determine and possibly to manipulate the mean flow. According to

the classic arguments by Richardson and Kolmogorov, at large enough Reynolds
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numbers a clear scale separation is expected between the large energy-containing

scales and the small dissipative ones. Fluctuations of different scales interact

non-linearly, and a cascade mechanism transfers energy (on average) towards the

dissipating scales. The geometrical information embedded in the larger scales

vanishes at smaller ones, so that turbulence becomes locally isotropic below a

small enough scale. However, in turbulent flows with practical interest, the scale

separation is often incomplete, owing to the finite value of the Reynolds number

and to the presence of boundaries; studying such flows is particularly challenging,

because of their strongly anisotropic and inhomogeneous nature, which implies

that the very concept of scale comes to depend on the position in the physical

space.

Among the approaches developed over the years to describe anisotropic and in-

homogeneous flows, the anisotropic generalised Kolmogorov equations, or AGKE,

are well suited to account for the multiscale nature of turbulence. The AGKE (Gatti

et al., 2020) are exact budget equations for each component of the second-order

structure function tensor. They extend the generalised Kolmogorov equation or

GKE (see e.g. Hill, 2001; Danaila et al., 2001), sometimes referred to as Kármán–

Howarth–Monin–Hill equation (Alves Portela et al., 2017), which, in turn, is the

exact budget equation for half the trace of the second-order structure function

tensor, i.e. the scale energy. The AGKE, which consider each tensor component

separately, describe the production, inter-component redistribution, transport, and

dissipation of the Reynolds stresses simultaneously across the scales and in the

physical space. Unlike the GKE, they fully account for anisotropy and inhomo-

geneity, and feature a pressure–strain term that plays a central role in redistribution.

Moreover, the AGKE simplify the structural analysis of turbulence, owing to the

direct link of each tensor component to the correlation function (Davidson et al.,

2006; Gatti et al., 2020).

The GKE has been already applied to several flows to describe how inhomo-

geneity changes the Richardson–Kolmogorov scenario, possibly leading to inverse

(from small to large scales) energy transfer: the plane channel flow at different '4

(Cimarelli et al., 2013, 2016), the flow over a bump (Mollicone et al., 2018), the

wake of a square cylinder (Alves Portela et al., 2017) and the plane jet Cimarelli

et al. (2021). Using GKE, Yao et al. (2022a) showed that an intense inverse

cascade dominates a boundary layer undergoing bypass transition. Danaila et al.

(2017) derived the variable-viscosity GKE and proved that, in flows with mixing

of two or more fluids, all scales evolve in a similar fashion only for regions where

viscosity is uniform. Lai et al. (2018) derived the variable-density GKE and

studied the multi-material effects on the interscale energy transfers in a turbulent

round jet, finding that the deformation of smaller turbulent eddies into larger ones

accompanies energy transfers. Arun et al. (2021) derived the budget equation for

the derivative of the two-point velocity correlation for compressible flows, and
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identified the effects of variable density and dilatation on the energy cascades.

The more recent AGKE, instead, have been first demonstrated in a plane channel

flow (Gatti et al., 2020), and then used to investigate the ascending/descending

and direct/inverse cascades of the Reynolds stresses in a turbulent Couette flow

(Chiarini et al., 2022b) and to characterise the structure of turbulence in the flow

past a rectangular cylinder (Chiarini et al., 2022a).

It is not uncommon to encounter turbulent flows in which large scales are rela-

tively organised in space, and follow a temporally repeating pattern. This happens

in presence of an external periodic forcing, or when the flow is quasi-periodic

because of instabilities, as in the turbulent wake of bluff bodies. An example of the

former class, which is considered in the second half of this paper as a simpler test-

bench, is the canonical turbulent channel flow modified by periodic spanwise wall

oscillation to obtain skin-friction drag reduction (Jung et al., 1992). The spanwise

forcing creates a coherent periodic velocity field, known as the generalised Stokes

layer (Quadrio & Ricco, 2011), which superimposes on the stochastic turbulent

fluctuations. The latter class includes the quasi-periodic Kármán-like vortices in

the turbulent wake of bluff bodies, forming after the roll-up of the separating shear

layers. Such quasi-periodic structures, usually referred to as coherent motions,

interact with the stochastic fluctuations and affect their organisation.

A complete, multiscale description of the interaction among the mean, the

coherent (e.g. periodic) and the stochastic fields is highly desirable. Indeed, one

can resort to a triple decomposition of the velocity and pressure fields into mean,

coherent and stochastic motions, and use it, together with the single-point Reynolds

stress budget equations, to describe how these large-scale motions interact with

the turbulent fluctuations in the physical space. For the spanwise-oscillating wall,

Agostini et al. (2014) found that the phase variation of the stochastic contribution to

the Reynolds stresses is mainly driven by production, and that the dissipation plays

only a marginal role; they concluded that the increase of the dissipation can not be

the cause of drag reduction. For the alternate shedding behind a bluff body, Kiya &

Matsumura (1988) experimentally investigated the various frequency components

of the stochastic motions in the wake behind a flat plate perpendicular to the

flow. They found that the frequency of the main contributions to the stochastic

shear stresses is one half of the vortex-shedding frequency, explaining it with the

different spanwise arrangement of consecutive coherent vortices. In both cases,

however, the description was incomplete: a triple decomposition alone does not

capture the interaction between coherent and stochastic motions in the space of

scales.

Alves Portela et al. (2020) followed Thiesset et al. (2014) and used the GKE

together with a triple decomposition to describe the interaction between the co-

herent and stochastic motions in the space of scales and positions. They arrived

at two budget equations for the coherent and stochastic parts of the scale energy,
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and applied them to the turbulent wake past a square cylinder. Interestingly, they

found that the mean flow does not feed the stochastic field directly, but it produces

kinetic energy that feeds the large-scale coherent structures shed in the wake. Part

of this energy is then transferred towards the stochastic turbulent fluctuations, at

all scales. Although promising, the approach by Alves Portela et al. (2020) is still

affected by limitations, discussed by Thiesset & Danaila (2020), that prevent a

complete understanding of the interaction among the three fields. This is because

their budget equations are obtained by averaging over the phase of the coherent

motions, and the phase dependence is lost in the process. Furthermore, being

based on the GKE, their procedure considers only the scale energy, and does not

describe the pressure–strain redistribution among the various components of the

Reynolds stress tensor. Finally, Alves Portela et al. (2020) additionally discard

directional information by taking orientation averages of every term of the budget

equations.

The present work goes one step further to overcome these limitations. We use a

triple decomposition to extend the AGKE, and arrive at two phase-by-phase budget

equations for the coherent and stochastic parts of each component of the structure

function tensor. These equations, named iAGKE, describe the phase-by-phase

mean-coherent-stochastic interaction of each component of the Reynolds stresses

in the combined space of scales and positions. There is no phase-average involved,

so that the description is complete. The paper is structured as follows. After this

introduction, in §2.2 we briefly recall the AGKE for the classic Reynolds decom-

position and introduce the iAGKE for the triple decomposition, discussing the

meaning of the various terms. In the second part of the contribution, in §2.3, we

provide a relatively simple example, and apply the new budget equations to a turbu-

lent channel flow subjected to an oscillatory spanwise wall motion, chosen because

of the deterministic nature of the periodic component. In §2.4 we demonstrate

how the iAGKE describe the mean-coherent-stochastic interaction, and shed light

into the complex working mechanism of the oscillating wall. The paper closes

with a brief discussion in §2.5. Appendix 2.A contains the detailed derivation

of the iAGKE from the Navier–Stokes equations, followed in Appendix 2.B by

their specialization to the plane channel flow with oscillating walls. In Appendix

2.C the velocity field induced by the ensemble-averaged quasi-streamwise vortex

at different phases is computed and used to support the iAGKE-based analysis of

the channel flow with oscillating walls.

2.2 Mathematical formulation

In this Section we introduce the triple decomposition and recall briefly the standard

AGKE, before presenting the new iAGKE, whose detailed derivation is reported
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in Appendix 2.A.

2.2.1 Triple decomposition of the velocity field

An incompressible turbulent flow, varying in space x and time C, is typically

described via its mean and fluctuating velocity and pressure fields, defined after

the classic Reynolds decomposition. Provided the flow exhibits well-defined non-

stochastic (e.g. periodic) features, the fluctuating field can be further decomposed

into a coherent and a stochastic part. Therefore, the velocity field reads:

u = U + ũ + u′′
︸  ︷︷  ︸

u
′

, (2.1)

where U , u′, ũ and u′′ indicate the mean, fluctuating, coherent and stochastic

parts of the velocity field u. The mean velocity U is defined as U ≡ ⟨u⟩, with

the operator⟨·⟩ indicating ensemble averaging, which under the ergodic hypothesis

becomes equivalent to averaging over homogeneous directions and time (if the

flow is statistically stationary). For a single realisation without homogeneous

directions, the mean is simply a temporal average:

U (x) ≡ lim
g→+∞

1

g

∫ g

0

u(x, C)3C. (2.2)

Considering a periodic motion with period) and phase i ∈ (0, 2c], the overbar

· denotes the phase average operator over an integer number # of periods. Like

⟨·⟩, it includes averaging over the homogeneous directions. Considering again a

single realisation without homogeneous directions, · is defined as:

u(x, i) ≡ lim
#→+∞

1

#

#−1∑

==0

u
(
x,

( i

2c
+ =

)
)
)
. (2.3)

The coherent field ũ is thus defined as

ũ(x, i) = u(x, i) −U (x),
and the stochastic vector field u′′ is defined after the triple decomposition (2.1) as

u′′ = u − U − ũ. An analogous triple decomposition is used to decompose the

pressure field ? = % + ?̃ + ?′′, with ?̃ + ?′′ = ?′.

2.2.2 The anisotropic generalised Kolmogorov equations

(AGKE)

Before presenting the iAGKE, the standard AGKE based on the Reynolds’ de-

composition are recalled. Full details on their derivation from the incompressible

Navier–Stokes equations are provided by Gatti et al. (2020).
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x1 = X − r/2

X

x2 = X + r/2

u(X + r/2, t)

u(X − r/2, t)

δu

r

Figure 2.1: Sketch of two points x1 and x2 involved in the definition of the

second-order structure function tensor. X = (x1 + x2)/2 and r = x2 − x1

indicate their mid-point and separation vector, respectively. Xu = u2 − u1 is the

velocity increment between the two points.

Exact budget equations can be written for the components of the second-order

structure function tensor
〈
XD8XD 9

〉
, where XD8 = D8 (X+r/2, C)−D8 (X−r/2, C) is the

8−th component of the velocity difference between two pointsx1 andx2, identified

by their midpoint X = (x1 + x2)/2 and their separation vector r = (x2 − x1),
as shown by the sketch in figure 2.1. The Reynolds’ decomposition leads to

budget equations for X*8X* 9 and
〈
XD′8XD

′
9

〉
. In general, the time-independent

tensor X*8X* 9 depends upon six independent variables, i.e. the six coordinates

of X and r. The tensor
〈
XD′8XD

′
9

〉
additionally features time C as an independent

variable if the process is not statistically stationary (e.g. periodic), and is related

to the Reynolds stresses
〈
D′8D

′
9

〉
and to the spatial correlation tensor '8 9 (Davidson

et al., 2006; Agostini & Leschziner, 2017) as

〈
XD′8XD

′
9

〉
(X , r, C) = +8 9 (X , r, C) − '8 9 (X , r, C) − '8 9 (X ,−r, C) (2.4)

where

+8 9 (X , r, C) =
〈
D′8D

′
9

〉 (
X + r

2
, C

)
+
〈
D′8D

′
9

〉 (
X − r

2
, C

)
(2.5)

is the sum of the single-point Reynolds stresses evaluated at the two pointsX±r/2,

and

'8 9 (X , r, C) =
〈
D′8

(
X + r

2
, C

)
D′9

(
X − r

2
, C

)〉
(2.6)

is the two-points spatial correlation function.

The budget equations for the components of the mean second-order structure

function tensor X*8X* 9 are presented here for the first time; they were not reported

by Gatti et al. (2020), and the tensor has received little attention so far, owing to

its irrelevance in homogeneous isotropic turbulence, where there is no mean flow.
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The mean AGKE are written compactly as

mΦ<
:,8 9

mA:
+
mΨ<

:,8 9

m-:

= Ξ
<
8 9 , (2.7)

where the repeated index : implies summation. The following notation is adopted.

Uppercase letters (e.g. Φ, Ψ and Ξ) will be used to denote time-averaged quan-

tities, and lowercase letters (e.g. q, k and b) for phase-dependent quantities.

Furthermore, superscripts <, 5 , 2 and B are used to label terms in the budget

equations for the mean structure function tensor X*8X* 9 , the fluctuating structure

function tensor
〈
XD′8XD

′
9

〉
, the coherent structure function tensor XD̃8XD̃ 9 = XD̃8XD̃ 9 ,

and the stochastic structure function tensor XD′′
8
XD′′

9
.

The fluxes Φ<
:,8 9

and Ψ<
:,8 9

are the mean scale- and physical-space fluxes, i.e.

Φ
<
:,8 9 = X*:X*8X* 9

︸        ︷︷        ︸
Mean transport

+ X* 9

〈
XD′:XD

′
8

〉
+ X*8

〈
XD′:XD

′
9

〉

︸                               ︷︷                               ︸
Fluctuating transport

−2a
mX*8X* 9

mA:︸           ︷︷           ︸
Viscous diffusion

: = 1, 2, 3

(2.8)

and

Ψ
<
:,8 9 = *∗

:X*8X* 9
︸      ︷︷      ︸
Mean transport

+ X* 9

〈
D′∗: XD

′
8

〉
+ X*8

〈
D′∗: XD

′
9

〉

︸                             ︷︷                             ︸
Fluctuating transport

+1

d
X%X* 9X:8 +

1

d
X%X*8X: 9

︸                              ︷︷                              ︸
Pressure transport

+

−a

2

mX*8X* 9

m-:︸          ︷︷          ︸
Viscous diffusion

: = 1, 2, 3. (2.9)

where X8 9 is the Kronecker delta, a is the kinematic viscosity, and the asterisk

superscript (·)∗ indicates the arithmetic average of a quantity between the two

points X ± r/2. The term Ξ<
8 9

, instead, is the mean source and reads

Ξ
<
8 9 = −

[
−
〈
D′∗: XD

′
9

〉
X

(
m*8

mG:

)
−
〈
D′∗: XD

′
8

〉
X

(
m* 9

mG:

)
−
〈
XD′:XD

′
9

〉 (m*8

mG:

)∗
−
〈
XD′:XD

′
8

〉 (m* 9

mG:

)∗]

︸                                                                                                      ︷︷                                                                                                      ︸
Mean-fluctuating production (%< 5

8 9
)

+

+1

d
X%

mX*8

m- 9

+ 1

d
X%

mX* 9

m-8
︸                           ︷︷                           ︸

Pressure strain (Π<
8 9
)

−4n<∗
8 9

︸ ︷︷ ︸
Dissipation (�<

8 9
)

+ X* 9X�8 + X*8X�9 .
︸                 ︷︷                 ︸
Forcing interaction (F<

8 9
)

(2.10)

The standard AGKE, presented by Gatti et al. (2020), pertain to increments of

the fluctuating velocity field, and describe the production, transport, redistribution
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and dissipation of each component, in the physical space X and in the space of

scales r. They can be written compactly as:

m
〈
XD′8XD

′
9

〉

mC
+
mΦ

5

:,8 9

mA:
+
mΨ

5

:,8 9

m-:

= Ξ
5

8 9
. (2.11)

The scale-space fluxes Φ
5

:,8 9
and physical-space fluxes Ψ

5

:,8 9
are defined as:

Φ
5

:,8 9
=

〈
X*:XD

′
8XD

′
9

〉

︸         ︷︷         ︸
Mean transport

+
〈
XD′:XD

′
8XD

′
9

〉

︸        ︷︷        ︸
Fluctuating transport

−2a
m

mA:

〈
XD′8XD

′
9

〉

︸               ︷︷               ︸
Viscous diffusion

: = 1, 2, 3 (2.12)

and

Ψ
5

:,8 9
=

〈
*∗

:XD
′
8XD

′
9

〉

︸       ︷︷       ︸
Mean transport

+
〈
D′∗: XD

′
8XD

′
9

〉

︸       ︷︷       ︸
Fluctuating transport

+ 1

d

〈
X?′XD′8

〉
X: 9 +

1

d

〈
X?′XD′9

〉
X:8

︸                                   ︷︷                                   ︸
Pressure transport

+

−a

2

m

m-:

〈
XD′8XD

′
9

〉

︸               ︷︷               ︸
Viscous diffusion

: = 1, 2, 3. (2.13)

The term Ξ
5

8 9
in (2.11) is the source for

〈
XD′8XD

′
9

〉
and reads:

Ξ
5

8 9
=−

〈
D′∗: XD

′
9

〉
X

(
m*8

mG:

)
−
〈
D′∗: XD

′
8

〉
X

(
m* 9

mG:

)
−
〈
XD′:XD

′
9

〉 (m*8

mG:

)∗
−
〈
XD′:XD

′
8

〉 (m* 9

mG:

)∗

︸                                                                                                   ︷︷                                                                                                   ︸
Mean-fluctuating production(%< 5

8 9
)

+

+ 1

d

〈
X?′

mXD′8
m- 9

〉
+ 1

d

〈

X?′
mXD′9
m-8

〉

︸                               ︷︷                               ︸
Pressure strain (Π 5

8 9
)

−4n
5 ∗
8 9

︸︷︷︸
Dissipation (� 5

8 9
)

+
〈
XD′9X 5

′
8

〉
+
〈
XD′8X 5

′
9

〉

︸                   ︷︷                   ︸
Forcing interaction(F 5

8 9
)

. (2.14)

in which n
5

8 9
is the pseudo-dissipation tensor

〈
mD′8/mG:mD′9/mG:

〉
. The source term

Ξ
5

8 9
identifies scales and positions with a net sink (Ξ

5

8 9
< 0) or a net source

(Ξ
5

8 9
> 0) for each component of the Reynolds stresses. The separation of Ξ

5

8 9
in

its constituent terms provides insight on mean-fluctuating production %
< 5

8 9
(which

also appears in (2.10) with opposite sign), redistribution Π
5

8 9
, dissipation �

5

8 9
and

interaction with external fluctuating volume forces F
5

8 9
of turbulent stresses among
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scales and positions (note that the forcing interaction term was missing in the

original AGKE formulated by Gatti et al. (2020)). The flux vectors describe

the various transfer processes, and their field lines visualise how fluctuations are

transferred among scales and positions, via direct and inverse cascades. It should

be recalled that, as stressed by Gatti et al. (2020), when interpreting AGKE results

to extract structural turbulence information, local peaks of the structure functions

always need to be connected to local maxima/minima of the correlation functions

whenever a separation along an inhomogeneous direction is involved.

2.2.3 The phase-aware AGKE, or iAGKE

By using the triple decomposition (2.1), the phase-averaged fluctuating structure

function tensor XD′
8
XD′

9
(X , r, i) can be separated into its coherent and stochastic

parts, i.e.

XD′
8
XD′

9
(X , r, i) = XD̃8XD̃ 9 (X , r, i) + XD′′

8
XD′′

9
(X , r, i); (2.15)

note that XD̃8XD̃ 9 ≡ XD̃8XD̃ 9 owing to the definition of the phase-average operator.

Two budget equations, called iAGKE, can be written for XD̃8XD̃ 9 and XD′′
8
XD′′

9
,

which include, unlike the standard AGKE, the interplay among the mean, coherent

and stochastic fields at each phase i. These new equations extend in a significant

way the work made by Thiesset et al. (2014) and Alves Portela et al. (2020), that

considered the budget equations for ⟨XD̃8XD̃8⟩(X , r) and
〈
XD′′8 XD

′′
8

〉
(X , r). They

applied the triple decomposition to the trace
〈
XD′8XD

′
8

〉
of the second-order structure

function tensor, instead of considering the whole tensor. The major difference,

though, is that the dependence on the phase i of the coherent motion (or external

forcing) was lost, because of the use of the ⟨·⟩ operator. On the contrary, the

iAGKE retain full phase information.

The step-by-step derivation of the iAGKE from the incompressible Navier–

Stokes equations is described in Appendix 2.A. At each phase i, they link the phase

variation of each component of the coherent and stochastic structure function ten-

sors, at a given scale r and position X , to the unbalance among inter-component

redistribution, scale-space transport, dissipation and mean-coherent-stochastic in-

teraction. The last term is obviously absent in the classic AGKE.

The equations for the coherent and stochastic parts can be compactly written

as:
2c

)

mXD̃8XD̃ 9

mi
+
mq2

:,8 9

mA:
+
mk2

:,8 9

m-:

= b28 9 + Z 28 9 (2.16)

and

2c

)

mXD′′
8
XD′′

9

mi
+
mqB

:,8 9

mA:
+
mkB

:,8 9

m-:

= bB8 9 , (2.17)

92



where, as above, the repeated index : implies summation.

The first term in equations (2.16) and (2.17) represents the phase variation

of the coherent and stochastic components of the structure function tensor. The

coherent and stochastic scale fluxes q2
:,8 9

and qB
:,8 9

, i.e. the fluxes of XD̃8XD̃ 9 and

XD′′
8
XD′′

9
in the space of scales, are defined as:

q2:,8 9 = X*:XD̃8XD̃ 9
︸       ︷︷       ︸
Mean transport

+ XD̃:XD̃8XD̃ 9
︸      ︷︷      ︸

Coherent transport

+ XD′′
:
XD′′

8
XD̃ 9 + XD′′

:
XD′′

9
XD̃8

︸                          ︷︷                          ︸
Stochastic transport

−2a
mXD̃8XD̃ 9

mA:︸          ︷︷          ︸
Viscous diffusion

: = 1, 2, 3

(2.18)

and

qB
:,8 9 = X*:XD

′′
8
XD′′

9
︸        ︷︷        ︸
Mean transport

+ XD̃:XD
′′
8
XD′′

9
︸       ︷︷       ︸

Coherent transport

+ XD′′
:
XD′′

8
XD′′

9
︸       ︷︷       ︸

Stochastic transport

−2a
mXD′′

8
XD′′

9

mA:︸           ︷︷           ︸
Viscous diffusion

: = 1, 2, 3.

(2.19)

The coherent and stochastic spatial flux terms k2
:,8 9

and kB
:,8 9

, i.e. the fluxes of

XD̃8XD̃ 9 and XD′′
8
XD′′

9
in the physical space, are defined as:

k2
:,8 9 = *∗

:XD̃8XD̃ 9
︸     ︷︷     ︸

Mean transport

+ D̃∗:XD̃8XD̃ 9
︸     ︷︷     ︸

Coherent transport

+ D′′∗
:
XD′′

8
XD̃ 9 + D′′∗

:
XD′′

9
XD̃8

︸                         ︷︷                         ︸
Stochastic transport

+ 1

d
X?̃XD̃8X: 9

︸       ︷︷       ︸
Pressure transport

+

+1

d
X?̃XD̃ 9X:8

︸          ︷︷          ︸
Pressure transport

−a

2

mXD̃8XD̃ 9

m-:︸         ︷︷         ︸
Viscous diffusion

: = 1, 2, 3 (2.20)

kB
:,8 9 = *∗

:XD
′′
8
XD′′

9
︸      ︷︷      ︸
Mean transport

+ D̃∗:XD
′′
8
XD′′

9
︸      ︷︷      ︸

Coherent transport

+ D′′∗
:
XD′′

8
XD′′

9
︸       ︷︷       ︸

Stochastic transport

+ 1

d
X?′′XD′′

8
X: 9 +

1

d
X?′′XD′′

9
X:8

︸                               ︷︷                               ︸
Pressure transport

+

−a

2

mXD′′
8
XD′′

9

m-:︸          ︷︷          ︸
Viscous diffusion

: = 1, 2, 3. (2.21)

The differences with the fluxes (2.12) and (2.13) appearing in the standard

AGKE are worth noticing. Two new terms appear here to account for the effect

of the coherent field upon transport in the stochastic field, labelled as coherent

transport in equations (2.19) and (2.21). Vice versa, how the stochastic field

affects transport in the coherent field is reflected by the stochastic transport term

in equations (2.18) and (2.20)).
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The coherent and stochastic source terms b2
8 9

and bB
8 9

denote the scale-space net

production of XD̃8XD̃ 9 and XD′′
8
XD′′

9
. They can be either positive or negative, and

read:

b28 9 = −XD̃ 9XD̃:

(
m*8

mG:

)∗
− XD̃8XD̃:

(
m* 9

mG:

)∗
− XD̃ 9 D̃

∗
:X

(
m*8

mG:

)
− XD̃8D̃

∗
:X

(
m* 9

mG:

)

︸                                                                                        ︷︷                                                                                        ︸
Mean-coherent production (?<2

8 9
)

+

−
[
−XD′′

9
XD′′

:

(
mD̃8

mG:

)∗
− XD′′

8
XD′′

:

(
mD̃ 9

mG:

)∗
− XD′′

9
D′′∗
:
X

(
mD̃8

mG:

)
− XD′′

8
D′′∗
:
X

(
mD̃ 9

mG:

)]

︸                                                                                              ︷︷                                                                                              ︸
Coherent-stochastic production (?2B

8 9
)

+

+1

d
X?̃

mXD̃8

m- 9

+ 1

d
X?̃

mXD̃ 9

m-8
︸                          ︷︷                          ︸

Pressure strain (c2
8 9
)

−4n 2∗8 9
︸︷︷︸

Dissipation (32
8 9
)

+ XD̃ 9X 5̃8 + XD̃8X 5̃ 9
︸              ︷︷              ︸

Forcing interaction(f2
8 9
)

(2.22)

bB8 9 = −XD′′
9
XD′′

:

(
m*8

mG:

)∗
− XD′′

8
XD′′

:

(
m* 9

mG:

)∗
− XD′′

9
D′′∗
:
X

(
m*8

mG:

)
− XD′′

8
D′′∗
:
X

(
m* 9

mG:

)

︸                                                                                            ︷︷                                                                                            ︸
Mean-stochastic production (?<B

8 9
)

+

+
[
−XD′′

9
XD′′

:

(
mD̃8

mG:

)∗
− XD′′

8
XD′′

:

(
mD̃ 9

mG:

)∗
− XD′′

9
D′′∗
:
X

(
mD̃8

mG:

)
− XD′′

8
D′′∗
:
X

(
mD̃ 9

mG:

)]

︸                                                                                              ︷︷                                                                                              ︸
Coherent-stochastic production (?2B

8 9
)

+

+1

d
X?′′

mXD′′
8

m- 9

+ 1

d
X?′′

mXD′′
9

m-8
︸                              ︷︷                              ︸

Pressure strain (cB
8 9
)

−4n B∗8 9
︸︷︷︸

Dissipation (3B
8 9
)

+ XD′′
9
X 5 ′′

8
+ XD′′

8
X 5 ′′

9
︸                 ︷︷                 ︸
Forcing interaction(fB

8 9
)

.

(2.23)

Among the terms appearing in the source, the mean-coherent and mean-

stochastic productions ?<2
8 9

and ?<B
8 9

indicate the scales and positions where the

mean flow feeds, or drains energy from, the coherent and stochastic fields: they

are not positive definite, and therefore can be either sources or sinks. They

both contribute to the mean-fluctuating production %
< 5

8 9
in equation (2.10), as

%
< 5

8 9
=

〈
?<2
8 9

〉
+

〈
?<B
8 9

〉
. The coherent-stochastic production ?2B

8 9
indicates the ex-

change of stresses between the coherent and stochastic fields, and appears in the

budgets for XD̃8XD̃ 9 and XD′′
8
XD′′

9
with opposite sign. 32

8 9
and 3B

8 9
denote viscous dis-

sipation, and the pressure-strain terms c2
8 9

and cB
8 9

describe the interplay between

pressure and velocity fields. Pressure–strain terms involve neither production nor
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dissipation of energy, and no cross-talk between coherent and fluctuating fields.

Overall, among the source terms, the productions ?<2
8 9

, ?<B
8 9

and ?2B
8 9

are the only

ones that connect the mean, coherent and fluctuating budgets, and are essential

to ascertain how the mean, stochastic and coherent fields force each other. The

forcing interactions f2
8 9

and fB
8 9

represent the power injected into the system by the

interaction of a coherent and stochastic external volume forcing with the coherent

and stochastic flow fields, respectively.

Finally, in equation (2.16) for XD̃8XD̃ 9 a new term Z 2
8 9

appears on the right-hand

side. It describes the inter-phase interaction driven by the coherent flow field, and

is defined as:

Z 28 9 =
m

mA:

[
⟨XD̃8XD̃:⟩XD̃ 9 +

〈
XD̃ 9XD̃:

〉
XD̃8

]
+ m

m-:

[〈
D̃∗:XD̃8

〉
XD̃ 9 +

〈
D̃∗:XD̃ 9

〉
XD̃8

]
+

+ m

mA:

[〈
XD′′8 XD

′′
:

〉
XD̃ 9 +

〈
XD′′9 XD

′′
:

〉
XD̃8

]
+ m

m-:

[〈
D′′∗: XD′′8

〉
XD̃ 9 +

〈
D′′∗: XD′′9

〉
XD̃8

]
+

−⟨XD̃8XD̃:⟩
(
mD̃ 9

mG:

)∗
−
〈
XD̃ 9XD̃:

〉 ( mD̃8
mG:

)∗
−
〈
XD̃8D̃

∗
:

〉
X

(
mD̃ 9

mG:

)
−
〈
XD̃ 9 D̃

∗
:

〉
X

(
mD̃8

mG:

)
+

−
〈
XD′′8 XD

′′
:

〉 (mD̃ 9

mG:

)∗
−
〈
XD′′9 XD

′′
:

〉 ( mD̃8
mG:

)∗
−
〈
XD′′8 D

′′∗
:

〉
X

(
mD̃ 9

mG:

)
−
〈
XD′′9 D

′′∗
:

〉
X

(
mD̃8

mG:

)
.

(2.24)

The terms in the last two rows above resemble a production term, and indicate

the production of XD̃8XD̃ 9 due to the correlation of each phase with all the others.

By averaging equations (2.16) and (2.17) over the phases, the budget equations

for
〈
XD̃8XD̃ 9

〉
(X , r) and

〈
XD′′8 XD

′′
9

〉
(X , r) are obtained. In doing this, the inter-

phase contributions vanish, since by definition they have zero average. The sum of

the equations for the three diagonal components of
〈
XD̃8XD̃ 9

〉
and

〈
XD′′8 XD

′′
9

〉
yields

the GKE equations used by Alves Portela et al. (2020). If the equations for
〈
XD̃8XD̃ 9

〉
and

〈
XD′′8 XD

′′
9

〉
are added together, the standard AGKE for the fluctuating

field
〈
XD′8XD

′
9

〉
are recovered.

2.3 Turbulent drag reduction by the spanwise-

oscillating wall

The iAGKE are now applied to a fully developed turbulent channel flow subjected

to a spanwise harmonic oscillation of the walls. This flow is a convenient example

where the deterministic external periodic forcing provides an unambiguous defini-

tion of the phase, yet the physics behind drag reduction is interesting and not fully

understood yet.
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Figure 2.2: Wall-normal profile of the spanwise coherent velocity F̃+ (left) and

shear mF̃+/mH (right), plotted at 8 equally spaced phases i1, . . . i8 along the period

)+ = 250.

The spanwise oscillating wall is a well-known skin-friction drag reduction

technique, intensely studied over the last thirty years (see Ricco et al., 2021,

and references therein). The channel walls periodically move along the spanwise

direction, according to:

FF (C) = � sin

(
2c

)
C

)
, (2.25)

where � and) are the prescribed amplitude and period of the sinusoidal oscillation,

and FF is the spanwise velocity of the wall. G, H and I (D, E and F) denote

the streamwise, wall-normal and spanwise directions (velocity components); the

alternative notation G1 = G (D1 = D), G2 = H (D2 = E) and G3 = I (D3 = F)

is also used. The harmonic oscillation generates a periodic (coherent) spanwise

cross-flow, that even for a turbulent streamwise flow is well described (Quadrio

& Sibilla, 2000) by the analytical laminar solution of the second Stokes problem,

usually referred to as the Stokes layer:

F(H, i) = � exp

(
−
√

l

2a
H

)
sin

(
i −

√
l

2a
H

)
, (2.26)

where i is the phase of the oscillation, and l = 2c/) . Figure 2.2 shows the

coherent spanwise velocity field (the Stokes layer) generated by the harmonic

oscillations, and its derivative in wall-normal direction (the Stokes shear): the

oscillating period is subdivided into eight equally spaced phases i1, i2, . . . i8,

where i8 = 8c/4. From here on, the + superscript is used to indicate quantities

made dimensionless with the friction velocity Dg =
√
gF/d (d is the fluid density,

and gF is the time-averaged streamwise wall shear stress; the spanwise component

is zero) and the kinematic viscosity a.

The interaction between the coherent Stokes layer and the stochastic near-wall

turbulence influences the main structures of the near-wall cycle, i.e. the low-
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speed streaks and the quasi-streamwise vortices, eventually yielding a reduction

of turbulent friction. When the Reynolds number based on the friction velocity is

'4g = 200, the largest drag reduction rate for a given oscillation amplitude �+ = 12

is about 45%, obtained for the optimal actuation period )+ ≈ 100 (Quadrio &

Ricco, 2004). Larger or smaller periods result in smaller drag reduction. Several

authors, for example Yakeno et al. (2014), observed that the orientation of near-

wall structures in wall-parallel planes is cyclically altered by the coherent spanwise

shear. Touber & Leschziner (2012) have shown that, provided the timescale of the

spanwise shear oscillation is short enough, the low-speed streaks do not have the

time to fully re-orient during the oscillation, and are thus weakened. Hence, at the

root of drag reduction lies the interaction between the oscillating shear (a coherent

component) and the natural streak regeneration mechanism (seen in the stochastic

component).

Touber & Leschziner (2012) and later Agostini et al. (2014) applied a triple

decomposition of the velocity field to the budgets of the single-point Reynolds

stresses; the turbulent (stochastic) fluctuations were isolated and their interaction

with the (coherent) Stokes layer was studied. It was found that the interaction

between coherent and stochastic fields is mediated by the interplay between the

coherent spanwise shear mF̃/mH and the E′′F′′ component of the Reynolds stress

tensor, induced by the rotation of the vortical structures. For nearly optimal

periods, the interaction between the coherent and stochastic fields is one-way, with

the former altering the latter. This weakens the wall-normal velocity fluctuations

and reduces the turbulent shear, reducing eventually the friction drag. For larger

periods, instead, the interaction becomes two-ways, with coherent and stochastic

fields mutually exchanging energy. In this case, however, the drag reduction effect

is less important. By looking at different phases along the period, they found

that, when large, the Stokes shear mF̃/mH changes relatively slowly in time and

allows the structures to become more vigorous and well-established (a process

they referred to as lingering). Conversely, when mF̃/mH is small, the structures

appear weak and less tilted.

In this example, we intend to add scale information to the picture. We thus

apply the iAGKE: (i) to describe the influence of the coherent motion on the spatial

arrangement of the near-wall structures during the control period, (ii) to inspect

the mean-coherent-stochastic interaction in the scale space and in the physical

space, and (iii) to characterise the phase dependence of the interaction between

the coherent and stochastic fields.

2.3.1 Database and computational details

The iAGKE terms are computed from two datasets obtained by direct numerical

simulations (DNS). They are described by Gallorini et al. (2022), where the
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interested reader can find full details.

The simulations are run under a constant pressure gradient (CPG) (Quadrio

et al., 2016a), with a friction Reynolds number of '4g = Dgℎ/a = 200, where

ℎ is the channel half-height. CPG provides a unique value of Dg with/without

drag reduction, thus avoiding ambiguities in viscous scaling. The size of the

computational domain is (!G , !H, !I) = (4cℎ, 2ℎ, 2cℎ) in the streamwise, wall-

normal and spanwise directions. The number of Fourier modes is #G = #I = 256

in the two homogeneous (streamwise and spanwise) directions, further increased by

a factor of 3/2 to remove aliasing error. In the wall-normal direction, a hyperbolic

tangent distribution of #H = 192 points provides a finer grid near the wall. The

spatial resolution is ΔG+ = 6.6 and ΔI+ = 3.3 by considering the extra modes,

while ΔH+ varies from ΔH+ ≈ 0.5 close to the wall to ΔH+ ≈ 3.7 at the centreline.

A first simulation of a plane channel with fixed walls is run as a reference,

followed by two others in which wall oscillation according to (2.25) is enforced.

The oscillation amplitude is fixed at �+ = 7: a rather small value, which keeps the

energy cost of the actuation limited, and might even provide a small net energy

saving at optimal periods. As in Agostini & Leschziner (2014), we consider two

control periods, namely )+ = 75 and )+ = 250. The value )+ = 75 is nearly

optimal, and yields drag reduction (defined here as a percentage decrease of the

friction coefficient, determined by the increase in bulk velocity) of 25.2%. The

value)+ = 250 is suboptimal, and yields only 13.2% drag reduction. These figures

are in agreement with existing information (see for example Gatti & Quadrio,

2016).

Simulations are started from an uncontrolled turbulent flow field. During the

initial, transient phase, the solution is advanced by setting the Courant–Friedrichs–

Lewy number at ��! = 1. After the transient, however, the time step is set to a

fixed value, in order to synchronize data saving with predetermined control phases.

The value of the time step is thus chosen as an integer submultiple of the forcing

period that keeps the maximum ��! below the unit: it is ΔC+ = 0.0938 for the

smaller period, and ΔC+ = 0.0781 for the longer period. After the transient, 376

complete velocity fields are saved, so that 47 control periods are stored for later

analysis, each of them divided in 8 equally spaced phases.

The iAGKE terms are computed from the database with a post-processing code

derived with modifications from that described by Gatti et al. (2020). It employs

the same important numerical optimizations described in Gatti et al. (2019), which

include the computation of correlations pseudo-spectrally whenever possible. The

code, written in the CPL computer programming language (Luchini, 2020, 2021)

has been validated by checking that the sum of each term of the budget of coherent

and stochastic fields equals the corresponding term of
〈
XD′8XD

′
9

〉
within roundoff.

Statistical convergence of the results is verified by ensuring that the residuals of the
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budgets are negligible compared to the values of the production, pressure–strain

and dissipation.

2.3.2 iAGKE tailored to the channel flow with oscillating walls

The general form (2.16) and (2.17) of the iAGKE can be simplified for the

problem at hand. Since G and I are homogeneous, in an indefinite plane channel

the iAGKE depend on five independent variables: the three components of the

separation vector (AG , AH, AI), the wall-normal component of the midpoint. and the

phase i. Note that the finite distance between the two walls implies the constraint

AH < 2. .

In an indefinite channel flow, the G direction aligns with the mean flow, hence

U (H) = (* (H), 0, 0), and the wall-parallel derivatives of the mean velocity are

zero. Moreover, in the specific case of the oscillating wall, the coherent velocity

field is independent on G and I, as the wall control law (2.25) is a function of

time only, so that mD̃8/mG = mD̃8/mI = 0. Therefore, incompressibility and no-

penetration at the wall dictate that the wall-normal component of the coherent field

is null everywhere, i.e. Ẽ(H, C) = 0. The streamwise coherent velocity D̃, instead,

does not vanish, albeit it is known to be extremely small: (Yakeno et al., 2014)

report it to be two orders of magnitude smaller than the spanwise coherent velocity

F̃. The non-zero components of the XD̃8XD̃ 9 tensor are XD̃XD̃, XF̃XF̃ and XD̃XF̃.

The specialised form of the iAGKE for the channel flow with oscillating walls

is reported in Appendix 2.B. It can be observed that the mean-coherent production

?<2
8 9

is zero: in this particular case, there is no exchange of stresses between the

mean and coherent fields, as the coherent field interacts directly with the external

forcing and with the stochastic field only. However, this term does appear in other

flows, and for example is important for the flow past a bluff body (Alves Portela

et al., 2020), where the mean flow supports the coherent vortex shedding, which

in turn supports the stochastic fluctuations. In the budget for the stochastic part,

the productions ?<B
8 9

and ?2B
8 9

represent the two avenues for the stochastic field

to interact with the mean and coherent fields, involving distinct components of

XD′′
8
XD′′

9
. The mean-stochastic production ?<B

8 9
is non-zero only for XD′′XD′′ and

for the off-diagonal components XD′′XE′′ and XD′′XF′′. In contrast, the coherent-

stochastic production contributes to all the elements of XD′′
8
XD′′

9
except for XE′′XE′′,

being ?2B
22

= 0.

The flow symmetries and the type of forcing make only certain paths available

for energy exchanges. This is represented graphically in figure 2.3, which shows

an “energy circle” (Quadrio, 2011) to describe energy exchanges among the mean,

coherent and stochastic fields after spatial and temporal integration. In the fol-

lowing, thanks to the iAGKE, these global energy exchanges and redistributions
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Figure 2.3: Sketch of the energy exchanges between mean, coherent and stochas-

tic fields for the turbulent channel flow modified by spanwise-oscillating walls.

Blue/red arrows indicate energy entering/leaving the system. The blue arrows %<

and F̃ represent the pumping energy required to move the flow, and the energy

introduced by the moving walls.
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are expanded and described in space and among scales, with a phase-by-phase

analysis.

2.4 Effect of the spanwise forcing on the near-wall

cycle

The influence of the oscillating wall on the structural organisation of the stochastic

part of the velocity fluctuations in the near-wall region is considered first, at a single

phase and then in terms of its phase evolution. The energy exchanges among mean,

coherent and stochastic fields are then addressed, followed by the analysis of the

pressure–strain redistribution. Eventually, the influence of the Stokes layer and

the stochastic pressure–strain term cB
33

on the transfer of the spanwise stochastic

stresses is described.

2.4.1 Near-wall structures

2.4.1.1 Description at a fixed phase

Figure 2.4 shows the diagonal components of XD′′
8
XD′′

9
in the AH = AG = 0 plane for

the uncontrolled channel (first row), )+ = 75 (second row) and )+ = 250 (third

row). For the two controlled cases, only phase i4 is shown, but the discussion that

follows is qualitatively valid for all phases.

The local maxima of XD′′XD′′ and XE′′XE′′, hereafter denoted with the ·< sub-

script, are the statistical trace of the structures of the near-wall cycle. In the

AG = AH = 0 space, indeed, they indicate a negative peak of the streamwise and

vertical stochastic correlation functions '11 and '22; see equation (2.6). The

coordinates .+ ≈ 14− 18 and A+I ≈ 55− 65 of XD′′XD′′< in the (A+I , .+) plane indi-

cate the characteristic wall distance and spanwise spacing of low- and high-speed

streaks. The coordinates .+ ≈ 43 − 55 and A+I ≈ 49 − 59 of XE′′XE′′< indicate the

characteristic wall distance and spanwise size of the quasi-streamwise vortices,

which induce at their spanwise sides regions of vertical velocity with negative

correlation.

Figure 2.4 shows that the oscillating wall leaves XD′′XD′′ and XE′′XE′′ almost

unchanged, indicating that the size and strength of the near-wall structures only

marginally depend on the amount of drag reduction.

This is consistent with the CPG driving strategy, which forces the same level

of wall friction; the large changes observed by various authors under different

driving strategies simply derive trivially from the different friction, as discussed

by Frohnapfel et al. (2012). However, the velocity streaks are slightly moved

away from the wall: an upward shift of XD′′XD′′< can be seen in figure 2.4. The
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Figure 2.4: Diagonal components of the stochastic tensor XD′′
8
XD′′

9

+
at i4 in the

(A+I , .
+) plane. From top to bottom: uncontrolled case with � = 0, )+ = 75 and

)+ = 250. The contour is set at 95% of each maximum. The coordinates of the

maximum, marked with a cross, can be read on the axes.

102



previous observation is confirmed by numerical data: the maximum moves from

.+ = 14.1 in the reference case to .+ = 17.8 for )+ = 75 and to .+ = 14.7 for

)+ = 250 (at phase i4). Both shifts are upwards, and the )+ = 75 case with larger

drag reduction has a larger shift. The quasi-streamwise vortices react differently

to control: XE′′XE′′< moves from .+ = 53 in the reference case to .+ = 55 for

)+ = 75 and to.+ = 43 for)+ = 250. These contrasting trends are consistent with

the wall-normal displacement found by Gallorini et al. (2022) for conditionally-

averaged quasi-streamwise vortices, but are extracted from the present analysis

without the need for an (inevitably subjective) procedure for conditional structure

extraction.

In the canonical channel flow, the map of XF′′XF′′ embeds information of

the quasi-streamwise vortices only when the AH ≠ 0 space is considered, which

contains the peak ⟨XF′XF′⟩< (Gatti et al., 2020). Indeed, the quasi-streamwise

vortices induce negatively correlated regions of F′′ fluctuations at their vertical

sides only, and the AH coordinate of the maximum indicates their characteristic wall-

normal size. In the controlled cases, however, a local peak of XF′′XF′′ appears in

the AG = AH = 0 (figure 2.4) and AI = AH = 0 (not shown) planes. Interestingly,

the local peak is particularly evident for )+ = 250, extending for A+I ≈ 50 − 100,

A+G ≈ 85 − 270 and .+ ≈ 13 − 25, but it is hardly visible for )+ = 75, where

the F′′ fluctuations are weaker. The next Subsection, which examines how these

quantities vary with i, shows that this derives from a combination of the streaks

tilting in the G − I plane and from the interaction of the quasi-streamwise vortices

with the coherent spanwise shear.

2.4.1.2 Evolution during the cycle

Figure 2.5 shows the phase evolution of XD′′XD′′, XE′′XE′′ and XF′′XF′′ in the

AG = AH = 0 plane, to describe how the organisation of the near-wall stochastic

fluctuations changes during the oscillation cycle, i.e. the very type of information

that the iAGKE are designed to provide. Only the suboptimal )+ = 250 is

considered, as the large period emphasises the phase dependence; moreover, only

one half of the forcing period is shown (from i1 to i4), because of temporal

symmetry. Extra quantitative information is provided by figure 2.6, which plots

the phase evolution of the maxima XD′′XD′′<, XE′′XE′′< and XF′′XF′′
<.

The streamwise velocity streaks cyclically strengthen and weaken under the

action of the alternating Stokes layer. The maximum XD′′XD′′< assumes its lowest

value at i2, and then grows to reach the highest value at i4, with an intra-cycle

variation of 27%. The quasi-streamwise vortices, instead, show a much smaller

phase dependence: the intra-cycle variation of XE′′XE′′ is 8% only. This is not

surprising, since the quasi-streamwise vortices reside at larger wall distances,

where the intensity of the Stokes layer is lower; at H+ = 14, the average position of
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Figure 2.5: Diagonal components of the stochastic tensor XD′′
8
XD′′

9

+
in the (A+I , .+)

plane, at phases i1, i2, i3, i4 (from top to bottom), for the period )+ = 250. For

each component, the white contour is set at the 95% of the smallest peak over the

phases (i.e. at i2 for XD′′XD′′ and XF′′XF′′, and at i3 for XE′′XE′′).
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Figure 2.6: Phase variation of the maxima XD′′
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in the (A+I , .+) plane.
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Figure 2.7: Sketch of the contribution of D′′ and F′′ for positively (left) and

negatively (right) tilted low (blue) and high (red) speed streaks induced by a

positively rotating quasi-streamwise vortex (white).

the streaks, the maximum F̃+ is 1.15, while at H+ = 50, representative wall-normal

distance of the vortices, it is only 0.2. A different wall distance for streaks and

vortices also implies a phase shift; in fact the intensity of XE′′XE′′ is minimum at

i3 and maximum at i1, whereas XD′′XD′′ and XF′′XF′′ are minimum at i2 and

maximum at i4. This is consistent with the early observation (Baron & Quadrio,

1996) that streaks and quasi-streamwise vortices are displaced by the spanwise

Stokes layer differently.

From figure 2.6, one notices that the phase evolution of XF′′XF′′
< resembles

that of XD′′XD′′<, thus suggesting that part of the stochastic F′′ fluctuations derives

from a redistribution of the streamwise fluctuations. The near-wall structures are

tilted in the G − I plane and follow the shear vector (d*/dH, 0, mF̃/mH) (Yakeno

et al., 2014). The tilting causes the streamwise high- and low-speed streaks to

re-orient, thus contributing via pressure–strain redistribution (see below §2.4.3) to

the spanwise stochastic fluctuations. When the tilting angle is positive (negative),

the low- and high-speed streaks contribute to respectively positive (negative) and

negative (positive) F′′. This produces regions of F′′ fluctuations that correlate

negatively for scales AG and AI and position . compatible with the position of

XF′′XF′′
< observed in figure 2.5. This is shown with a sketch in figure 2.7, and

confirmed with a phase-by-phase conditional average of events extracted from the

present database in Appendix 2.C. The picture is also consistent with the lower

XF′′XF′′
< observed in figure 2.4 for )+ = 75: for periods close to the optimum,
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Figure 2.8: Left: evolution of the tilt angle of the wall streaks during the cycle.

Comparison between present results (blue symbols) and the shear angle introduced

by Yakeno et al. (2014) (red symbols). Right: wall-normal position of the struc-

tures, educed from the wall-normal position .+
< of XF′′XF′′

<.

the oscillation is too fast for the streaks to align with the shear vector (Touber &

Leschziner, 2012), and this redistribution mechanism becomes weaker.

Similar information is usually extracted (Yakeno et al., 2014) from phase-

locked conditional averages. However, such statistics are unavoidably arbitrary

to some degree: e.g. “short” structures have to be excluded from averaging, and

one needs to pre-determine a specific wall distance for the eduction procedure.

Here we obtain information that is equivalent to conditional averaging, but via a

statistical analysis that is free from assumptions and hypotheses.

For example, the scales AI,< and AG,< identified by XF′′XF′′
< can be used to

track the phase evolution of the tilting angle \ of the flow structures during the

cycle:

|\ (i) | = tan−1

(
AI,< (i)
AG,< (i)

)
. (2.27)

Similarly, the evolution of the wall-normal position .< of XF′′XF′′
< (or, equiva-

lently, of XD′′XD′′<) quantifies the vertical displacement of the streaks during the

cycle. Figure 2.8 compares |\ | with the shear angle \B evaluated at .<, i.e.

\B = tan−1

(
mF̃/mH
d*/dH

)
,

that is conventionally used to describe the tilting angle of the near-wall structures

(Yakeno et al., 2014; Gallorini et al., 2022). The two quantities \ and \B are quan-

titatively similar and present the same phase dependence, with a nearly constant

difference of about 8◦. The right panel of figure 2.8 also shows that when the

tilting angle of the streaks is maximum, their distance from the wall is minimum

(and vice versa). This implies that a higher coherent spanwise velocity yields a

larger tilting.
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Part of the wall-parallel modulation of XF′′XF′′ induced by the wall oscillation

derives from the interaction of the quasi-streamwise vortices with the coherent

spanwise shear. When the coherent shear mF̃/mH is positive, the quasi-streamwise

vortices move low-spanwise-velocity fluid upwards, and high-spanwise-velocity

fluid downwards. The opposite happens when mF̃/mH < 0. This creates two

regions with spanwise velocity of opposite sign at the vortex sides, resulting in

negative '33 correlation and a positive peak of XF′′XF′′ at their characteristic span-

wise separation. This process, quantified by the coherent-stochastic production

?2B
33

(see §2.4.2), resembles the ejections and sweeps typical of the near-wall cycle,

where the mean streamwise shear is involved; its description is similar to the expla-

nation provided by Agostini et al. (2014) for the non-zero⟨E′′F′′⟩. Once again, our

interpretation is supported by the velocity field induced by the ensemble-averaged

quasi-streamwise vortex, computed at various phases and shown in Appendix 2.C.

2.4.2 Interaction of the mean, coherent, and fluctuating fields

The energy exchanges of the mean field with the stochastic and coherent fields

are described by the two mean production terms ?<2
8 9

and ?<B
8 9

. However, as

shown in figure 2.3, for the present problem ?<2
8 9

= 0, and the mean field interacts

directly with the stochastic field only, by feeding (or draining from) streamwise

fluctuations. Moreover, energy is exchanged between the coherent and stochastic

fields via the coherent-stochastic production ?2B
8 9

, which involves only XD′′XD′′ and

XF′′XF′′ among the diagonal components of the XD′′
8
XD′′

9
tensor.

Figure 2.9 shows how the mean-stochastic production ?<B
11

varies with i for

)+ = 75 (left) and )+ = 250 (right) in the AG = AH = 0 plane, where the production

terms are maxima. Here ?<B
11

reduces to

?<B
11 = −2XD′′XE′′

(
d*

dH

)
.

The mean-stochastic production is positive everywhere, with a peak in the range

A+I,< = 36− 42 and .+
< = 13− 17 for )+ = 75 and A+I,< = 36− 39 and .+

< = 12− 14

for)+ = 250. Hence, the interaction of the near-wall cycle (XD′′XE′′) with the mean

shear (d*/dH) invariably moves energy from the mean field towards the stochastic

streamwise fluctuations. Note that the smaller .+ for )+ = 250 is consistent

with the reduced thickening of the viscous sublayer for suboptimal periods. The

production intensity is largest at i1 and lowest at i3 for )+ = 75, whereas it is

largest at i3 and lowest at i1 for )+ = 250. Since d*/dH is phase-independent,

this can only descend from XD′′XE′′, which includes the phase evolution of the

streaks and of the quasi-streamwise vortices (see §2.4.1.2 above).
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Figure 2.9: Mean-stochastic production ?<B
11

+ in the (A+I , .+) plane for )+ = 75

(left) and )+ = 250 (right). From top to bottom: i1, i2, i3, i4. The contour line

is set at 95% of the smallest maximum over the phases. The coordinates of the

maximum, marked with a cross, can be read on the axes.
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Figure 2.10: Coherent-stochastic production ?2B
11

+ (left) and ?2B
33

+ (right) in the

(A+I , .+) plane for )+ = 75. From top to bottom: i1, i2, i3, i4. The thin contour

line is set at 95% of the smallest (positive and negative) maximum over the phases;

the thick black contour line is ?2B
88

= 0. The coordinates of the maximum, marked

with a cross, can be read on the axes.
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Figures 2.10 for )+ = 75 and 2.11 for )+ = 250 show how ?2B
11

and ?2B
33

change

with i. Like for ?<B
11

, the expressions for ?2B
11

and ?2B
33

simplify in the AG = AH = 0

plane where their maxima occur, i.e.

?2B11 = −2XD′′XE′′
(
mD̃

mH

)
and ?2B33 = −2XE′′XF′′

(
mF̃

mH

)
.

Unlike ?<B
11

, however, these productions can take either sign. Their maps show

evident horizontal stripes of alternating sign, from the wall up to .+ ≈ 40: hence,

at a given phase the coherent field feeds the stochastic field at certain wall distances,

but extracts energy from it at others. It is worth noting that, although ?2B
11

and ?2B
33

at

a given phase are both positive and negative, after averaging over the phases
〈
?2B

11

〉

almost vanishes and
〈
?2B

33

〉
is positive everywhere. This is not entirely new, and

confirms the single-point analysis by Agostini et al. (2014) (see their figure 14);

however, scale information is added here so that this mechanism can be related to

the structures of the flow. At every phase, the positive/negative peaks of ?2B
11

and

?2B
33

occur at A+I ≈ 25 − 50, a spanwise separation which points to the structures of

the near-wall cycle.

The intensity of ?2B
11

and ?2B
33

at the two periods is comparable, at all scales

and positions. However, for ?2B
11

the contribution of the shear stresses is dominant,

whereas the opposite occurs for ?2B
33

, where the coherent spanwise shear dominates.

Indeed, mF̃/mH is two orders of magnitude larger than mD̃/mH, and XE′′XF′′ is

two orders of magnitude smaller than XD′′XE′′. Note, moreover, that for both

control periods ?<B
11

≫ ?2B
11

, meaning that the streamwise stochastic fluctuations

are predominantly fed by the mean field.

The alternating positive/negative stripes for ?2B
11

and ?2B
33

are due to the change

of sign of mD̃/mH and mF̃/mH with H. For ?2B
33

, the changing sign of the shear is

also indirectly responsible for the alternating positive/negative XE′′XF′′, due to the

quasi-streamwise vortices-shear interaction described in §2.4.1.2. In contrast, for

?2B
11

, XD′′XE′′ is entirely due to the interaction of the near-wall structures with the

mean shear d*/dH, which overwhelms mD̃/mH everywhere.

Comparing figures 2.10 and 2.11 highlights that the slower oscillation intro-

duces substantial differences in the coherent-stochastic energy exchange. The

positive/negative maxima of ?2B
11

increase, and their position move towards larger

AI and larger . , but the effect of )+ on ?2B
33

is even more evident. At )+ = 250,

the stripes of negative ?2B
33

weaken, while those with ?2B
33

> 0 strengthen: overall,

the spanwise contribution to the energy flowing from the coherent to the stochastic

field becomes larger. A larger oscillating period implies a larger thickness of the

Stokes layer, proportional to
√
a) , thus stretching outwards the coherent spanwise

shear and, as a consequence, the scale-space map of XE′′XF′′, yielding an overall

increase of the positive ?2B
33

. At i2 and i3, for example, mF̃/mH is negative close
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Figure 2.11: As in figure 2.10, but for )+ = 250.
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to the wall and changes sign only at H+ ≈ 30 − 50 for )+ = 250 (see figure 2.2),

while it changes sign already at H+ ≈ 13 − 18 for )+ = 75 (not shown). For

)+ = 250 this results into a large increase of the near-wall positive ?2B
33

, as high-

lighted by the dark red colour in figure 2.11. Due to the negative mF̃/mH, indeed,

the quasi-streamwise vortices induce on their sides positive/negative E′′ and con-

vect upwards/downwards high/low spanwise velocity F′′, thus yielding positive

XE′′XF′′ and an intense energy exchange from the coherent to the stochastic field.

The scale-space information of this exchange mechanism is highlighted by the

positive peak of ?2B
33

placed at (A+I , .+) ≈ (38, 9) for the considered i2 and i3

phases.

2.4.3 Pressure–strain redistribution

As seen schematically in figure 2.3, the pressure–strain action partially redistributes

the streamwise energy XD′′XD′′ drained from the mean flow towards the cross-

stream fluctuations XE′′XE′′ and XF′′XF′′. The left panels of figure 2.12 show

that cB
11

< 0, cB
22

> 0 and cB
33

> 0 at almost all scales and positions: only in

a very thin region close to the wall cB
11

> 0, cB
22

< 0 and cB
33

> 0, according

to the reorientation of vertical fluctuations into wall-parallel ones because of the

impermeable wall (Mansour et al., 1988). The peaks of cB
11

, cB
22

and cB
33

in the

(AI, . ) plane have .+
< ≈ 11 − 27 and A+I,< ≈ 30 − 52, indicating that the energy

redistribution is dominated by the near-wall cycle.

It is known (Touber & Leschziner, 2012; Yakeno et al., 2014) that the spanwise

oscillation of the wall enhances the energy redistribution, mainly towards spanwise

fluctuations. Compared to the uncontrolled case, the negative peak of cB
11

increases

by 23–67% for )+ = 75 and by 36–77% for )+ = 250, while the positive peak

of cB
22

decreases by 2–11% for )+ = 75 and increases by 4–29% for )+ = 250.

The positive peak of cB
33

, instead, has the largest variation, with and increase of

30–53% for )+ = 75 and 40–87% for )+ = 250.

The phase evolution of the pressure-mediated energy redistribution is described

in the right panels of figure 2.12 for the )+ = 250 case, by considering the maxima

of the diagonal components of cB
8 9

. Only their values are plotted, since their

position remains nearly constant at (.+, A+I ) ≈ (20, 52) for cB
11,<

, ≈ (27, 30) for

cB
22,<

and ≈ (12, 46) for cB
33,<

. Like XE′′XE′′<, cB
22,<

is the component with the

smallest intra-cycle variation, with a 21% excursion during the cycle compared to

30% and 35% for cB
11,<

and cB
33,<

. In fact, the largest energy redistribution towards

XE′′XE′′ occurs quite far from the wall, where the influence of the Stokes layer is

weak. The phase dependence of cB
11,<

is qualitatively different from the others.

The redistribution of XD′′XD′′ towards the cross-stream components is maximum

at i3 and minimum at i1, following the absolute value of cB
11,<

. In contrast, cB
22,<
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Figure 2.12: Left: pressure–strain redistribution cB+
88

from XD′′XD′′ towards XE′′XE′′

and XF′′XF′′ at phase i4 for )+ = 250; the coordinates of the maximum, marked

with a cross, can be read on the axes. Right: phase variation of their maxima in the

(A+I , .+) plane, with a horizontal solid line indicating the value of the uncontrolled

flow.
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and cB
33,<

are minima at i2 and maxima at i4 (this is not inconsistent with the

incompressibility constraint cB
11

+ cB
22

+ cB
33

= 0, since the three maxima occur

at different scales and positions.) As already mentioned in §2.4.1.2, cB
33,<

and

XF′′XF′′
< have the same phase dependence, confirming that the tilting of the near-

wall structures is accompanied by a redistribution of the streamwise fluctuations

towards the spanwise ones.

2.4.4 Transfers of the spanwise stresses

A peculiarity of the present flow is the direct connection between the Stokes layer

and the stochastic stresses, described by the coherent-stochastic production %2B

shown in figure 2.3. It is therefore interesting to examine the variable-phase scale-

space transfers of the stochastic stresses by looking at their fluxes in the scale

and physical spaces. In this analysis, we only consider the transfer of spanwise

stresses XF′′XF′′, since for the streamwise stresses ?2B
11

is negligible compared to

?<B
11

. Moreover, only the )+ = 250 case is considered, as the one where the effect

of the Stokes layer on the F′′ field is larger. For simplicity, the analysis is restricted

to the AG = AH = 0 subspace, where the budget of XF′′XF′′ can be rewritten by

moving to the r.h.s. the off-plane flux divergence terms mqB
G,33

/mAG , mqB
H,33

/mAH
and the phase evolution term, as follows:

mqB
I,33

mAI
+
mkB

33

m.
= ?2B33 + cB33 + 3B33︸             ︷︷             ︸

bB
33

−
mqB

G,33

mAG
−
mqB

H,33

mAH
− l

mXF′′XF′′

mi
. (2.28)

In this way, the l.h.s. features the divergence of the in-plane flux vector, which

provides information on the energetic relevance of the fluxes with its intensity,

and shows their direction via its field lines. Moreover, the off-plane fluxes (i.e.

the last three terms in the equation above) are always very small, and the in-plane

divergence approximates well the full source term bB
33

everywhere (Gatti et al.,

2020). This descends from a combination of the symmetries owned by the plane

channel flow system, and of the approximate alignment of the dominant vortical

structures with the streamwise direction. Hence, the scale-space properties of the

source term bB
33

approximate well those of the divergence of the in-plane flux.

Figure 2.13 plots the map of bB
33

= ?2B
33

+ cB
33

+ 3B
33

for the uncontrolled case

(where ?2B
33

= 0) and the controlled case at )+ = 250 for i1, i2, i3 and i4, with

the field lines of the in-plane flux coloured with its divergence. In the uncontrolled

case, a region with bB
33

> 0 extends for 5 ⪅ .+ ⪅ 100 and for A+I ⪆ 15, at scales

and positions where the pressure–strain dominates over dissipation. When control

is active, instead, bB
33

receives the additional contribution from coherent-stochastic

production, and the values of bB
33

are generally larger. Two regions with bB
33

> 0
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Figure 2.13: Source bB+
33

in the (A+I , .+) plane, with field lines of the in-plane

flux vector coloured with its divergence for the uncontrolled case (top) and for

the controlled case at )+ = 250 at phases i1, i2, i3 and i4. The thin contour

line marks the zero level. Dots (coloured according to figure 2.2) indicate the

singularity point for the near-wall source, and the black vertical line marks the

cut-off spanwise scale A+I,<8= (see text).

115



Figure 2.14: Region with positive source in the (A+I , .+) plane at phases i1, i2,

i3 and i4 for )+ = 250. The colour scale is for the ratio cB
33
/(bB

33
− 3B

33
) and is

centered at 0.5: red means cB
33

> ?2B
33

, and blue means cB
33

< ?2B
33

.

exist. One is close to the wall at .+ ≈ 10 − 20, and extends for all scales A+I ⪆ 15,

with a peak at A+I ≈ 40. A second, connected region involves larger wall distances

and scales, in the 40 ⪅ A+I ⪅ 200 range. It is clearly visible in figure 2.14, where the

ratio cB
33
/(bB

33
− 3B

33
) is plotted to determine the main contribution to these positive

sources at the different phases. When cB
33
/(bB

33
− 3B

33
) > 0.5, cB

33
> ?2B

33
meaning

that the pressure–strain is the largest contribution to the positive source. When

cB
33
/(bB

33
− 3B

33
) < 0.5, instead, the main contributor is the coherent-stochastic

production ?2B
33

. Figure 2.14 shows that ?2B
33

and cB
33

contribute both to the near-

wall source, but their relative importance changes with the phase. For i2 and i3

?2B
33

is the main contributor to the intense source peak. For i1 and i4, instead, ?2B
33

weakens (see figure 2.11): now the (weaker) source is mainly fed by the pressure–

strain. The source at larger . , instead, is dominated by the pressure–strain at all

phases; this is reasonable, as for H+ > 30 the Stokes layer and consequently the

coherent-stochastic production are weak.

As for the sinks, figure 2.13 shows three of them: viscous effects dominate the

very near-wall region (. → 0), the bulk flow (. → ℎ), and the smallest scales

(AI → 0). Extension and intensity of these sinks change with i, according to the

evolution of ?2B
33

, cB
33

and 3B
33

. A cut-off scale AI,<8= (Chiarini et al., 2022a) can

also be plotted to quantify the minimal scale where (spanwise) energy is always

dissipated, regardless of the wall distance.
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The field lines of XF′′XF′′ drawn in figure 2.13 originate from a singularity

point, i.e. a point near the source peak where the direction of the fluxes is undefined.

Here the lines are energised by the intense positive source and transfer XF′′XF′′

towards the sinks. Three types of lines are recognised, depending on where they

vanish, and reflect the three sinks described above. Overall, these fluxes indicate

the coexistence of ascending/descending and direct/inverse energy transfers, as

described by Cimarelli et al. (2013, 2016); Chiarini et al. (2022b) in the context

of Poiseuille and Couette turbulent flows.

The three line types possess the same topology in the uncontrolled and con-

trolled cases. For the latter, though, the amount of spanwise energy withdrawn from

the sources and released to the sinks changes with i. An estimate of this change

is provided by the phase evolution of the positive peak of the two-dimensional

divergence of the flux vector. Its value is maximum at i3 where it is 3.36, 1.56

and 1.29 times larger than at i1, i2 and i4 respectively. This is consistent with the

phase evolution of the positive peak of ?2B
33

visualised in figure 2.11. Moreover,

the singularity point lies in the source region dominated by ?2B
33

, and its AI position

moves with i following the peak of ?2B
33

, being A+I = 24, 33, 40 and 45 for i1, i2,

i3 and i4; for the uncontrolled case it is A+I = 26.

We therefore conclude that, at least for the )+ = 250 case discussed here, the

phase dependence of the transfers of XF′′XF′′ is governed by the ?2B
33

contribution

to bB
33

rather than by cB
33

. At all phases, the largest part of the XF′′XF′′ withdrawn

by the source is released in the near-wall region; a relatively smaller part goes to

the smallest scales, and a minimal part goes towards the channel centre, where the

turbulent activity is low. By comparing the negative peaks of the divergence of the

in-plane flux vector at the wall and at the smallest scales, it is established that in the

uncontrolled case the amount of XF′′XF′′ released at . → 0 is 5.67 times larger

than that released at AI → 0. The oscillating wall alters the relative importance of

the fluxes: the amount of XF′′XF′′ released at . → 0 is significantly less, being

2.62, 3.85, 2.46 and 2.41 times larger than that released at AI → 0, at phases i1,

i2, i3 and i4 respectively.

2.5 Concluding discussion

We have derived the phase-aware anisotropic generalised Kolmogorov equations

or iAGKE, inferred from the incompressible Navier–Stokes equations, after a

triple decomposition to separate the velocity and pressure fields into their coherent

and stochastic parts.

The iAGKE are exact budget equations for the coherent and stochastic con-

tributions to the second-order structure function tensor, namely XD̃8XD̃ 9 (X , r, i)
and XD′′

8
XD′′

9
(X , r, i). Compared to the standard AGKE, which are based on the
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classic (double) Reynolds decomposition, the iAGKE add extra features. (i) The

transport equations for the coherent and stochastic parts are separated: disentan-

gling their dynamics becomes possible. (ii) The scale-space energy exchanges

among mean, coherent, and stochastic fields can be tracked. In particular, the

mean-coherent production ?<2
8 9

and the mean-stochastic production ?<B
8 9

bring out

scales and positions where the mean flow feeds, and/or drains energy from, the

coherent and stochastic fields; the coherent-stochastic production ?2B
8 9

describes

the exchange between the coherent and stochastic fields. (iii) An extra term in

the budget for XD̃8XD̃ 9 represents the mutual interaction of the coherent motions at

different phases. (iv) The iAGKE imply no average over phases, and thus describe

the phase variation of the various terms related to coherent and stochastic motions.

Once a phase average is taken, as in Alves Portela et al. (2020), phase information

is obviously lost.

To demonstrate the potential of the iAGKE, we have applied them to a turbulent

plane channel flow in which spanwise wall oscillations reduce the turbulent skin

friction. The iAGKE are perfectly suited for this flow, owing to its deterministic

and periodic external forcing; moreover, the physics of drag reduction remains not

entirely understood and contains interesting inter-phase and multi-scale dynamics.

Thanks to the iAGKE, the phase-dependent modifications of the near-wall

turbulent structures have been observed without the need for somewhat arbitrary

procedures to educe phase-locked and conditionally-averaged structures. The flow

scales involved in the redistribution of fluctuating energy have been described,

together with the process by which streamwise velocity fluctuations are converted

into spanwise ones by the action of pressure–strain. The interaction among the

mean, coherent, and stochastic fields is easily observed with the iAGKE, which

highlight the energy exchanges between the coherent and stochastic fields, driven

by the interaction between the quasi-streamwise vortices and the coherent span-

wise shear. The phase-by-phase, scale-space transfers of the spanwise stochastic

stresses, observed here for the first time, have revealed a significant phase depen-

dency for the spanwise energy fluxes, which present ascending/descending and

direct/inverse energy transfers at all phases.

The iAGKE can be leveraged to arrive at a thorough description of two-

points second-order statistics in cases that reach far beyond the oscillating-wall

problem, used here as a representative example only. Turbulent flows where

an external periodic forcing is present are common: oscillating airfoils, rotors

and turbines are only a few examples. Moreover, the iAGKE can also be used

to tackle turbulent flows without a strictly periodic forcing, in which stochastic

fluctuations coexist with some kind of coherent motion. A non-exhaustive list

includes the turbulent flow past bluff bodies, where large-scale motions typical of

the Kármán-like vortices in the wake coexist with the stochastic motion of smaller

scale (Provansal et al., 1987); the Taylor–Couette flow, in which Taylor–Görtler
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vortices develop and remain visible well into the turbulent regime (Koschmieder,

1979); the atmospheric boundary layer, rich with quasi-two-dimensional structures

forced at smaller scales (Young et al., 2002). In such cases, though, the period of

the oscillation is not uniquely identified, and attention has to be paid to properly

define a phase reference.

Lastly, it should be realised that the specific triple decomposition behind the

iAGKE does not matter: alternatives to the temporal triple decomposition could

be used with a different meaning attached to the ·̃ and ·′′ operators, without

altering the ensuing equations. One example is the spatial triple decomposition

approach adopted for example by Bech & Andersson (1996) and Gai et al. (2016) to

decompose the velocity fluctuations into secondary flow and residual fluctuations

in a rotating turbulent plane Couette flow. A further use case for the iAGKE

would be a turbulent flow over a flat wall with a periodic pattern, like e.g. riblets

or dimples, in which the phase average would be again spatially defined. Finally,

another option is to employ a scale-based triple decomposition. For example,

Andreolli et al. (2021) used a scale decomposition mutuated from Kawata &

Alfredsson (2018) to separate the fluctuating velocity field in a Couette flow into

small- and large-scale components, examining the kinetic energy budget of both

components in physical space. This information, compacted by Andreolli et al.

(2021) through spatial integration into an energy budget without independent

variables, similar to that in figure 2.3, can instead be expanded at will in the

full physical and scale space thanks to the iAGKE, thus providing the ultimate

information about two-points second-order statistics of the flow.

2.A Derivation of the budget equations for XD̃8XD̃ 9

and XD′′
8
XD′′

9

The derivation of the iAGKE equations via triple decomposition is described

below, by listing the sequence of the main analytical steps.

2.A.1 Budget equation for *8, D̃8 and D′′8
The starting point is the incompressible Navier–Stokes equations:

mD8

mC
+ D:

mD8

mG:
= −1

d

m?

mG8
+ a

m2D8

mG:mG:
+ 58 . (2.29)
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The triple decomposition (2.1) for D8, ? and 58 is introduced to obtain:

mD̃8

mC
+
mD′′8
mC

+
(
*: + D̃: + D′′:

) m

mG:

(
*8 + D̃8 + D′′8

)
= −1

d

m

mG8
(% + ?̃ + ?′′) +

+a m2

mG:mG:

(
*8 + D̃8 + D′′8

)
+ �8 + 5̃8 + 5 ′′8

(2.30)

which can be reorganised as

mD̃8

mC
+
mD′′8
mC

+*:

m*8

mG:
+*:

mD̃8

mG:
+*:

mD′′8
mG:

+ D̃:
m*8

mG:
+ D̃:

mD̃8

mG:
+ D̃:

mD′′8
mG:

+

+D′′:
m*8

mG:
+ D′′:

mD̃8

mG:
+ D′′:

mD′′8
mG:

= −1

d

m%

mG8
− 1

d

m ?̃

mG8
− 1

d

m?′′

mG8
+

+a m2*8

mG:mG:
+ a

m2D̃8

mG:mG:
+ a

m2D′′8
mG:mG:

+ �8 + 5̃8 + 5 ′′8 .

(2.31)

Now the averaging operator ⟨·⟩ is used to arrive at the budget equation for *8, i.e.

*:

m*8

mG:
+
〈
D̃:

mD̃8

mG:

〉
+
〈
D′′:

mD′′8
mG:

〉
= −1

d

m%

mG8
+ a

m2*8

mG:mG:
+ �8 . (2.32)

When, instead, the phase average operator · is used, we get:

mD̃8

mC
+*:

m*8

mG:
+ D̃:

m*8

mG:
+*:

mD̃8

mG:
+ D̃:

mD̃8

mG:
+ D′′

:

mD′′
8

mG:
=

−1

d

m%

mG8
− 1

d

m ?̃

mG8
+ a

m2*8

mG:mG:
+ a

m2D̃8

mG:mG:
+ �8 + 5̃8

(2.33)

which can be written differently using the budget equation for *8, i.e.:

mD̃8

mC
+ D̃:

m*8

mG:
+*:

mD̃8

mG:
+ D̃:

mD̃8

mG:
+ D′′

:

mD′′
8

mG:
−
〈
D̃:

mD̃8

mG:

〉
−
〈
D′′:

mD′′8
mG:

〉
=

−1

d

m ?̃

mG8
+ a

m2D̃8

mG:mG:
+ 5̃8 .

(2.34)

This leads to the budget equation for D̃8, i.e.

mD̃8

mC
+*:

mD̃8

mG:
+ D̃:

m*8

mG:
+ m

mG:
(D̃8D̃: −⟨D̃8D̃:⟩) +

m

mG:

(
D′′
8
D′′
:
−
〈
D′′8 D

′′
:

〉)
=

−1

d

m ?̃

mG8
+ a

m2D̃8

mG:mG:
+ 5̃8 .

(2.35)
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The budget equation for D′′8 is obtained by subtracting from (2.31) the budget

equations for *8 (2.32) and D̃8 (2.35):

mD′′8
mC

+*:

mD′′8
mG:

+ D̃:
mD′′8
mG:

+ D′′:
m*8

mG:
+ D′′:

mD̃8

mG:
+ m

mG:

(
D′′8 D

′′
: − D′′

8
D′′
:

)
=

−1

d

m?′′

mG8
+ a

m2D′′8
mG:mG:

+ 5 ′′8 .

(2.36)

2.A.2 iAGKE for XD̃8XD̃ 9

The budget equation for D̃8 in x is subtracted from the one evaluated in x+ = x+r:

X

(
mD̃8

mC

)
+ X

(
*:

mD̃8

mG:

)
+ X

(
D̃:

m*8

mG:

)
+ X

(
m

mG:
(D̃8D̃: −⟨D̃8D̃:⟩)

)
+

+X
(
m

mG:

(
D′′
8
D′′
:
−
〈
D′′8 D

′′
:

〉))
= −X

(
1

d

m ?̃

mG8

)
+ X

(
a

m2D̃8

mG:mG:

)
+ X

(
5̃8
)
.

(2.37)

By recalling that the two reference systems are independent, one may write for

example:

X

(
*:

mD̃8

mG:

)
= *+

:

mXD̃8

mG+
:

+*:

mXD̃8

mG:
; (2.38)

using the same line of reasoning for all the other terms one obtains

mXD̃8

mC
+*+

:

mXD̃8

mG+
:

+*:

mXD̃8

mG:
+ D̃+:

mX*8

mG+
:

+ D̃:
mX*8

mG:
+ D̃+:

mXD̃8

mG+
:

+ D̃:
mXD̃8

mG:
+

−
〈
D̃+:

mXD̃8

mG+
:

〉
−
〈
D̃:

mXD̃8

mG:

〉
+ D

′′+
:

mXD′′
8

mG+
:

+ D′′
:

mXD′′
8

mG:
−
〈
D
′′+
:

mXD′′8
mG+

:

〉
−
〈
D′′:

mXD′′8
mG:

〉
=

−1

d

mX?̃

mG+
8

− 1

d

mX?̃

mG8
+ a

(
m2

mG+
:
mG+

:

+ m2

mG:mG:

)
XD̃8 + X 5̃8 .

(2.39)

Then one may write for example

D̃+:
mXD̃8

mG+
:

= XD̃:
mXD̃8

mG+
:

+ D̃:
mXD̃8

mG+
:

(2.40)
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and using this expression for all the terms we obtain the budget equation for XD̃8:

mXD̃8

mC
+ X*:

mXD̃8

mG+
:

+*:

(
m

mG+
:

+ m

mG:

)
XD̃8 + XD̃:

mX*8

mG+
:

+ D̃:

(
m

mG+
:

+ m

mG:

)
X*8+

+XD̃:
mXD̃8

mG+
:

+ D̃:

(
m

mG+
:

+ m

mG:

)
XD̃8 −

〈
XD̃:

mXD̃8

mG+
:

〉
−
〈
D̃:

(
m

mG+
:

+ m

mG:

)
XD̃8

〉
+

+XD′′
:

mXD′′
8

mG+
:

+ D′′
:

(
m

mG+
:

+ m

mG:

)
XD′′

8
−
〈
XD′′:

mXD′′8
mG+

:

〉
−
〈
D′′:

(
m

mG+
:

+ m

mG:

)
XD′′8

〉
=

−1

d

mX?̃

mG+
8

− 1

d

mX?̃

mG8
+ a

(
m2

mG+
:
mG+

:

+ m2

mG:mG:

)
XD̃8 + X 5̃8 .

(2.41)

This equation is multiplied by XD̃ 9 to obtain:

XD̃ 9

mXD̃8

mC
+ XD̃ 9X*:

mXD̃8

mG+
:

+ XD̃ 9*:

(
m

mG+
:

+ m

mG:

)
XD̃8 + XD̃ 9XD̃:

mX*8

mG+
:

+

+XD̃ 9 D̃:

(
m

mG+
:

+ m

mG:

)
X*8 + XD̃ 9XD̃:

mXD̃8

mG+
:

+ XD̃ 9 D̃:

(
m

mG+
:

+ m

mG:

)
XD̃8 − XD̃ 9

〈
XD̃:

mXD̃8

mG+
:

〉
+

−XD̃ 9

〈
D̃:

(
m

mG+
:

+ m

mG:

)
XD̃8

〉
+ XD̃ 9XD

′′
:

mXD′′
8

mG+
:

+ XD̃ 9D
′′
:

(
m

mG+
:

+ m

mG:

)
XD′′

8
+

−XD̃ 9

〈
XD′′:

mXD′′8
mG+

:

〉
− XD̃ 9

〈
D′′:

(
m

mG+
:

+ m

mG:

)
XD′′8

〉
= −XD̃ 9

1

d

(
m

mG+
8

+ m

mG8

)
X?̃+

+aXD̃ 9

(
m2

mG+
:
mG+

:

+ m2

mG:mG:

)
XD̃8 + XD̃ 9X 5̃8 .

(2.42)

The same equation is written again by swapping the 8 and 9 indices, and the two
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equations are then summed together:

m

mC
XD̃8XD̃ 9 + XD̃ 9X*:

mXD̃8

mG+
:

+ XD̃8X*:

mXD̃ 9

mG+
:

+ XD̃ 9*:

(
m

mG+
:

+ m

mG:

)
XD̃8+

+XD̃8*:

(
m

mG+
:

+ m

mG:

)
XD̃ 9 + XD̃ 9XD̃:

mX*8

mG+
:

+ XD̃8XD̃:
mX* 9

mG+
:

+ XD̃ 9 D̃:

(
m

mG+
:

+ m

mG:

)
X*8+

+XD̃8D̃:
(

m

mG+
:

+ m

mG:

)
X* 9 + XD̃ 9XD̃:

mXD̃8

mG+
:

+ XD̃8XD̃:
mXD̃ 9

mG+
:

+ XD̃ 9 D̃:

(
m

mG+
:

+ m

mG:

)
XD̃8+

+XD̃8D̃:
(

m

mG+
:

+ m

mG:

)
XD̃ 9 − XD̃ 9

〈
XD̃:

mXD̃8

mG+
:

〉
− XD̃8

〈
XD̃:

mXD̃ 9

mG+
:

〉
+

−XD̃ 9

〈
D̃:

(
m

mG+
:

+ m

mG:

)
XD̃8

〉
− XD̃8

〈
D̃:

(
m

mG+
:

+ m

mG:

)
XD̃ 9

〉
+

+XD̃ 9XD
′′
:

mXD′′
8

mG+
:

+ XD̃8XD
′′
:

mXD′′
9

mG+
:

+ XD̃ 9D
′′
:

(
m

mG+
:

+ m

mG:

)
XD′′

8
+

+XD̃8D′′:
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m
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:

+ m
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)
XD′′

9
− XD̃ 9
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mXD′′8
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− XD̃ 9
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m

mG+
:

+ m

mG:

)
XD′′8

〉
+

−XD̃8

〈

XD′′:
mXD′′9
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:

〉

− XD̃8
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m

mG+
:

+ m
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)
XD′′9

〉
= −XD̃ 9

1

d

(
m

mG+
8

+ m

mG8

)
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−XD̃8
1

d

(
m

mG+
9

+ m

mG 9

)

X?̃ + aXD̃ 9
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m2

mG+
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mG+
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+ m2
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XD̃8+

+aXD̃8
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m2

mG+
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mG+

:
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mG:mG:

)
XD̃ 9 + XD̃ 9X 5̃8 + XD̃8X 5̃ 9 .

(2.43)

At this point, after applying the phase average operator · and manipulating the
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equations, one obtains:

m

mC
XD̃8XD̃ 9 +

m

mG+
:

X*:XD̃8XD̃ 9 +
(

m

mG+
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+ m

mG:
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(2.44)

We now introduce the new independent variables X and r such that

-8 =
G8 + G+8

2
A8 = G+8 − G8 .

As a result the G8- and G+8 -derivatives are related to the -8- and A8-derivatives by

the following relations:

m

mG8
=

1

2

m

m-8

− m

mA8
;

m

mG+
8

=
1

2

m

m-8

+ m

mA8
;

m2

mG+
:
mG+

:

+ m2

mG:mG:
=

1

2

m2

m-:m-:

+2
m2

mA:mA:
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The previous equation (2.44) becomes:

m
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(
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(
1

2

m

m-:

+ m

mA:

)
X*8+

+XD̃8XD̃:
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X* 9 + XD̃ 9 D̃:

m
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mA:
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〉
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+
〈
D̃∗:XD̃ 9

〉 mXD̃8
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+ XD̃ 9

(
1

2

m
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8
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:
+ XD̃8

(
1

2

m
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9
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:
+

+XD̃ 9D
′′
:

m
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8
+ XD̃8D

′′
:

m
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9
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〈
XD′′8 XD
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〉
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+
〈
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′′
:

〉 mXD̃8
mA:

− m

m-:

〈
D′′∗: XD′′9

〉
XD̃8 +

〈
D′′∗: XD′′9

〉 mXD̃8
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=

−XD̃ 9

1

d

(
m

m-8

)
X?̃ − XD̃8

1

d

(
m

m- 9

)
X?̃ + aXD̃ 9

(
1

2
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)
XD̃8+

+aXD̃8
(
1

2
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+ 2
m2

mA:mA:
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XD̃ 9 + XD̃ 9X 5̃8 + XD̃8X 5̃ 9

(2.45)

where the star (·)∗ denotes the average of any quantity between x and x+. We also

observe that:

XD̃ 9

(
1

2

m

m-:

+ m

mA:

)
XD′′

8
XD′′

:
+ XD̃ 9D

′′
:

m

m-:

XD′′
8
=

XD̃ 9

(
1

2

m

m-:

+ m

mA:

)
XD′′

8
XD′′

:
+ XD̃ 9

m

m-:

D′′
:
XD′′

8
=

XD̃ 9

m

mA:
XD′′

8
XD′′

:
+ XD̃ 9

m

m-:

1

2

(
D′′
:
+ D

′′+
:

)
XD′′

8
=

m

mA:
XD′′

8
XD′′

:
XD̃ 9 − XD′′

8
XD′′

:

mXD̃ 9

mA:
+ m

m-:

D′′∗
:
XD′′

8
XD̃ 9 − D′′∗

:
XD′′

8

m

m-:

XD̃ 9

(2.46)
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The viscous term can be simplified as:

aXD̃ 9

(
1

2

m2

m-:m-:

+ 2
m2

mA:mA:

)
XD̃8 + aXD̃8

(
1

2

m2

m-:m-:

+ 2
m2

mA:mA:

)
XD̃ 9 =

a

2

m2

m-:m-:

XD̃8XD̃ 9 + 2a
m2

mA:mA:
XD̃8XD̃ 9 − a

mXD̃8

m-:

mXD̃ 9

m-:

− 4a
mXD̃8

mA:

mXD̃ 9

mA:
=

a

2

m2

m-:m-:

XD̃8XD̃ 9 + 2a
m2

mA:mA:
XD̃8XD̃ 9 − 2

(
n 2+8 9 + n 28 9

)

(2.47)

where n 2
8 9

is the pseudo-dissipation tensor of the coherent part of the velocity,

defined as:

n 28 9 = a

〈
mD̃8

mG:

mD̃ 9

mG:

〉
(2.48)

Moreover we write:

XD̃ 9XD̃:
mX*8

mA:
= XD̃ 9XD̃:

(
m*8

mG:

)∗
(2.49)

and:

XD̃ 9 D̃
∗
:

m

m-:

X*8 = XD̃ 9 D̃
∗
:X

(
m*8

mG:

)
. (2.50)
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Finally, the budget equation for XD̃8XD̃ 9 is obtained:

m

mC
XD̃8XD̃ 9 +

m

mA:
X*:XD̃8XD̃ 9 +

m

m-:

*∗
:XD̃8XD̃ 9 +

m
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XD̃:XD̃8XD̃ 9 +

m
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D̃∗:XD̃8XD̃ 9+
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XD̃ 9 +

m
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D′′∗
:
XD′′

8
XD̃ 9 +

m
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:
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9
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m
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9
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a

2
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(
m
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)
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1

d
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m
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1
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m
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〈
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〉
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m
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〈
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〉
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m
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〈
D′′∗: XD′′9

〉
XD̃8 =

−XD̃ 9XD̃:

(
m*8

mG:

)∗
− XD̃8XD̃:

(
m* 9

mG:

)∗
− XD̃ 9 D̃

∗
:X

(
m*8

mG:

)
− XD̃8D̃

∗
:X

(
m* 9

mG:

)
+

−⟨XD̃8XD̃:⟩
(
mD̃ 9

mG:

)∗
−
〈
XD̃ 9XD̃:

〉 ( mD̃8
mG:

)∗
−
〈
XD̃8D̃

∗
:

〉
X

(
mD̃ 9

mG:

)
−
〈
XD̃ 9 D̃

∗
:

〉
X

(
mD̃8

mG:

)
+

−
〈
XD′′8 XD

′′
:

〉 (mD̃ 9

mG:

)∗
−
〈
XD′′9 XD

′′
:

〉 ( mD̃8
mG:

)∗
−
〈
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:
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X

(
mD̃ 9
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)
−
〈
XD′′9 D
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:

〉
X

(
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+

+XD′′
8
XD′′

:

mXD̃ 9
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+ XD′′

8
D′′∗
:

mXD̃ 9

m-:

+ XD′′
9
XD′′

:

mXD̃8

mA:
+ XD′′

9
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:

mXD̃8
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+

+1

d
X?̃

mXD̃ 9

m-8
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d
X?̃

mXD̃8

m- 9

− 4n 2∗8 9 + XD̃ 9X 5̃8 + XD̃8X 5̃ 9 .

(2.51)

2.A.3 iAGKE for XD′′
8
XD′′

9

We write the budget equation for D′′8 twice for the positions x and x+ = x + r,

then the first is subtracted from the second:

X

(
mD′′8
mC

)
+ X

(
*:

mD′′8
mG:

)
+ X

(
D̃:

mD′′8
mG:

)
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D′′:

m*8
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)
+ X
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D′′:

mD̃8
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)
+

+X
(
m

mG:

(
D′′8 D

′′
: − D′′

8
D′′
:
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(
1

d
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mG8

)
+ X

(

a
m2D′′8
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)

+ X
(
5 ′′8

)
.

(2.52)
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Following the line of reasoning described above, the equation for XD′′8 is obtained,

i.e:

mXD′′8
mC

+ X*:

mXD′′8
mG+

:

+*:

mXD′′8
mG+

:
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=
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XD8 + X 5 ′′8 .

(2.53)

As above, we first multiply this equation for XD′′9 , and then we sum to the same

equation with swapped 8 and 9 indices. Using again the independence of the x

and x+ reference systems and incompressibility, and applying the phase average

operator · we obtain:
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+
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:
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:
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:
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:
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+
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:
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:
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+
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=
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+
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(2.54)
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We switch as above to the notation with X and r to obtain:
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=
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(2.55)

where

n B8 9 = a
mD′′

8

mG:

mD′′
9

mG:
. (2.56)

is the pseudo-dissipation tensor of the stochastic part of the velocity. Also in this

case we can write

XD′′
9
XD′′

:

mX*8

mA:
= XD′′

9
XD′′
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m*8
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(2.57)
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X
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m*8
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(2.58)

so that the budget equation for XD′′
8
XD′′

9
is eventually obtained:
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2.B The iAGKE for the plane channel flow with

oscillating walls

The special form assumed by the iAGKE under the symmetries of a plane channel

flow with spanwise oscillations is reported below. The coherent part reduces to:
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Here the mean transport term contributes to qB
G , consistently with a non-zero

streamwise mean velocity *. Similarly, coherent transport appears in qB
G and qB

I,

since D̃ ≠ 0 and F̃ ≠ 0. Since no external volume forcing acts on the flow, the

interaction forcing term is zero for both components.
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2.C Analysis of conditionally-averaged quantities

In this Appendix, the interpretations of the local maxima of XF′′XF′′ in the AG =

AH = 0 and AI = AH = 0 planes provided in §2.4.1.2 are supported by inspecting

the velocity field induced by the conditionally-averaged quasi-streamwise vortex

at different phases of the control cycle. The procedure to extract the conditional

average from the DNS database closely resembles that presented by Jeong et al.

(1997); it is described in detail by Gallorini et al. (2022) and is not repeated here.

Figure 2.15 uses velocity isosurfaces to describe the spatial shape of the

conditionally-averaged negative rotating (SN) structure for the case at )+ = 250 at

the two phases i1 and i3. The extraction procedure is centered at the wall-normal

position of the maxima of XF′′XF′′ for i1 and i3 (see figure 2.4): this position is

shown in the shear panel at the bottom of figure 2.15. At the two chosen phases,

the structures show their maximum negative and positive tilt angle; however, the

discussion below for i1 can be extended to i2, and that for i3 extends to i4.

Isocontours of streamwise (transparent) and spanwise (solid color) velocities are

shown in a view from above (top) and from upstream (bottom).

Following the discussion in §2.4.1.2, when the tilting angle is negative (see

i1), the low-speed streak associated with a SN redistributes its energy via pressure

strain and creates negative spanwise velocity fluctuations; the opposite occurs

for the high-speed streak. This is confirmed by the ensemble-averaged structure,

which shows a region of positive (negative) spanwise velocity close to the side

of the high- (low-) speed streak. At i3, instead, the tilt angle of the streak is

positive, and the low- (high-) speed streak induces positive (negative) F′′ velocity

fluctuations at its side.

Another view of the spanwise velocity contours is displayed in the bottom

panels of figure 2.15. In these images, the streamwise velocity contours are

removed, to focus on the spanwise component only. In the canonical channel flow,

a negatively rotating vortex induces two regions of high and low spanwise velocity

below and above its center, respectively. However, when the wall oscillates, two

additional regions of positive and negative spanwise velocity originate at the sides

of the tilted vortex because of its interaction with the Stokes layer. At phase

i1 (left panel), the peak of XF′′XF′′ occurs at .+ = 25, where the spanwise

shear mF̃+/mH is positive. Therefore, the negatively rotating quasi-streamwise

vortex lifts low spanwise velocity fluid, and displaces high spanwise velocity fluid

downwards. This process explains the appearance of a low F-velocity region at

the right side of the quasi-streamwise vortex, whereas the high spanwise velocity

region is absorbed into the lower-side one. At i3 the regions of low/high spanwise

velocity are opposite compared to i1 owing to the opposite sign of the spanwise

shear at the location of the peak of XF′′XF′′ at this phase.
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Figure 2.15: Conditionally-averaged structure, extracted at i1 (left) and i3 (right)

at )+ = 250. The spatial shape of the structure is shown via isosurfaces of D′+

(transparent color) and F′+ (solid color) velocity fluctuations at the level ±0.5

(red/blue is positive/negative). The bottom panels also include the spanwise shear

dF̃+/dH at that phase, and show the wall-normal position where the extraction

procedure is carried out.
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On the optimal period of spanwise

forcing for turbulent drag reduction

Abstract

The most simple active forcing that leads to a reduction of turbulent skin friction

drag is the spanwise wall oscillation. The wall periodically oscillates in the span-

wise direction as a function of time and generates a periodic spanwise cross-flow

that depends on three parameters: the amplitude �, the period of the oscillation

) and the thickness of the spanwise velocity profile X. The latter two quantities

are not independent and evidences suggest that the maximum drag reduction is

obtained for)+ ≈ 100 and X+ ≈ 6, although there is no consensus on their physical

interpretation. In this work we ovecome the conventional oscillating wall and get

rid of the X−) constraint. We perform a DNS study at '4g = 400 directly enforc-

ing a mean spanwise velocity profile at each time step to a turbulent channel flow,

varying X and ) independently. We find the optimal parameters for drag reduction

to be )+ = 30 and X+ = 14 and discuss their possible physical meaning.

3.1 Introduction

Reducing the turbulent skin-friction drag is a long-standing effort in fluid mechan-

ics, driven by environmental and economic reasons. Towards this goal, several

active and passive approaches and technologies have been considered over the

years. Among them, those not requiring feedback from measurements and only

involving a predetermined wall-based actuation deserve special attention, owing

to the combination of their simplicity and effectiveness. In this work, we focus

on spanwise forcing (Ricco et al., 2021), which has been proved to remain effec-

tive at high Reynolds and Mach numbers (Gatti & Quadrio, 2016; Gattere et al.,

2024), and provides large energy savings owing to a large drag reduction margin
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combined with relatively small energy requirements.

The simplest and earliest variant of spanwise forcing is the spanwise oscillation

of a plane wall (Jung et al., 1992). Although the spatially uniform oscillation is not

among the most efficient implementations, it is considered here as the prototypical

form of spanwise forcing, because its working principle is shared by the other

variants. The wall periodically oscillates in the spanwise direction as a function

of time C according to a prescribed harmonic law

FF (C) = � sin

(
2c

)
C

)
, (3.1)

whereFF is the spanwise velocity component of the wall (the other components are

set to zero), and � and ) indicate the amplitude and period of the oscillation. The

harmonic oscillation of the wall generates a spanwise cross-flow that is periodic

after space- and phase-averaging, and that superimposes to and interacts with the

turbulent flow. The phase-averaged spanwise flow coincides with the analytical

laminar solutionF(! (H, C) of the second Stokes problem (Quadrio & Sibilla, 2000),

hereafter referred to as the Stokes layer or SL, with small deviations for large ) .

It is a textbook result (Schlichting & Gersten, 2000) that an indefinite plane wall

oscillating harmonically beneath a still fluid generates a time-varying velocity

profile given by

F(! (H, C) = � exp
(
− H

X

)
sin

(
2c

)
C − H

X

)
, (3.2)

where X is the SL thickness. Since the maximum amplitude � of the wall oscillation

only appears as a multiplicative factor because of the linearity of the governing

equations, the SL is shaped by the remaining two parameters ) and X. These two

quantities are not independent, and X is determined by the period ) and the fluid

kinematic viscosity by

X = X(! (), a) ≡
√

a)

c
. (3.3)

This is coherent with the wall forcing 3.1, having only ) as a tuning parameter

besides the amplitude �. The SL thickness X defined above is the wall distance

where the maximum spanwise velocity during the oscillation reduces to exp(−1)
times the maximum wall velocity �.

The coherent SL cross-flow is at the root of the drag reduction process, yet

no consensus exists regarding the details of how it interacts with the incoming

turbulent flow. However, starting from the early numerical studies of Jung et al.

(1992) and Baron & Quadrio (1996), the available evidence points to the existence

of an optimal value)>?C for the oscillation period, which corresponds to an optimal

SL thickness X>?C = X(! ()>?C , a), for which drag reduction is maximum. This

statement, however, needs to be better defined by additionally specifying that the
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optimal period is commonly sought by keeping the maximum velocity � constant,

and should be therefore denoted as)>?C,� for clarity (Quadrio & Ricco, 2004). This

is reasonable, as drag reduction is proportional to the forcing intensity. However,

the alternative to seek the optimal period while keeping constant the maximum

physical displacement � exists. This approach indeed suits some experimental

devices where a maximum allowed excursion exists (see for example Laadhari

et al., 1994; Choi, 2002; Gatti et al., 2015; Marusic et al., 2021). Most of the

studies looked for )>?C,� (which for simplicity will be referred to in this paper

by dropping the subscript �), and there is broad consensus that )+
>?C ≈ 100 or

)∗
>?C ≈ 75 when scales with viscous quantities of the uncontrolled and controlled

flow, respectively, corresponding to a penetration depth of the Stokes layer of

X+>?C ≈ 5.7 or X∗>?C ≈ 5.

For example, Choi et al. (2002) showed through Direct Numerical Simulations

(DNS) of a turbulent channel flow that )+
>?C ≈ 100 for different values of �+

and friction Reynolds numbers '4g. For a turbulent channel flow at '4g =

200, Quadrio & Ricco (2004) reported by DNS that for a given �+ the highest

drag reduction is attained by keeping )+ in the 100 − 125 range. Touber &

Leschziner (2012) and Agostini et al. (2014) numerically found the same optimal

)+ ≈ 100 at the larger Reynolds numbers of '4g = 500 and '4g = 1000.

Gatti & Quadrio (2016) confirmed this optimal value through a large DNS study,

considering several amplitudes and increasing the Reynolds number up to '4g =

1000. Several experimental works, although typically affected by the constant-

displacement limitation discussed above, have indirectly confirmed the value of

)+
>?C over a range of Reynolds numbers and forcing amplitudes (see for example

Laadhari et al., 1994; Trujillo et al., 1997; Gatti et al., 2015; Kempaiah et al.,

2020). We refer again the interested reader to Ricco et al. (2021) for a more

comprehensive review.

Despite the evidence, however, there is not consensus on the physical inter-

pretation of the optimum )+
>?C ≈ 100 and X+>?C = X+

(!
()+) ≈ 6, and more than

one meaning can be attached to these specific values. For example, )>?C can be

immediately associated to other time scales of the flow, such as the characteristic

life time of the near-wall coherent structures (Quadrio & Luchini, 2003). Owing

to the convective nature of the flow, )>?C can be also converted into a longitu-

dinal length scale in terms of a convection length scale, and be compared with

typical lengths of the near-wall coherent structures (Touber & Leschziner, 2012).

Moreover, within the SL the optimal period also defines the maximum lateral

displacement of the moving wall �<0G = �) , which is another (possibly) relevant

length scale of the flow (Quadrio & Ricco, 2004). The optimal period can also

be interpreted to only determine via equation 3.3 the optimal penetration depth

X>?C of the Stokes layer, which is indeed a diffusion length scale pertaining to

the wall-normal direction, and a measure of the near-wall mean spanwise shear.
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Our inability to discriminate among the different possible interpretations reflects

our current limited understanding of the whole drag reduction mechanism of the

oscillating wall set up.

The aim of this work is to do a step forward in this direction, and elucidate

the physical meaning of the ()>?C , X>?C) optimum. Based on DNS, we go beyond

the concept of the conventional oscillating wall and get rid of the X = X(! (), a)
constraint: we explore the complete (), X) two-dimensional space of parameters

and investigate separately the role of ) and X. In other words, instead of imposing

the harmonic spanwise oscillation of the wall to generate the SL, we enforce a

mean spanwise velocity profile of the form (3.2) at each time step, and vary X

and ) independently. In doing this, our numerical experiments also reveal that

much larger values of drag reduction are possible when removing the X = X(! (), a)
constraint: this highlights the need of developing alternative strategies that produce

near-wall spanwise motion which are not based on the wall oscillation.

The work is organised as follows. After this Introduction, the numerical

approach is described in §3.2. Then, the numerical results are then presented and

discussed in §3.3. The work closes with §3.4, where conclusions and perspectives

are provided.

3.2 Methods

3.2.1 Problem formulation

Direct numerical simulations (DNS) of the turbulent flow in an indefinite plane

channel are carried out, to study the effect of the Stokes layer generated by the

sinusoidal oscillations of the walls after its period) and thickness X are decoupled.

Hereinafter, G, H, I (D, E, F) denote the streamwise, wall-normal and spanwise

directions (velocity components). Capital letters indicate mean quantities, while

small letters are for fluctuation around them.

We remove the link (3.3) between ) and X(! that exists when a true Stokes

layer is created by the oscillation of the wall. An extended Stokes layer profile

(ESL)

⟨F⟩ℎ (H, C; X, )) = � exp
(
− H

X

)
sin

(
2c

)
C − H

X

)
(3.4)

is indeed enforced directly at each time step, whose thickness X and oscillation

period) are regarded as independent parameters; the operator⟨·⟩ℎ indicates spatial

averaging along the homogeneous G and I directions. While enforcing an arbitrary

profile ⟨F⟩ℎ (H, C) may suggest that the present numerical experiments are just one

of those thought experiments that are possible with DNS, it should be remarked

that our procedure is equivalent to solve the Navier–Stokes equations with the
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boundary condition (3.1) and an additional volume forcing that is practically zero

whenever the extended Stokes layer (3.4) reduces to the standard Stokes layer. We

measure that the two techniques nearly provide the same drag reduction effect,

with a small deviation only at large ) (see §3.2.3). This enables us to explore

the response of the flow to the ESL in the complete two-dimensional space of

parameters of ) and X, and investigate separately the role of the two parameters.

3.2.2 Numerical experiments

The simulations are carried out with a proved DNS solver for the incompressible

Navier–Stokes equations, originally introduced by Luchini & Quadrio (2006) and

written in the CPL Compiler and Programming Language (Luchini, 2021). The

solver is modified to enforce the condition expressed by equation (3.4) at each time

step. The equations are projected in the divergence-free space and rewritten in

terms of the wall-normal components of the velocity and vorticity vectors. The

solution follows a pseudo-spectral approach (Kim et al., 1987). Fourier expansions

are used in the homogeneous directions, so that the wall-parallel spatial mean ⟨·⟩ℎ
is equivalent to the (0, 0) wavenumber in every wall-parallel plane. Fourth-order

compact finite differences discretise the wall-normal direction. Equations are

integrated in time using a third-order Runge–Kutta scheme for the nonlinear terms

combined with a second-order Crank–Nicolson scheme for the viscous term.

Most of the available numerical studies on the oscillating wall have been carried

out at the conveniently low Reynolds number '4g = 200 (Jung et al., 1992; Baron

& Quadrio, 1996; Quadrio & Ricco, 2004; Touber & Leschziner, 2012). Here,

however, a preliminary study has revealed that the forcing (3.4) can be significantly

more effective than the conventional oscillating wall, such that the turbulent flow

is prone to relaminarization. Hence, to obtain a clearer picture, the baseline value

of '4g for the present study is increased to '4g = 400.

The simulations are carried out at Constant Flow Rate (CFR, according to

the definition by Quadrio et al., 2016a), with the bulk Reynolds number set to

'41 = *1ℎ/a = 7000 for all cases, which corresponds to a friction Reynolds

number of '4g = Dgℎ/a ≈ 400 in the unforced case. Here *1 is the bulk

velocity, and Dg =
√
gF/d is the friction velocity expressed in terms of the averaged

wall-shear stress gF and the fluid density, and ℎ is the channel half-height. The

computational box has a size of (!G , !H, !I) = (4cℎ, 2ℎ, 2cℎ); it is discretised

with #H = 400 grid points in the wall-normal direction, and with #G = #I = 512

Fourier modes in the G and I directions, further increased by a factor of 3/2 to

remove the aliasing error. The streamwise and spanwise resolutions after dealiasing

are ΔG+ ≈ 6.5 and ΔI+ = 3.3. In the wall-normal direction an hyperbolic tangent

distribution is used, leading to Δ+
H,<8= ≈ 0.6 at the wall and to Δ+

H,<0G ≈ 3.3 at the

centreline. The simulations are run for a time period of 1000ℎ/*1, but statistical
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Figure 3.1: Drag reduction versus oscillation period for the oscillating wall (black)

and the present approach, with X = X(! (green)

measurements are taken only over the last 800 time units, to account for the initial

period where the flow adapts to the new drag-reduced state.

The oscillating period is varied in the 10 ≤ )+ ≤ 200 range, while X varies

between 2 ≤ X+ ≤ 20. The amplitude of the forcing is set to �+ = 12. Overall, the

study includes 119 direct numerical simulations. The quantity of interest is the

drag reduction rate R, that for CFR simulations is equivalent (Kasagi et al., 2009)

to the percentage change in skin-friction coefficient, i.e.:

R = 100 ×
(
1 −

� 5

� 5 ,0

)
, (3.5)

where � 5 = 2gF/(d*2
1
) is the skin-friction coefficient of the controlled flow, and

� 5 ,0 is the skin-friction coefficient of the reference uncontrolled case.

3.2.3 Validation

We start validating the numerical approach, by comparing the drag reduction

provided by the extended Stokes layer (3.4) along the X = X(! (), a) line with the

one of the actual oscillating wall set up. To this purpose, two sets of additional

simulations are performed: the former by enforcing the ESL (3.4) for various

values of ) and by setting X = X(! ()); the latter by letting the SL developing

naturally by imposing Eq. (3.1) at the walls. All other simulation parameters and

procedures are kept identical in the comparison.

Figure 3.1 compares the two approaches in terms of drag reduction and shows

that very good agreement between the data obtained imposing the ESL profile

(3.4) and those from the actual oscillation of the wall, thus supporting the present

approach. Minor differences between the two datasets can only be appreciated

at large )+, up to an absolute deviation of less then 1.3%, confirming previous
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observations (Quadrio & Sibilla, 2000; Choi et al., 2002; Touber & Leschziner,

2012) that the phase-averaged cross-flow mostly coincides with the SL laminar

solution, but shows minor departures at larger oscillation periods.

3.3 Results

3.3.1 The drag reduction map

Figure 3.2 shows the map of the computed drag reductionR in the two-dimensional

(), X) space of parameters. Each point is the result of one simulation. The colour

map and the contours help in visualising the global behaviour of the changes of

R in the (), X) space. They have been computed after linear interpolation of the

simulation points on a Cartesian grid with spacing Δ)+ = 0.19 and ΔX+ = 0.018.

The black solid line represents the locus of points where X = X(! ()): all the

literature information available so far has been obtained along this line only.

Figure 3.2 clearly shows that, once X and ) are made independent, the maxi-

mum drag reduction on the SL line is not particularly meaningful in view of the

global R map. Along the SL line, a maximum R ≈ 30%, shown by the black

symbol, is indeed found at ()+, X+) ≈ (100, 5.7), but the position of the actual

maximum in the two-dimensional plane is larger and quite far from it. Indeed,

the global maximum drag reduction obtained with the ESL is R<0G ≈ 40%, found

for ()+, X+) ≈ (30, 14); see the green symbol in figure 3.2. Hence, the maximum

drag reduction is significantly larger than that on the SL line, and is obtained by

decreasing the oscillating period from )+ = 100 to )+ = 30, while at the same

time increasing the SL thickness from X+ = 5.7 to X+ = 14. Note that, when

moving along the SL line, it is impossible to change ) and X in opposite directions.

The flow response to the ESL shows a behaviour that is only marginally grasped

by the oscillating wall set up. Figure 3.2 shows that the ESL is effective in reducing

friction for all the considered (), X)−pairs. TheR map can be divided into different

regions according to the behaviour of the drag reduction at varying parameters )

and X. The area of the global optimum is quite broad, spanning the region of

20 ≤ )+ ≤ 50 and 8 ≤ X+ ≤ 14; note that the values of X correspond to the

position of the buffer layer, where the near-wall cycle takes place (Schoppa &

Hussain, 2002), suggesting that the maximum R is gained for the ESL effectively

interacting with the near-wall coherent structures. For oscillating periods close

to the optimal value )+ = 30, R is almost slightly dependent on X, provided

it is not too small. Indeed, when X is very small, say X+ ≤ 4, R is small and

nearly constant with ) . For these values of X, the spanwise motion is confined in

the viscous sublayer where the turbulent activity is weak. This confirms that the

laminar Stokes layer must interact with the turbulent structures that populate the
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Figure 3.2: Drag reduction map in the (), X) two-dimensional space of parameters.

The black thick line indicates the X = X(! constraint. The green dot identifies the

point of maximum drag reduction, whereas the black dot indicates the maximum

along the line X = X(! ()).

buffer layer to achieve drag reduction. Similarly, for small oscillating periods (say

)+ ≤ 20), R is relatively small and independent from X. In this case, the ESL

is not effective to achieve drag reduction, as the oscillating period is too small

compared to the flow time scales, and the resulting oscillating motion and the

incoming flow are decoupled. As ) increases above )+ > 30, the local optimum

thickness X+ moves towards smaller values, suggesting that with longer oscillating

period the ESL is more effective when its influence remains confined closer to the

wall. For large ) , the optimum X lies in the range 6 ≤ X ≤ 10 and R degrades

quickly at larger X. A possible explanation of the suboptimal R is that for large

value of both ) and X, although the ESL provides reduction of drag, it also largely

perturbs the underlying turbulence in a way that the spanwise velocity can be

instantaneously quite different from the imposed ESL. To quantify the amount

of turbulent perturbation, we define the difference of the integral of the wall-

normal profile of spanwise root mean square fluctuations between the controlled

and reference cases as ΔFA<B = 100
(
⟨F�(!,A<B (H)⟩ − ⟨F0,A<B (H)⟩

)
/⟨F0,A<B (H)⟩,

where ⟨·⟩ indicates spatial and time average. Figure 3.3 plots ΔFA<B in the (), X)

parameters space. As expected, for large values of both ) and X, ΔFA<B is positive

and large meaning that the turbulence in the spanwise direction is increased by the

control compared to the reference case. This region corresponds to the region of

lower R in figure 3.2, meaning that part of the positive effect of the ESL is eroded

by the higher spanwise turbulence induced by the control itself. It is consist with

Touber & Leschziner (2012) suggesting that sufficiently large oscillation periods

are not able to disrupt the turbulent structures which lingers and regenerates in

the direction of the forcing. At the same time, large X means that the control
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Figure 3.3: Relative difference of the spanwise fluctuations ΔFA<B between the

controlled and reference cases. The thick dashed line is for ΔFA<B = 0 and the

black thick line indicates the X = X(! constraint. The green dot identifies the point

of maximum drag reduction, whereas the black dot indicates the maximum along

the line X = X(! ()).

penetrates far from the wall, negatively disturbing the bulk of the flow. On the

contrary, negative ΔFA<B means that for those sets of parameters the effects of the

two phenomena sum up and larger R performance are attained.

3.3.2 Physical interpretation of the optimum

We now relate the specific values X+>?C ≈ 14 and )+
>?C ≈ 30, which identify the

global maximum of drag reduction in the two-dimensional space of parameters, to

properties of near-wall turbulence and try to shed light on the physical implications

of the optimum. As highlighted in the introduction (see §3.1) for the SL, the

interpretation is not unique and the different interpretations proposed in literature

are herein presented and discussed in light of the present results; having decoupled

X from ) , we add new perspective to the discussion.

The optimal oscillating period )>?C can be compared to other time scales in

the turbulent flow. For example, the (statistically defined) lifetime of the dominant

near-wall coherent structures is not far from )>?C . Quadrio & Luchini (2003)

introduced and computed for '4g = 180 the integral scale T of the space-time

autocorrelation of velocity fluctuations along the path of maximum correlation

in the space-time plane, and interpreted it as the integral lifetime of near-wall

structures. We perform the same analysis at the present '4g = 400 and measure

the integral lifetime. At H+ = 15, comparable to X+>?C , we measure T +
D = 75

for the streamwise velocity fluctuations. These value is quite near to the optimal

oscillation period )+
>?C ≈ 30, suggesting that the most effective forcing is the one
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that hits the structures a couple of times in their lifetime. However our results of

decreasing ) for increasing X are not compatible with this interpretation since the

integral lifetime increases with the distance from the wall, being e.g. T +
D = 62 at

H+ = 5 and T +
D = 75 at H+ = 15.

A possible alternative is to associate the optimal oscillating period )>?C to the

characteristic timescale of the bursting cycle, for which near-wall statistics such

as the space-averaged friction coefficient � 5 “burst” quasi-periodically over time.

This temporally limited surge is the statistical trace of an intense moment of the

turbulent near-wall cycle that regenerates the near-wall structures. Jiménez (2013)

measured the bursting period to be )+ ≈ 400, with the bursting phase lasting

)+ ≈ 100 followed by a longer phase of quiescence. Half of the bursting phase

()+ ≈ 50, comparable to our )+
>?C = 30) is taken for the eruption and growth of

the burst and the remaining for its decay. The same time-scale )+ ≈ 50 has been

measured by Blesbois et al. (2013) and Ricco (2004) as the regeneration time-scale

of the streaks. Again, our results of decreasing ) for increasing X contradict also

this interpretation, being the bursting period proportional to the distance from the

wall of the structures.

Due to the convective nature of the near-wall flow, )>?C can be compared to

the convective time scale )2 of the near-wall structures, which can be estimated

looking at the convection velocity *2. The convection velocity *2 is known to

substantially differ from the local mean velocity in the near-wall region (Kim &

Hussain, 1993); it is nearly constant with a value *+
2 ≈ 10 in the viscous sublayer,

whereas it increases from the buffer layer upwards approaching the mean flow; see

figure 4 of Quadrio & Luchini (2003). The increase of *2 with H translates into a

decrease of )2, as these two quantities are inversely proportional )2 = L/*2, with

L being a length scale. This is consistent with our data that report a decrease of

the local optimum )>?C as X increases; see figure 3.2.

Following the same line of reasoning, the optimum period )+
>?C can be trans-

lated into an equivalent convective streamwise length scale !2 by using *2, and

compared with characteristic length scales of the flow. By considering values of

*2 in the buffer layer (*+
2 ≈ 10 − 15), )+

>?C translates into !+
2 ≈ 300 − 450, which

is indeed comparable with the characteristic length scale of the structures of the

near wall cycle, being the quasi-streamwise vortices ℓ+ ≈ 200 and the low-velocity

streaks ℓ+ ≈ 1000 (Jeong et al., 1997).

Finally, we consider the dominant interpretation of the optimal period for the

SL in terms of the wall-normal diffusion length scale X. This view is as simple

as appealing, and has been put forward very early by Baron & Quadrio (1996),

who noticed that the different wall-normal average positions of low-speed streaks

and streamwise vortices in the near-wall turbulence cycle enables an optimally

configured Stokes layer to break their coherency and alter the relative spanwise

position between them. Ricco (2004) suggested that the effectiveness of the
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oscillations in reducing turbulent drag is due to a relative displacement in the

spanwise direction of the low speed streaks (H+ ⪅ 10) and the quasi-streamwise

vortices, typically placed in the 10 ⪅ H+ ⪅ 50 layer (Robinson, 1991). This view

is supported by the link between the value of drag reduction and the thickness

of the generalized Stokes layer which develops over streamwise-travelling waves,

quantified by Quadrio & Ricco (2011). The same view has been also purported by

Touber & Leschziner (2012). The optimum value of X+>?C ≈ 14 is consistent with

this interpretation.

3.4 Conclusion

The present work introduces a new DNS experiment aiming to provide a new

approach to the study of the optimal parameters to reduce the turbulent drag

through the spanwise forcing. Instead of leaving the Stokes layer naturally evolve

by the spanwise harmonic oscillation of the wall, we directly enforce in the flow at

each time step a SL-like spanwise velocity profile. The wall oscillation technique

creates a SL described by the maximum amplitude of the oscillation �, the period

of oscillation ) and its thickness X; the two latter parameters are obliged to follow

the constraint X(! =
√
a)/c. We remove the coupling between ) and X(! to

directly impose an extended Stokes layer profile (ESL) where ) and X can be

varied independently. Our procedure of enforcing a velocity profile is equivalent

to solve the Navier–Stokes equations with the same boundary condition of the

wall oscillation approach and an additional volume forcing that is practically zero

whenever the ESL reduces to the standard SL; our validation highlights a maximum

deviation of 1.3% between the two techniques.

We perform a set of DNS of a fully turbulent channel flow at '41 = *1ℎ/a =

7000 (corresponding to '4g = 400 in the uncontrolled case) varying the period

in the 10 ≤ )+ ≤ 200 range, while the thickness varies between 2 ≤ X+ ≤ 20,

whereas the amplitude of the forcing is kept constant to �+ = 12. Once X

and ) are decoupled, the maximum drag reduction following the SL constraint

R ≈ 30%, found at ()+
>?C , X

+) ≈ (100, 6), shifts to the global maximum drag

reduction obtained with the ESL at R ≈ 40%, found for much smaller value of

the period and larger value of the thickness, i.e. ()+, X+) ≈ (30, 14). The peak

of drag reduction is quite broad and flat, and the value of X>?C corresponds to the

position of the buffer layer, where the near-wall cycle takes place, suggesting that

the maximum R is gained for the ESL effectively interacting with the near-wall

coherent structures. Instead, for X+ ⪅ 4 and for )+ ⪅ 20, the characteristic space

and time lengths of the forcing are too small compared to the characteristic lengths

of the turbulent structures of the near-wall cycle, thus they do not successfully

target them. For both) and X larger the optimum, the drag reduction performances
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degrade due to the enhanced spanwise turbulent activity. We conclude that the

values of the parameters )+ ≈ 100 and X+ ≈ 6, well known in literature to provide

the maxmiumR with the wall oscillation, do not possess a special meaning; instead

designing a control which allows to decouple ) and X is able to provide a much

higher R. We discuss the dominant interpretations of the literature about the

physical meaning of the optimum parameters )>?C and X>?C in light of the present

results, yet without definitely settling the issue.

The information of the optimal (X, )) is crucial when developing alternative

strategies that produce near-wall spanwise motion, without the need of moving the

wall. In this case, indeed, the control gets rid of the X()) =
√
)a/c that limits

the maximum DR attainable. Some examples may be the use of plasma actua-

tors (Jukes & Choi, 2012), the alternation of slip and no-slip stripes (Hasegawa

et al., 2011), sinusoidal riblets (Peet et al., 2008), dimples (Gattere et al., 2022b),

elettroactive polymers combined with an electromagnetic actuator (Gouder et al.,

2013). Also, the strategy we propose in this work opens the possibility of further

investigating the way the spanwise motion interacts with the near-wall turbulence.

In fact, once one gets rid of the oscillating wall one is not any more limited on

the SL but may investigate the effects of profiles of different shape. However as

highlighted, for profiles which largely disturb the bulk of the flow, e.g. the ESL

with both large ) and X, the higher turbulence induced by the control negatively

affects the drag reduction performances. The optimal control parameters which

target the physical mechanisms of the near-wall turbulent could be larger than

)+ ≈ 30 and X+ ≈ 14, but they might not be able to provide a larger drag reduction

because of the opposed negative effect that increases turbulence.
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Turbulent skin-friction drag

reduction via spanwise forcing at

high Reynolds number

Abstract

We address the Reynolds-number dependence of the turbulent skin-friction drag

reduction induced by streamwise-travelling waves of spanwise wall oscillations.

The study relies on direct numerical simulations of drag-reduced flows in a plane

open channel at friction Reynolds numbers in the range 1000 ≤ '4g ≤ 6000,

which is the widest range considered so far in simulations with spanwise forcing.

Our results corroborate the validity of the predictive model proposed by Gatti &

Quadrio (2016): regardless of the control parameters, the drag reduction decreases

monotonically with '4, at a rate that depends on the drag reduction itself and on

the skin-friction of the uncontrolled flow. We do not find evidence in support of the

results of Marusic et al. (2021), which instead report by experiments an increase

of the drag reduction with '4 in turbulent boundary layers, for control parameters

that target low-frequency, outer-scaled motions. Possible explanations for this

discrepancy are provided, including obvious differences between open channel

flows and boundary layers, and possible limitations of laboratory experiments.

4.1 Introduction

Transverse near-wall forcing as a means to mitigate skin-friction drag in turbulent

flows has gathered significant attention, owing to its potential for substantial envi-

ronmental and economic benefits (Quadrio, 2011; Ricco et al., 2021). After the

seminal work on spanwise wall oscillations by Jung et al. (1992), three decades of

research efforts have led to important progress; however, several crucial factors still
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Figure 4.1: Schematic of a turbulent open channel flow actuated with streamwise-

travelling waves of spanwise wall velocity with amplitude �, streamwise wavenum-

ber ^ and angular frequency l. Here, _ is the streamwise wavelength; 2 is the

wave phase speed; and !G , !H = ℎ and !I are the dimensions of the computational

domain in the streamwise, wall-normal and spanwise direction, respectively.

hinder the deployment of spanwise forcing in technological settings. The major

challenge resides in devising viable and efficient implementations of the typically

idealised near-wall forcing, but other concerns exist, including the decreasing

effectiveness of drag reduction with increasing Reynolds numbers ('4).

To date, the Reynolds dependence of skin-friction drag reduction has mostly

been studied in the context of streamwise-travelling waves of spanwise wall veloc-

ity (StTW, Quadrio et al., 2009), a specific form of transverse forcing characterised

by its comparatively large potential for drag reduction with modest energy expen-

diture. StTW are described by

FF (G, C) = � sin (^G − lC) , (4.1)

where FF is the spanwise (I) velocity component at the wall, � is the maximum

wall velocity and thus a measure of the amplitude of the spanwise forcing, ^

is the streamwise wavenumber, l is the angular frequency, and G and C are the

streamwise coordinate and the time. The forcing, sketched in figure 4.1, consists

of streamwise-modulated waves of spanwise velocity at the wall, with wavelength

_ = 2c/^ and period ) = 2c/l. The waves travel along the streamwise direction

with phase speed 2 = l/^, either downstream (2 > 0) or upstream (2 < 0) with

respect to the mean flow direction. The forcing described by equation (4.1) includes
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the two special cases of spatially uniform spanwise wall oscillations (Quadrio &

Ricco, 2004) for ^ = 0, and steady waves (Viotti et al., 2009) for l = 0. With the

appropriate set of control parameters, StTW have been shown to yield considerable

drag reduction in a series of numerical experiments regarding channel and pipe

flows (Quadrio et al., 2009; Gatti & Quadrio, 2013; Hurst et al., 2014; Gatti &

Quadrio, 2016; Liu et al., 2022; Rouhi et al., 2023; Gallorini & Quadrio, 2024)

and boundary layers (Skote et al., 2015; Skote, 2022), as well as in laboratory

experiments (Auteri et al., 2010; Bird et al., 2018; Chandran et al., 2023). Besides

canonical flows, including the compressible and supersonic regimes (Gattere et al.,

2024), StTW have been applied to more complex flows ranging from channels

with curved walls (Banchetti et al., 2020), to rough boundary layers (Deshpande

et al., 2024, although restricted to spatially uniform spanwise wall oscillation) and

transonic airfoils with shock waves (Quadrio et al., 2022), showing that local skin-

friction drag reduction can be exploited to also reduce the pressure component of

the aerodynamic drag.

Understanding how the Reynolds number affects drag reduction by StTW is

a particularly challenging goal for three main reasons. First, a sufficiently wide

portion of a huge parameter space must be explored, which even in simple canonical

flows includes the four parameters {�, ^, l; '4}, and poses a great challenge to

numerical and laboratory experiments.

A second complication is the choice of an appropriate figure of merit for drag

reduction. Typically, the drag reduction rate R is defined as

R = 1 −
� 5

� 5 0

, (4.2)

i.e. as the control-induced relative change of the skin-friction coefficient � 5

(Kasagi et al., 2009). In equation (4.2) and in the remainder of this manuscript,

the subscript 0 denotes quantities measured in the reference uncontrolled flow.

Specifically, � 5 is defined as � 5 = 2gG/(d*2
1
); gG is the mean streamwise wall

shear stress,*1 the bulk velocity, and d the fluid density. However, as observed by

Gatti & Quadrio (2016), the quantity R defined by equation (4.2) is inherently '4-

dependent, owing to the '4-dependence of � 5 and � 5 0
. This is long known to be

the case for the flow over rough surfaces (Nikuradse, 1933; Jiménez, 2004), as well

as for other flow control techniques relying on near-wall turbulence manipulation

such as riblets (Luchini, 1996; Spalart & McLean, 2011). Choosing a figure of

merit which eliminates this trivial dependency on the Reynolds number is crucial

to describe properly the '4-effect on drag reduction.

Third, the wall shear stress generally differs in the reference (gG0
) and controlled

(gG) channel flows, unless they are driven by the same pressure gradient (as done for

example by Ricco et al., 2012); the viscous scaling, hence, becomes ambiguous.

As noted by Quadrio (2011), this results in two possible viscous normalisations
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of the controlled flow: the first, denoted with the superscript ‘+’, relies on the

reference friction velocity Dg0
=

√
gG0

/d; the second, denoted with the superscript

‘∗’, is based on the actual friction velocity Dg =
√
gG/d. Similarly, two different

friction Reynolds numbers, '4g0
= Dg0

ℎ/a and '4g = Dgℎ/a can be defined

depending on the choice of the friction velocity. Here, ℎ describes the half-height

of a channel or the depth of an open channel, and a is the fluid kinematic viscosity.

While the actual viscous scaling is the only sensible choice for the drag-reduced

flow (Gatti & Quadrio, 2016), the reference scaling is necessary when the wall

friction of the drag-reduced flow is not known yet.

Gatti & Quadrio (2016), indicated also as GQ16 hereinafter, circumvented

these difficulties by designing a campaign of several thousands direct numerical

simulations (DNS) of turbulent channel flows. Inspired by similar studies on rough

walls (see for example Leonardi et al., 2015), they limited the otherwise prohibitive

computational cost by choosing relatively small computational domains (Jiménez

& Moin, 1991; Flores & Jiménez, 2010) for most of the study. At the expense of

a residual domain-size dependence of the results, which cancels out in large part

when observing the difference between controlled and uncontrolled flows, GQ16

generated a large dataset, along with a more limited number of simulations in wider

domains to verify the accuracy of the results. This approach enabled not only the

inspection of a large portion of the {�, ^, l}-space at '4g0
= 200 and 1000, but

also the transfer of the dataset between viscous ‘+’ and ‘∗’ units via interpolation,

allowing to assess the results in both scalings. Thanks to their comprehensive

database (available as Supplementary Material to their paper), Gatti & Quadrio

(2016) challenged the then-current belief that skin-friction drag reduction was

bound to decrease quickly with '4. They demonstrated that the drag reduction

effect by spanwise forcing becomes in fact constant with '4, provided that it is

not expressed via R (equation (4.2)), that is per se '4-dependent, but through the

Reynolds number-invariant parameter Δ�∗. The quantity Δ�∗ expresses the main

effect of the StTW, which is to induce a change of the additive constant in the

logarithmic law for the mean velocity profile

*∗(H∗) = 1

:
ln H∗ + �∗

0 + Δ�∗ , (4.3)

where : is the von Kármán constant, �∗
0

is the additive constant in the reference

channel flow, and �∗ = �∗
0
+ Δ�∗ is the additive constant of the controlled flow.

The independency of Δ�∗ upon '4 is a common feature of all turbulence manip-

ulations whose action is confined to the near-wall region. In these cases the outer

turbulence simply reacts to a wall layer with different drag (Gatti et al., 2018), as

well known, for instance, in the context of drag-reducing riblets (Luchini, 1996;

Garcia-Mayoral & Jiménez, 2011; Spalart & McLean, 2011) and drag-increasing

roughness (Clauser, 1954; Hama, 1954).
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Under the assumption that Δ�∗ is a function of the control parameters

{�∗, ^∗, l∗}, but not of the Reynolds number, Gatti & Quadrio (2016) derived

the following modified friction relation (hereinafter called GQ model)

Δ�∗
=

√
2

� 5 0

[
(1 − R)−1/2 − 1

]
− 1

2:
ln (1 − R) , (4.4)

where the '4-dependence is not explicit, but rather embedded in � 5 0
. Provided

the function Δ�∗ (�∗, ^∗, l∗) is measured at a sufficiently large '4 for the log law

in equation (4.3) to hold, the GQ model predicts R at any arbitrary value of '4.

According to equation (4.4), R is always expected to decrease with '4 for any

combination of the control parameters, but at much lower rate than suggested by

previous studies (Touber & Leschziner, 2012; Gatti & Quadrio, 2013; Hurst et al.,

2014), so that significant drag reduction can be still achieved at Reynolds numbers

typical of technological applications. For instance, for StTW GQ16 estimated

possible drag reduction of 30% with �+ = 12 at '4g0
= 105.

The GQ16 study is affected by two limitations. First, '4g0
= 1000, the

largest '4 considered in their study, may still be not enough for Δ�∗ to become

completely '4-independent: GQ16 suggested that at least '4g0
= 2000 should

be considered. Second, the small effect of the restricted computational box sizes

on the quantification of R could in principle bias the extrapolation to higher '4.

Nonetheless, the GQ model passed validation tests against previous (Touber &

Leschziner, 2012; Hurst et al., 2014) and later literature data. For instance, Rouhi

et al. (2023) employed large eddy simulations (LES) to study drag reduction by

StTW in open channel flows at '4g0
= 945 and '4g0

= 4000. They explored

the parameter space within the range ^+ ∈ [0.002, 0.02] and l+ ∈ [−0.2, 0.2], at

fixed �+ = 12. This is to be compared with ^+ ∈ [0, 0.05] and l+ ∈ [−0.5, 1]
addressed by Gatti & Quadrio (2016), who also considered various amplitudes

�+ ∈ [2, 20]. The study of Rouhi et al. (2023) is however limited by the use of

large eddy simulations (LES), in which part of the small-scale turbulence physics

involved in drag reduction is modelled, and by the domain size (!G = 2.04ℎ,

!I = 0.63ℎ at '4g0
= 4000), which is comparable to the restricted domain size

(!G = 1.35ℎ, !I = 0.69ℎ at '4g0
= 1000) considered by Gatti & Quadrio (2016),

despite the larger '4g0
. Rouhi et al. (2023) confirmed that the GQ model predicts

very well their drag reduction data, with deviations in the order of 2%, for all

StTW control parameters sufficiently far from those yielding drag increase.

Marusic et al. (2021) and Chandran et al. (2023) studied drag reduction via

backward-travelling (2 < 0) StTW. Their experimental study was carried out in

a zero pressure gradient turbulent boundary layer up to the largest values of '4

investigated so far, '4g = 15000. By extending to the plane geometry the actuation

strategy used by Auteri et al. (2010) in a cylindrical pipe, they implemented the
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ideal forcing of equation (4.1) by dividing a portion of the wall into a series of

forty-eight slats, long 5 cm each, so that each six consecutive slats constitute a

single wavelength with fixed _ = 0.3 m. The slats move in the spanwise direction

at a fixed half-stroke 3, resulting in a frequency-dependent maximum spanwise

velocity � = l3. As a consequence in those experiments the amplitude and period

of the oscillations could not be varied independently. With 3 and _ constant in

physical units, the range of investigated parameters shifts towards smaller ^+, l+

and �+ as '4g0
increases. The authors observed, for the first time, R to increase

with '4 (see figure 3e of Marusic et al., 2021), and explained it with the particularly

slow timescale )+ = 2c/l+ < −350 of their forcing, which was meant to target

the large inertial, outer-scaled structures of turbulence (Deshpande et al., 2023),

whose importance increases with '4.

Despite the promising results, these studies also have shortcomings. With 3

and _ constant in physical units, which is unavoidable in laboratory experiments,

the control parameters could not be kept constant in either ‘+’ or ‘∗’ viscous units

while varying '4g0
. In particular, the fixed wavelength leads to a ^+ that decreases

with '4. Furthermore, the effect of l and � cannot be addressed separately. This

precludes the investigation of the full space of the control parameters: for instance

large values of l+ at low �+ cannot be tested. Lastly, the key observation that

R increases with '4 relies on the joint observation of low-'4 LES data by Rouhi

et al. (2023) obtained in an open channel flow, and high-'4 experimental data by

Marusic et al. (2021) in a boundary layer, thus bringing together different methods

and flow configurations.

The present research fills these gaps in the existing literature by leveraging

a novel DNS dataset of turbulent open channel flow, to accurately quantify the

Reynolds number effects on the drag-reducing performance of StTW. The com-

putational domain adopted in the present simulations is large enough to properly

account for all relevant scales of turbulence, including the large inertial scales.

The considered Reynolds numbers, ranging from '4g0
= 1000 to '4g0

= 6000, are

large enough to minimise the low-'4 effects, matching some of the experimental

data points by Chandran et al. (2023). The dataset is further designed to address

the Reynolds-number scaling of drag reduction in both viscous and outer units

independently, by considering the same flow configuration and by using the same

numerical method for all '4.

The paper is organised as follows. After this Introduction, §4.2 describes the

computational procedure and the simulation parameters used to produce the DNS

dataset. In §4.3 the effect of the Reynolds number is analysed in terms of both

drag reduction and power budgets, and compared to existing literature. Finally,

concluding arguments are given in §4.4.
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'41 '4g0
#cases !G/ℎ !I/ℎ #G × #H × #I Symbol

20000 996.7 71 6cℎ 2cℎ 2304 × 165 × 1536 ▲

43650 1994.1 62 6cℎ 2cℎ 4608 × 265 × 3072 ▼

68600 3008.8 7 6cℎ 2cℎ 6912 × 355 × 4608 ♦

148000 6012.6 3 6cℎ 2cℎ 13312 × 591 × 9216 •

Table 4.1: Details of the direct numerical simulations of open channel flows

(including domain size and discretization) modified by StTW, grouped in sets

of #cases simulations performed at a constant value of bulk Reynolds number

'41 = *1ℎ/a. The last column indicates the color and symbol employed in the

following figures to represent each set of simulations.

4.2 Methods and procedures

A new DNS dataset of incompressible turbulent open-channel flows (see figure 4.1)

is used to study the effect of the Reynolds number on the reduction of the turbulent

friction drag achieved by StTW. The open channel flow, i.e. half a channel flow

with a symmetry boundary condition at the centreplane, is considered here to

reduce the computational cost without affecting the drag reduction results; indeed,

it was often used in the past, including e.g. the similar studies by Yao et al.

(2022b), Pirozzoli (2023) and Rouhi et al. (2023). The StTW are applied as a

wall boundary condition for the spanwise velocity component after equation (4.1).

Periodic boundary conditions are applied in the homogeneous streamwise and

spanwise directions, no-slip and no-penetration boundary conditions are used for

the longitudinal and wall-normal components at the bottom wall; free slip is used

at the top boundary. The computational setup is identical to the study of Pirozzoli

(2023), in which open-channel flow was studied in the absence of flow control.

The solver relies on the classical fractional step method with second-order finite

differences on a staggered grid (Orlandi, 2006). The Poisson equation resulting

from the divergence-free condition is efficiently solved via Fourier expansion in the

periodic directions (Kim & Moin, 1985). The governing equations are advanced

in time starting from the initial condition of a statistically stationary, uncontrolled

turbulent open channel flow by means of a hybrid third-order, low-storage Runge–

Kutta algorithm, whereby the diffusive terms are handled implicitly. Statistical

averaging, indicated hereinafter as⟨·⟩, implies averaging in time and along the two

homogeneous directions.

Four sets of simulations, whose details are listed in table 4.1, are run at

prescribed values of the bulk Reynolds number '41 = *1ℎ/a; the bulk velocity

is kept constant at every time step as described in Quadrio et al. (2016a). Each

set comprises one reference simulation, in which the wall is steady, and a variable
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Figure 4.2: Statistics of streamwise velocity fluctuations for the reference simula-

tion at '4g0
= 6000: (left) spanwise premultiplied spectra :+I q

+
DD; (right) stream-

wise variance⟨DD⟩+ with its large-scale⟨DD⟩+
!

and small-scale⟨DD⟩+
(

contributions.

Large scales are defined as those for which 2c/:I > 0.5ℎ.

number of cases with StTW at different values of {�, ^, l}. In the following,

we will refer to each simulation set via its (nominal) value of '4g0
; the actual

values of '4g vary throughout simulations of each set, as a consequence of the

wall actuation at constant *1.

All DNS are carried out in a domain with !G = 6cℎ and !I = 2cℎ, which is

much larger than what has been adopted by Rouhi et al. (2023) and GQ16 at similar

values of '4, but a bit smaller than the domain used by Yao et al. (2022b). Whereas

weak longitudinal eddies may be not resolved, a box sensitivity study carried out

by Pirozzoli (2023) showed that the practical impact on the leading-order flow

statistics and on the spanwise spectra is extremely small.

Figure 4.2 indeed supports the adequacy of the present computational box by

analysing the streamwise velocity fluctuations of the reference open channel flow

at '4g0
= 6000, i.e. the largest Reynolds number considered in the present study.

Figure 4.2 (left) shows the spanwise pre-multiplied spectrum :+I q
+
DD, where :I is

the spanwise wavenumber and qDD is a component of the velocity spectrum tensor,

with a clear outer peak visible at _I ≈ ℎ. Figure 4.2 (right) shows the variance

⟨DD⟩+ of the streamwise velocity, split into the large-scale ⟨DD⟩+
!

and small-scale

⟨DD⟩+
(

contributions. The large-scale contribution is obtained by integrating the

spectrum only for wavelengths _I > 0.5ℎ as suggested by Bernardini & Pirozzoli

(2011), Dogan et al. (2019) and Yao et al. (2022b). With this definition, the large-

scale fluctuations are responsible for 12% of the total variance in the vicinity of the

wall, and for as much as 85% at the free-slip surface. Moreover, it should be noted

that the longest travelling wave that we have tested at the highest Reynolds number

('4g0
= 6000) is fourteen times shorter than the domain length, thus allowing
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Figure 4.3: Portion of the parameter space spanned in the present study overlaid to

the drag reduction map by GQ16 computed at �+ = 5. Each symbol corresponds

to one simulation at the Reynolds number encoded by its shape/color, as described

by the legend.

subharmonic effects, if present, to be properly resolved.

The spatial resolution of the simulations is designed based on the criteria

discussed by Pirozzoli & Orlandi (2021). In particular, the collocation points are

distributed in the wall-normal direction H so that approximately thirty points are

placed within H+ ≤ 40, with the first grid point at H+ < 0.1. The mesh is stretched

in the outer wall layer with the mesh spacing proportional to the local Kolmogorov

length scale, which there varies as [+ ≈ 0.8(H+)1/4 (Jiménez, 2018). A mild

refinement towards the free surface is used in order to resolve the thin layer in

which the top boundary condition dampens the wall-normal velocity fluctuations.

The grid resolution in the wall-parallel directions is set toΔG+ ≈ 8.5 andΔI+ ≈ 4.0

for all the flow cases. Note that the resolution is finer in actual viscous units in all

cases with drag reduction.
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Figure 4.3 shows at a glance the range of the StTW parameters addressed in the

present study for the simulation sets at '4g0
= {1000, 2000, 3000, 6000}. This is

the broadest range of '4 considered so far in numerical simulations with spanwise

wall forcing.

The portion of the {^+, l+}-space spanned in the present study is smaller than

the one addressed in GQ16. In fact, we limit ourselves to considering ^+ ≤ 0.02

and |l+ | ≤ 0.1, which is now known to be the most interesting part of the parameter

space, where the maxima of drag reduction R and net saving S are expected.

The control parameters have been selected according to the following guiding

principles.

(1) The intent to further scrutinize the validity of the results by GQ16, obtained

in constrained computational domains, led us to consider a wider portion of

the StTW parameter space at '4g0
= 1000, the highest value considered in

their study.

(2) GQ16 observed that Δ�∗ may still retain residual dependence on '4 at their

highest value of '4g0
= 1000, and suggested that at least '4g0

= 2000

is needed for a '4-independent measure. Therefore, the same region of

the parameter space considered above in point (1) is also considered at

'4g0
= 2000.

(3) Marusic et al. (2021) reported for the first time a drag reduction that increases

with '4 for small values of ^+ and l+, in particular for ^+ = 0.0008 (i.e.

_+ ≈ 8000), l+ = −0.0105 (i.e. )+ ≈ −600) and �+ ≈ 5 (in fact their

�+ varies slightly across the '4-number range), as shown in figure 3e of

their paper. We have added this combination of {^+, l+} to all simulations

sets, in order to verify the increase of R with '4. This is one of the two

controlled cases we have carried out at '4g0
= 6000. The second case, with

^+ = 0.0014, l+ = −0.009 and �+ = 2.5, matches exactly one of the cases

considered experimentally by Chandran et al. (2023), at the same value of

'4g0
= 6000.

(4) All controlled simulations are performed at �+ = 5 for two reasons: first,

this value of �+ is representative of the amplitude range in the experiments

by Marusic et al. (2021) for the case discussed at point (3); second, this value

is close to �+ ≈ 6 at which GQ16 measured the maximum of net power

saving S. By adopting this value of �+ we can verify whether positive S
can also be achieved at higher '4.

This results in the combination of the control parameters shown in figure 4.3,

and listed in tables from 4.2, 4.3, 4.4 and 4.5 of appendix 4.5 together with the main
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results. As will be clarified in the following, understanding the '4-dependence of

R andS requires accurate estimation of the mean wall friction, which we guarantee

by monitoring statistical uncertainty via the method described by Russo & Luchini

(2017), as shown in figures 4.6 and 4.9. Statistics are accumulated for at least

10ℎ/Dg0
time units after the initial transient, during which the control leads the

flow towards a reduced level of drag.

4.3 Results

The outcomes of the present study are presented following the guiding principles

outlined in §4.2. First, we present drag reduction maps at '4g0
= 1000 and

2000 and use them to provide ultimate validation of the GQ16 results. Second, we

evaluateΔ�∗ at '4g0
= 2000 and verify the '4-independence of this drag reduction

metric. Third, drag reduction is reported up to '4g0
= 6000 for the same actuation

parameters for which Marusic et al. (2021) observed drag reduction increase with

'4. Finally, the possibility to achieve net power savings at high '4 is discussed.

4.3.1 Maps of R: validity of the results by GQ16

Figure 4.4 compares the present drag reduction results at '4g0
= 1000 and '4g0

=

2000 with the data by GQ16, which need to be transferred to the present values of

'4g0
. The procedure involves starting from their R and � 5 0

data, then using the

GQ model (equation 4.4 with : = 0.39; GQ16 showed that the specific value of

: in the range 0.385–0.4 does not significantly affect the results) to compute Δ�∗.
The resulting cloud of Δ�∗ data points at discrete {�+, ^+, l+} values is linearly

interpolated on a Cartesian grid spanning the {^+, l+} space at the value of �+ = 5

considered in the present study. Finally, Δ�∗ is again converted back to R values

via the GQ model, now with the values of � 5 0
corresponding to '4g0

= 1000 and

'4g0
= 2000.

The comparison shows excellent agreement between the two datasets. This

finding suggests very weak sensitivity of StTW actuation on the flow geometry

(open channel vs. closed plane channel), and further strengthens the reliability

of the GQ16 data. In fact, due to their limited domain size, GQ16 had no data

for 0 < ^+ < 0.005, but even there the new data compare very well with the

GQ16 map. The maximum difference between the present and GQ16 datasets

evaluated across the interpolated maps shown in figure 4.4 is only 2.5%, and the

standard deviation is 0.8%. The agreement shows that no measurable direct effect

of large-scale turbulent structures on R exists at these values of '4g0
other than

their possible contribution to� 5 0
, which is already accounted for by the GQ model.
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Figure 4.4: Maps of drag reduction (R) as a function of actuation parameters (l+,

^+), at '4g0
= 1000 (top) and '4g0

= 2000 (bottom). The colormap, the contour

lines and symbols colored after table 4.1 refer to the present data, whereas the

black contour lines and symbols refer to the data by GQ16, which at '4g0
= 2000

are obtained from extrapolation through GQ model (4.4). The contour lines are

every 5% of R, dashed lines mark the R = 0 iso-line.
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Figure 4.5: Maps of Δ�∗ as a function of actuation parameters (l+, ^+) at '4g0
=

1000 ( ) and '4g0
= 2000 ( ). The symbols are colored after table 4.1 and

show the parameters of each simulation underlying the map interpolation shown

in the figure. Contours are shown in unit intevals, the dashed lines marking the

Δ�∗ = 0 iso-line.

4.3.2 Maps of Δ�∗: validity of the GQ model

The GQ model relies on the hypothesis that, provided '4 is high enough for the

logarithmic law (4.3) to describe well the mean velocity profile, the quantity Δ�∗

is a function of the control parameters only, and thus independent of the Reynolds

number. This hypothesis is here tested using the Δ�∗ maps for the DNS set at

'4g0
= 1000 and 2000. The maps are generated by applying the GQ model with the

corresponding values of � 5 , � 5 0
and R. The results, reported in figure 4.5, show

maximum change of Δ�∗ across '4 of only 0.36, with standard deviation 0.10.

These values can be considered quite small, given that the maximum statistical

uncertainty on the change of Δ�∗ at 95% confidence level is 0.24 across the map

of figure 4.5, and the mean absolute value is 0.17. This result thus confirms that

the drag reduction effect barely changes with '4, once it is expressed in terms of

Δ�∗.
This additionally indicates that '4g0

= 1000 is sufficient to obtain a reasonably

'4-independent estimate of Δ�∗. This observation is also supported by the good

agreement between the GQ16 data at '4g0
= 1000 and the results by Rouhi et al.

(2023) obtained up to '4g0
= 4000 in relatively small domains.
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Figure 4.6: Drag reduction rate (R) as function of the reference friction

Reynolds number ('4g0
) for backward-travelling wave with parameters �+ = 5,

^+ = 0.00078 and l+ = −0.0105, close to the conditions considered by Marusic

et al. (2021), i.e. �+ ≈ 5, ^+ ≈ 0.0008 and l+ ≈ −0.0105 (in their laboratory ex-

periment the viscous-scaled parameters vary slightly with '4). The present results

are denoted with coloured symbols (see table 4.1); experimental data by Marusic

et al. (2021) are black solid circles, while squares denote their LES numerical

data; the straight line is the prediction of the GQ model (4.4) corresponding to

Δ�∗ = 0.51 and to the values of � 5 0
obtained from the uncontrolled simulations

at the respective value of '4g0
. The error bars have been determined as described

in §4.2, corresponding to a 95% confidence level.
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4.3.3 Monotonicity of R with '4

The GQ model predicts that R decreases monotonically with '4, however more

slowly than the power-law decrease assumed in early studies (Choi et al., 2002;

Quadrio & Ricco, 2004; Touber & Leschziner, 2012). The decrease rate is less at

higher '4 and for smaller R. Ample numerical and experimental evidence so far,

including the results of the present study, support the predictions of the GQ model.

Contrasting evidence that R may instead increase with '4 has been recently

provided from the combined laboratory and numerical efforts of Marusic et al.

(2021). As shown in figure 3e of their paper, they found that R obtained by

backward-travelling waves at small values of ^+ and l+, namely ^+ = 0.0008 and

l+ = −0.0105, increases from 1.6% at '4g0
≈ 1000, as measured numerically in

large-eddy simulation (LES) of open channel flow, up to 13.1% at '4g0
≈ 12800,

as measured experimentally in a turbulent boundary layer. Since the actuator

employed in their experiments yields a wave with a frequency-dependent amplitude

and constant wavelength in physical units (30 cm), those authors could not exactly

maintain the same value of viscous-scaled control parameters across the considered

Reynolds number range. Specifically, the amplitude increased from �+ = 4.6 at

'4g = 9000 to �+ = 5.7 at '4g = 12800 (see table 1 in Chandran et al., 2023).

Furthermore, although the original figure 3e of Marusic et al. (2021) reports a

constant value of ^+ = 0.0008 at all '4, we cannot reconcile it with the actuator

wavelength being fixed in physical units for the experimental points.

In the present work, we verify this contrasting evidence by studying the '4-

dependence of R across the largest range of Reynolds number tested so far via

DNS. For this purpose, we consider StTW actuation at '4g0
= 1000, 2000,

3000 and 6000, with control parameters selected to match as closely as possible

those reported in figure 3e of Marusic et al. (2021), namely ^+ = 0.00078 and

l+ = −0.0104. The wave amplitude is set to �+ = 5, midway between the range of

variation in their experiments. Figure 4.6 compares our numerical results with the

numerical and experimental results of Marusic et al. (2021). Our measurements

still fit very well the prediction of the GQ model, and confirm an overall decreasing

trend of R with '4.

To verify whether the differences observed in figure 4.6 are due to the dif-

ferent Reynolds number range considered here and by Marusic et al. (2021), we

advocate the work of Chandran et al. (2023). Those authors extended the ex-

perimental database of Marusic et al. (2021) with additional data points, some

of which at '4g0
≈ 6000, i.e. the highest Reynolds number considered in the

present study. Hence, we have precisely reproduced their actuated flow case with{
�+, l+, ^+, '4g0

}
= {2.5,−0.009, 0.0014, 6000}, the remaining differences be-

ing the flow configuration (open channel vs. boundary layer), as well as actuation

details (ideal harmonic actuation in numerical simulation vs. spatially discretised
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wave in experiment). This case also falls within the range of potential use for

outer-scaled actuation according to Deshpande et al. (2023), due to the compara-

tively large actuation period )+ = −700 and wavelength _+ ≈ 4500, similar to the

case presented in figure 4.6. A drag reduction of R = 2.3% ± 1.1% is measured

here, to be compared with R = 6% measured experimentally by Chandran et al.

(2023). This finding hints at systematic differences between the present numerical

simulations and the laboratory experiments of Marusic et al. (2021) and Chandran

et al. (2023). We reiterate that this is possibly due to irreducible differences in the

flow and wall actuation setups, or even to the extreme challenges posed by labo-

ratory experiments targeting such complex drag reduction strategies. We will go

back to this important issue in §4.4. For the moment, the present data corroborate

the expectation that R decreases with '4 at the rate predicted by the GQ model.

4.3.4 Net power savings at large values of '4

Net power saving S derives from the (positive or negative) balance between the

power saved through drag-reducing control and the power required for wall actua-

tion, hence

S = R − %in

%?0

, (4.5)

where %?0
is the pumping power per unit wetted area in the uncontrolled case,

which for constant *1 reads

%?0
= *1gG0

, (4.6)

and %in is the control input power per unit wetted area, expressed as:

%in = ⟨FFgI⟩= da

〈
F
mF

mH

〉����
F

=
da

2

d

dH
⟨FF⟩

����
F

, (4.7)

where gI = da(mF/mH)F is the spanwise wall shear stress.

Similarly to what done for R, the Reynolds-number dependence of S can also

be predicted theoretically. Whereas R is accurately expressed by the GQ model,

the '4-dependence of %in/%?0
can be easily expressed following Ricco & Quadrio

(2008), who noticed that this ratio is equivalent to %+
in
/%+

?0
. Since %+

in
is very well

approximated by the power %+
ℓ

required to generate the laminar transverse Stokes

layer (Quadrio & Ricco, 2011; Gatti & Quadrio, 2013) — which does not depend

on '4 if the viscous-scaled parameters are kept constant — the '4-dependence of

%in/%?0
comes only from %+

?0
= *+

1
=

√
2/� 5 0

. By using the expression of %+
ℓ

by

Gatti & Quadrio (2013), we thus obtain

%in

%?0

≈
%+
ℓ

*+
1

=
(�+)2(^+)1/3

2*+
1

Re

[
ec8/6

Ai′(\)
Ai(\)

]
, (4.8)
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Figure 4.7: Maps of actuation power (%+
in

) as a function of the actuation parameters

(l+, ^+), at '4g0
= 1000 ( ) and '4g0

= 2000 ( ). The symbols are

colored after table 4.1 and show the parameters of each simulation underlying the

map interpolation shown in the figure. Data by GQ16 ( and black dots), and

%+
in

from equation (4.8) ( ) are also reported.

where 8 is the imaginary unit, Re indicates the real part of a complex num-

ber, Ai is the Airy function of the first kind, Ai′ its derivative and \ =

−ec8/6(^+)1/3 (l+/^+ + 8^+). Equation (4.8) shows that %+
in
= *+

1
%in/%?0

≈ %+
ℓ
,

is a Reynolds-independent quantity for StTW parameters sufficiently far from the

region of drag increase, where the approximation %+
in
≈ %+

ℓ
is known to fail. As

a result, it is sufficient to measure %+
in

at a given Reynolds number, or estimate it

via %+
ℓ
, in order to retrieve %in/%?0

at any Reynolds number, i.e. at any arbitrary

*+
1
=

√
2/� 5 0

. Equation (4.8) shows that %in/%?0
decreases with '4 as 1/*+

1
,

so that S can in fact increase with '4, provided the normalised actuation power

decays with '4 faster than R.

Figure 4.7 confirms that %+
in

is indeed constant with '4 throughout the inves-

tigated parameter space, included the drag-increasing regime, where %+
in

and %+
ℓ

do differ and the former can only be measured empirically. The GQ16 dataset

well aligns with the present data, the lacking information for 0 < ^+ ≤ 0.005

notwithstanding.

The net power saving at '4g0
= 1000 and 2000 is reported in figure 4.8.

Overall, the contours of S do not change significantly, since degradation of R is

compensated by reduction of the actuation input power. Larger differences are

observed for nearly optimal S (see the S = 15% iso-line in figure 4.8), in a region

which shrinks and shifts towards higher ^+ at higher '4. This can be explained

by the stronger decay of R in this region (as predicted by the GQ model due to

164



Figure 4.8: Maps of net power saving (S) as a function of the actuation parameters

(l+, ^+), at '4g0
= 1000 ( ) and '4g0

= 2000 ( ). The symbols are

colored after table 4.1 and show the parameters of each simulation underlying the

map interpolation shown in the figure. Contour lines are shown in intervals of 5%,

the dashed lines denoting the S = 0 iso-line.

larger R) and by the comparatively small value of %in/%?0
, which causes S to have

similar '4-dependence as R.

GQ16 noticed that at '4g0
≈ 1000 and �+ = 5.5 the locus of near-optimum

new power saving (S = 15%) extends along the ridge of maximum R between

^+ = 0.0085 and 0.04, the maximum being at {l+, ^+} = {0.093, 0.026}. This

implies that the point of maximum S might reside outside of the parameter space

considered in figure 4.8, for both Reynolds numbers under scrutiny here.

As done for the drag reduction in figure 4.6, the variation of S with '4

is shown in figure 4.9, for the same parameters considered by Marusic et al.

(2021). Interestingly, S is observed to increase with '4 at this combination of

parameters, essentially due to the shrinking of the negative %in/%?0
contribution

and to the relatively constantR. The increase ofS is compatible with the theoretical

prediction that can be obtained by combining the GQ model of equation (4.4)

with the prediction for %in/%?0
of equation (4.8). The differences between the

present numerical database and the laboratory experiments of Marusic et al. (2021),

previously noted for R, are confirmed here.

The present results enable a better understanding of the available literature

data. For instance, by comparing the numerical data by Rouhi et al. (2023),

which consider StTW at small wavelengths (due to the restricted domain size)

and relatively large amplitude �+ = 12 and frequencies, with their experimental

data, which consider backward-travelling waves at larger wavelengths but smaller
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Figure 4.9: Net power saving (S) as function of reference friction Reynolds number

('4g0
) for backward-travelling waves with the same parameters considered by

Marusic et al. (2021). The present data are indicated with colored symbols (see

table 4.1); data by Marusic et al. (2021) are black solid circles (experiments) and

squares (LES); the straight line is the theoretical prediction obtained by combining

the GQ model (4.4) for Δ�∗ = 0.51 with equation (4.8) for %+
in

= 1.1 and the

values of � 5 0
obtained from the uncontrolled simulations at the respective value

of '4g0
.

amplitudes of �+ ≈ 5 and frequencies, Chandran et al. (2023) conclude that mostly

low-frequency forcing |l+ | < 0.018 is capable to achieve positive S, despite the

moderate values of R. This conclusion is observed here to be an artifact of the

comparison between StTW at different amplitudes: according to GQ16 it is known

that already at '4g0
= 1000 no positiveS can be achieved via StTW for amplitudes

�+ ⪆ 14. The present data clearly show that the observation of GQ16 is valid also

if smaller values of wavenumbers and frequencies are considered: the locus of

maximum S in the {l, ^}-space essentially coincides with the one of maximum

R, and it shifts towards larger {l, ^} for increasing values of '4 rather than to

smaller ones, if the comparison among various '4 is performed at a constant value

of �+ close to the optimal �+ ≈ 6 identified by GQ16.

4.4 Concluding discussion

In the present work we have addressed the Reynolds-number dependence of skin-

friction drag reduction induced by spanwise forcing, in terms of both drag reduction

rate R and net power saving S. In particular, we have focused on streamwise-

travelling waves of spanwise wall velocity (StTW, Quadrio et al., 2009). A new

database of high-fidelity direct numerical simulations (DNS) of turbulent open

channel flow with and without StTW has been generated for '4g0
= 1000, 2000,
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3000 and 6000. This is the widest Reynolds-number range considered so far in

numerical experiments with spanwise forcing, and reduces the gap from the highest

value of '4g0
considered in analogous laboratory experiments (Chandran et al.,

2023) to a factor of 2.5.

The main outcome of the present study is to confirm the validity of the pre-

dictive model for drag reduction proposed by Gatti & Quadrio (2016) and its

underlying hypothesis. The present data corroborate the observation that the pa-

rameter Δ�∗, which quantifies the control-induced velocity shift in actual viscous

units “∗” at matched H∗ with respect to the non-actuated flow, is a '4-independent

measure of drag reduction when the Reynolds number is sufficiently large for the

logarithmic law to apply. We have shown that '4g0
⪆ 1000 is sufficient for Δ�∗ to

become nearly '4-independent, since no statistically significant differences have

been measured between the '4g0
= 1000 and '4g0

= 2000 cases, for a wide range

of actuation parameters, and up to '4g0
= 6000 for one selected combination of

actuation parameters.

This key result implies that drag reduction induced by StTW at a given com-

bination of {�+, l+, ^+} is bound to monotonically decrease with the Reynolds

number, at a rate that depends on R itself and on (the inverse square root of)

the skin-friction coefficient � 5 0
of the uncontrolled flow, as embodied in the GQ

model; see equation (4.4). Fortunately, the decay rate is less severe than the power

law R ∼ '4−0.2
g0

suggested empirically in early studies on spanwise wall oscilla-

tions (Choi et al., 2002; Touber & Leschziner, 2012), conveying that significant

drag reduction can still be achieved at very high '4.

The increase of drag reduction with the Reynolds number observed

by Marusic et al. (2021) with actuation parameters corresponding to the

outer-scaled actuation is not confirmed by our numerical experiments with

{�+ = 5, l+ = −0.0104, ^+ = 0.00078} in turbulent open channels. On the con-

trary, the present results follow well the prediction of the GQ model, and show a

very mild decrease of R with '4 for these specific parameters. While the obser-

vation of R increasing with '4 is indeed surprising and unique in literature, we

can only speculate on the reasons behind this discrepancy.

On the one hand, the difference in the flow setup considered here and in Marusic

et al. (2021) (open channel vs. boundary layer) could affect the Reynolds-number

dependence of R. In this respect, Skote (2014) applied StTW to numerical turbu-

lent boundary layers at low '4 and noted that the Kármán constant can increase in

the presence of drag-reduction effects. This could affect the '4-dependency of R,

since the GQ model assumes constancy of : . The experimental data of Chandran

et al. (2023), however, do not support such an effect. On the other hand, Marusic

et al. (2021) and later Chandran et al. (2023) implemented a spatially discrete form

of the StTW, similarly to Auteri et al. (2010), and synthesised harmonic waves

by independently moving stripes with finite width. Auteri et al. (2010) and, more
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recently, Gallorini & Quadrio (2024) addressed the effects of the wave discretisa-

tion on the achievable drag reduction. Owing to discretization, the turbulent flow

perceives a number of higher Fourier harmonics of the discrete piecewise-constant

wave, as if multiple waves with different parameters were applied. As a result,

quantitative comparison between the ideally continuous and piecewise-constant

forcing is not trivial, and some discrete waves far from the optimal forcing param-

eters can outperform the corresponding ideal sinusoidal waveform, whenever part

of the harmonic content of the discrete wave falls in high-R regions of the drag

reduction map. Finally, the conclusion of Marusic et al. (2021) that R increases

with '4 hinges on comparison of data obtained with different methods. In partic-

ular, the low-'4 data were obtained from LES of turbulent open channel flow in

relatively small domains with continuous StTW applied at the wall, whereas the

high-'4 data were obtained from boundary layer experiments with discrete StTW.

Differences in numerical and experimental uncertainties can further complicate

the comparison. Whereas the above speculations remain to be verified in future

studies, the present results support the claim that ideal StTW applied in turbulent

open channels are neither expected nor observed to yield an increase of drag re-

duction with increasing '4, for any combination of wave parameters that are kept

constant in viscous units.

Lastly, we also confirm that the Reynolds-number dependence of the net

power saving S = R − %in/%?0
is in line with theoretical predictions. Whereas

R directly derives from the GQ model, %in/%?0
can be obtained directly from

%+
in
= *+

1
%in/%?0

, which is known to be '4-independent (Gatti & Quadrio, 2013).

Interestingly, we have found that %+
in

does not change with '4 throughout the

drag-reduction map, not only in those regions where %+
in

is known to be well ap-

proximated by %+
ℓ
, i.e. the value obtained from the laminar generalised Stokes

layer solution. In other words, the ideal viscous scaling of %+
in

is retained even

close to the valley of drag increase, where turbulence is known to interact with

the generalised Stokes layer generated by StTW actuation. This result, as already

discussed in Gatti & Quadrio (2013, 2016), has two main implications. Firstly, in

the portion of the StTW parameter space where S is maximum, S is dominated

by R and hence exhibits similar '4-dependence; here S decreases with '4 at a

rate which is slightly less than R. Secondly, for StTW parameters far from the

optimum, both R and %in/%?0
contribute to S. In this case, the normalised control

cost may decrease with '4 at a faster rate than R, so that S can actually increase

with '4. However, this can occur only in regions of non-optimal values of S.

Hence, we argue that the observation by Chandran et al. (2023) that only low-

frequency, low-wavenumber forcing can achieve positive S at high '4 may be an

artifact due to the properties of their experimental setup, in which the same region

of the viscous-scaled parameter space cannot be spanned for different values of

'4 (see figure 4.10). Indeed, those authors can only achieve the optimal values of
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Figure 4.10: Wavenumber (^+), angular frequency (l+) and amplitude (�+) for

StTW actuation considered by Chandran et al. (2023), for different values of '4g0
.

�+ at the highest values of '4, at which only low l+ and ^+ are possible owing to

the small space- and time-scales of the turbulent flow. The more systematic scan

of the StTW parameter space carried out in the present study shows that the loci

of optimal S and R roughly coincide in the {l+, ^+} plane.

4.5 Dataset details

This Appendix reports the combination of the StTW control parameters of the

simulations performed to produce the present dataset, together with the main

quantities of interest. Tables 4.2, 4.3, 4.4 and 4.5 are for '4g0
= 1000, '4g0

= 2000,

'4g0
= 3000 and '4g0

= 6000 respectively.

Case �/*1 �+ lℎ/*1 l+ × 102 ^ℎ ^+ × 102 R% S%

1 0.248 5.0 −4.98 -10.03 0 0.000 12.2 −1.6

2 0.248 5.0 −4.98 -10.03 0.67 0.067 12.7 −1.2

3 0.248 5.0 −4.98 -10.03 1.7 0.167 12.8 −1.3

4 0.248 5.0 −4.98 -10.03 5 0.502 12.6 −1.9

5 0.248 5.0 −4.98 -10.03 10 1.004 11.4 −3.6

6 0.248 5.0 −4.98 -10.03 15 1.506 9.8 −5.8

7 0.248 5.0 3.73 7.53 0 0.000 13.3 1.4

8 0.248 5.0 3.73 7.53 0.67 0.067 12.5 0.8

9 0.248 5.0 3.73 7.53 1.7 0.167 10.5 −1.0

10 0.248 5.0 4.98 10.03 0 0.000 12.2 −1.6

169



11 0.248 5.0 3.73 7.53 5 0.502 −1.0 −11.5

12 0.248 5.0 3.73 7.53 10 1.004 6.7 −2.0

13 0.248 5.0 3.73 7.53 15 1.506 19.3 12.9

14 0.248 5.0 4.98 10.03 0.67 0.067 12.0 −1.7

15 0.248 5.0 4.98 10.03 1.7 0.167 12.0 −1.5

16 0.248 5.0 4.98 10.03 5 0.502 5.4 −7.5

17 0.248 5.0 4.98 10.03 10 1.004 −1.8 −13.8

18 0.248 5.0 4.98 10.03 15 1.506 10.0 0.1

19 0.248 5.0 −2.30 -4.64 7.7 0.770 16.3 5.3

20 0.248 5.0 −0.82 -1.65 7.7 0.770 19.8 11.4

21 0.248 5.0 0.00 -0.00 7.7 0.770 21.6 14.8

22 0.248 5.0 0.82 1.65 7.7 0.770 20.9 15.7

23 0.248 5.0 2.30 4.64 7.7 0.770 10.3 4.9

24 0.248 5.0 −2.28 -4.59 0 0.000 10.2 1.2

25 0.248 5.0 −0.81 -1.63 0 0.000 2.8 −3.1

26 0.248 5.0 −2.28 -4.59 0.67 0.067 11.8 2.5

27 0.248 5.0 −0.81 -1.63 0.67 0.067 5.3 −0.7

28 0.248 5.0 0.00 -0.00 0.67 0.067 1.0 −3.4

29 0.248 5.0 0.81 1.63 0.67 0.067 0.8 −4.8

30 0.248 5.0 2.28 4.59 0.67 0.067 8.0 −0.8

31 0.248 5.0 −2.28 -4.59 1.7 0.167 14.3 4.8

32 0.248 5.0 −0.81 -1.63 1.7 0.167 10.3 3.9

33 0.248 5.0 0.00 -0.00 1.7 0.167 4.7 −0.1

34 0.248 5.0 0.81 1.63 1.7 0.167 2.2 −2.1

35 0.248 5.0 2.28 4.59 1.7 0.167 3.5 −5.0

36 0.248 5.0 −2.28 -4.59 5 0.502 16.6 6.2

37 0.248 5.0 −0.81 -1.63 5 0.502 18.1 10.5

38 0.248 5.0 0.00 -0.00 5 0.502 17.5 11.6

39 0.248 5.0 0.81 1.63 5 0.502 13.5 9.1

40 0.248 5.0 2.28 4.59 5 0.502 3.0 −3.8

41 0.248 5.0 2.28 4.59 5 0.502 3.0 −3.8

42 0.248 5.0 −2.28 -4.59 10 1.004 15.6 4.2

43 0.248 5.0 −0.81 -1.63 10 1.004 19.0 10.0

44 0.248 5.0 0.00 -0.00 10 1.004 20.8 13.3

45 0.248 5.0 0.81 1.63 10 1.004 22.5 16.5

46 0.248 5.0 2.28 4.59 10 1.004 18.2 13.4

47 0.248 5.0 −2.28 -4.59 15 1.506 14.0 1.8

48 0.248 5.0 −0.81 -1.63 15 1.506 17.4 7.4

49 0.248 5.0 0.00 -0.00 15 1.506 18.9 10.2

50 0.248 5.0 0.81 1.63 15 1.506 20.5 13.0

51 0.248 5.0 2.28 4.59 15 1.506 24.3 18.8
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52 0.228 4.6 0.00 -0.00 10 1.004 19.7 13.3

53 0.248 5.0 −0.52 -1.05 0.67 0.067 3.9 −1.0

54 0.248 5.0 −0.52 -1.05 1 0.100 5.4 −0.2

55 0.248 5.0 −3.73 -7.53 0 0.000 12.3 0.4

56 0.248 5.0 −3.73 -7.53 0.67 0.067 13.4 1.3

57 0.248 5.0 −3.73 -7.53 1.7 0.167 13.2 1.0

58 0.248 5.0 −3.73 -7.53 5 0.502 13.8 1.0

59 0.248 5.0 −3.73 -7.53 10 1.004 12.3 −1.2

60 0.248 5.0 −3.73 -7.53 15 1.506 11.8 −2.4

61 0.248 5.0 −4.98 -10.04 20 2.008 8.5 −7.7

62 0.248 5.0 −3.73 -7.53 20 2.008 10.8 −4.0

63 0.248 5.0 −2.28 -4.59 20 2.008 13.0 0.1

64 0.248 5.0 −0.81 -1.63 20 2.008 15.6 4.7

65 0.248 5.0 0.00 -0.00 20 2.008 17.3 7.5

66 0.248 5.0 0.81 1.63 20 2.008 19.5 10.9

67 0.248 5.0 2.28 4.59 20 2.008 22.9 16.2

68 0.248 5.0 3.73 7.53 20 2.008 23.8 17.7

69 0.248 5.0 4.98 10.04 20 2.008 19.8 11.8

70 0.248 5.0 −0.52 -1.05 0.78 0.078 4.5 −1.0

Table 4.2: List of the controlled simulations carried out at '4g0
= 1000.

Case �/*1 �+ lℎ/*1 l+ × 102 ^ℎ ^+ × 102 R% S%

1 0.3 6.5 0.21 0.23 0.33 0.017 2.7 −2.1

2 0.228 5.0 −1.50 -1.63 0 0.000 1.9 −3.5

3 0.228 5.0 −4.19 -4.56 0 0.000 9.5 1.3

4 0.228 5.0 1.50 1.63 5 0.250 3.6 −0.4

5 0.228 5.0 −1.50 -1.63 0.67 0.033 5.2 −0.2

6 0.228 5.0 −4.19 -4.56 0.67 0.033 10.6 2.3

7 0.228 5.0 0.00 -0.00 0.67 0.033 3.6 −0.1

8 0.228 5.0 4.19 4.56 0.67 0.033 9.0 0.8

9 0.228 5.0 1.50 1.63 0.67 0.033 3.2 −2.0

10 0.228 5.0 −1.50 -1.63 5 0.250 12.8 6.6

11 0.228 5.0 −4.19 -4.56 1.7 0.083 13.0 4.5

12 0.228 5.0 0.00 -0.00 1.7 0.083 1.9 −2.2

13 0.228 5.0 4.19 4.56 1.7 0.083 8.3 0.3

14 0.228 5.0 1.50 1.63 1.7 0.083 −0.2 −5.2
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15 0.228 5.0 −1.50 -1.63 10 0.500 18.2 11.3

16 0.228 5.0 −4.19 -4.56 5 0.250 16.0 7.1

17 0.228 5.0 0.00 -0.00 5 0.250 9.5 4.9

18 0.228 5.0 4.19 4.56 5 0.250 0.7 −6.9

19 0.228 5.0 −1.50 -1.63 1.7 0.083 6.7 1.1

20 0.228 5.0 −4.19 -4.56 10 0.500 16.0 6.6

21 0.228 5.0 4.19 4.56 10 0.500 3.2 −3.1

22 0.228 5.0 −1.50 -1.63 15 0.749 18.0 10.4

23 0.228 5.0 −4.19 -4.56 15 0.749 15.9 5.9

24 0.228 5.0 0.00 -0.00 15 0.749 19.7 13.5

25 0.228 5.0 4.19 4.56 15 0.749 11.5 6.5

26 0.228 5.0 1.50 1.63 15 0.749 19.3 14.6

27 0.228 5.0 −0.75 -0.81 10 0.500 17.4 11.2

28 0.228 5.0 0.00 -0.00 30 1.499 18.5 10.5

29 0.228 5.0 −2.99 -3.26 10 0.500 17.3 8.9

30 0.228 5.0 1.50 1.63 10 0.500 12.8 8.7

31 0.228 5.0 0.00 -0.00 10 0.500 16.5 11.2

32 0.228 5.0 −0.95 -1.05 1.7 0.084 4.3 −0.7

33 0.228 5.0 −0.95 -1.05 1.3 0.067 3.1 −1.9

34 0.228 5.0 −4.19 -4.56 30 1.499 13.0 1.8

35 0.228 5.0 4.19 4.56 30 1.499 22.1 17.0

36 0.228 5.0 9.24 10.06 0 0.000 10.9 −1.9

37 0.228 5.0 9.24 10.06 0.67 0.033 11.4 −1.3

38 0.228 5.0 9.24 10.06 1.7 0.083 11.2 −1.4

39 0.228 5.0 9.24 10.06 5 0.250 10.0 −2.4

40 0.228 5.0 9.24 10.14 10 0.501 4.0 −7.9

41 0.228 5.0 9.24 10.14 15 0.752 −4.0 −15.2

42 0.228 5.0 −9.24 -10.14 0 0.000 10.7 −2.3

43 0.228 5.0 −9.24 -10.14 0.67 0.033 10.6 −2.1

44 0.228 5.0 −9.24 -10.14 1.7 0.084 11.1 −1.7

45 0.228 5.0 −9.24 -10.14 5 0.251 11.5 −1.5

46 0.228 5.0 −9.24 -10.14 10 0.501 10.5 −2.9

47 0.228 5.0 −9.24 -10.14 15 0.752 10.4 −3.2

48 0.228 5.0 −6.89 -7.56 0 0.000 11.9 0.9

49 0.228 5.0 −6.89 -7.56 0.67 0.033 11.6 0.6

50 0.228 5.0 −6.89 -7.56 1.7 0.084 12.0 1.0

51 0.228 5.0 −6.89 -7.56 5 0.251 13.1 1.7

52 0.228 5.0 −6.89 -7.56 10 0.501 12.4 0.7

53 0.228 5.0 −6.89 -7.56 15 0.752 12.5 0.4

54 0.228 5.0 6.89 7.56 0 0.000 12.5 1.6

55 0.228 5.0 6.89 7.56 0.67 0.033 11.3 0.4
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56 0.228 5.0 6.89 7.56 1.7 0.084 10.9 0.1

57 0.228 5.0 6.89 7.56 5 0.251 7.0 −3.3

58 0.228 5.0 6.89 7.56 10 0.501 −2.1 −11.8

59 0.228 5.0 6.89 7.56 15 0.752 −0.2 −9.5

60 0.228 5.0 −6.89 -7.56 30 1.504 11.1 −1.9

61 0.228 5.0 −0.95 -1.05 1.6 0.078 4.0 −1.0

Table 4.3: List of the controlled simulations carried out at '4g0
= 2000.

Case �/*1 �+ lℎ/*1 l+ × 102 ^ℎ ^+ × 102 R% S%

1 0.219 5.0 −2.16 -1.65 0.67 0.022 3.1 −2.1

2 0.219 5.0 0.00 -0.00 0.67 0.022 1.4 −2.1

3 0.219 5.0 2.16 1.65 0.67 0.022 1.3 −3.8

4 0.219 5.0 2.16 1.65 1.7 0.056 −0.5 −5.5

5 0.218 5.0 −1.37 -1.05 2.3 0.078 4.4 −0.4

6 0.218 5.0 −1.37 -1.05 2.7 0.089 4.7 −0.1

Table 4.4: List of the controlled simulations carried out at '4g0
= 3000.

Case �/*1 �+ lℎ/*1 l+ × 102 ^ℎ ^+ × 102 R% S%

1 0.203 5.0 −2.55 -1.04 4.7 0.078 3.5 −0.9

2 0.101 2.5 −2.19 -0.90 8.3 0.139 2.3 1.2

Table 4.5: List of the controlled simulations carried out at '4g0
= 6000.
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Turbulent drag reduction with

streamwise travelling waves in the

compressible regime

Abstract

The ability of streamwise-travelling waves of spanwise velocity to reduce the tur-

bulent skin-friction drag is assessed in the compressible regime. Direct numerical

simulations are carried out to compare drag reduction in subsonic, transonic and

supersonic channel flows. Compressibility improves the benefits of the travelling

waves, in a way that depends on the control parameters: drag reduction becomes

larger than the incompressible one for small frequencies and wavenumbers. How-

ever, the improvement depends on the specific procedure employed for comparison.

When the Mach number is varied and, at the same time, wall friction is changed

by the control, the bulk temperature in the flow can either evolve freely in time

until the aerodynamic heating balances the heat flux at the walls, or be constrained

such that a fixed percentage of kinetic energy is transformed into thermal energy.

Physical arguments suggest that, in the present context, the latter approach should

be preferred. It provides a test condition in which the wall-normal temperature

profile more realistically mimics that in an external flow, and also leads to a much

better scaling of the results, over both the Mach number and the control param-

eters. Under this comparison, drag reduction is only marginally improved by

compressibility.

5.1 Introduction

One of the distinctive features of fluid turbulence is the ability to transport and mix

mass and momentum more effectively than a laminar flow, resulting in more intense
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wall shear stress and a larger friction drag (Fukagata et al., 2002). Flow control

for skin-friction drag reduction aims to mitigate the negative effects of turbulence

near the wall, in order to cut energy consumption and to improve cost effectiveness

and environmental footprint. This is of particular interest in aeronautics: nearly

50% of the total drag of a civil aircraft is due to the viscous drag caused by the

interaction of the turbulent boundary layer with the surface (Gad-el-Hak & Pollard,

1998). An efficient drag reduction technology capable to achieve even a tiny drag

reduction rate would yield enormous economic and environmental benefits.

Drag reduction strategies are often classified as passive or active. The former

do not require extra energy, and usually exploit a non-planar wall (see Foggi Rota

et al., 2023, for an exception). Among them, riblets (Bechert et al., 1997) are

the closest to be implemented in practical applications. Laboratory tests show

that they can reduce drag up to 8–10% at low Reynolds numbers; on considering

their requirement of periodical maintenance, though, riblets do not yield enough

economical benefits to be routinely used yet. Active strategies, instead, require

actuation, and external energy to work. Those involving the motion of the wall are

an interesting category, and include spanwise wall oscillations (Jung et al., 1992),

streamwise-travelling waves of spanwise velocity (Quadrio et al., 2009), spanwise-

travelling waves of spanwise velocity (Du et al., 2002) and streamwise-travelling

waves of wall deformation (Nakanishi et al., 2012). They are all predetermined

strategies, since the control parameters are set a priori, and enjoy the relative

simplicity resulting from the lack of sensors and feedback laws. However, several

of them do not yield an energetic benefit once the control energy is accounted

for. This work focuses on the streamwise-travelling waves (StTW) of spanwise

velocity introduced by Quadrio et al. (2009). StTW are among the most promis-

ing techniques, because of their rather large net savings. This type of forcing,

thoroughly reviewed by Ricco et al. (2021), is defined by the following space-time

distribution of the spanwise velocity component at the wall:

, (G, C) = � sin(^GG − lC) (5.1)

where G and C are the streamwise direction and time, � is the forcing amplitude, ^G
is the wavenumber andl is the frequency (which define the wavelength_G = 2c/^G
and the oscillation period ) = 2c/l). The spatially uniform spanwise-oscillating

wall (Jung et al., 1992) and the stationary wave (Quadrio et al., 2007; Viotti et al.,

2009) are two limit cases of the general forcing (5.1), obtained for ^G = 0 and

l = 0 respectively.

Via a generalized Stokes layer (Quadrio & Ricco, 2011), StTW create an

unsteady near-wall transverse shear which continuously changes the inclination

of the near-wall structures in wall-parallel planes, weakening the regeneration

mechanism of the near-wall cycle (Schoppa & Hussain, 2002). Once actuation pa-
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rameters are properly tuned, this process can even lead to the complete suppression

of turbulence.

The spatially-uniform wall oscillation, studied in depth by Quadrio & Ricco

(2004) in an incompressible channel flow at a Reynolds number (based on the

friction velocity Dg of the uncontrolled flow, the fluid kinematic viscosity a and

the half-channel height) of '4g = 200, yields a drag reduction rate R of 45% (at

�+ ≡ �/Dg = 12) for the so-called ‘optimal’ actuation period )+ ≡ )D2
g/a ≈ 100.

However, the maximum energy saving after the control energy is accounted for

is found at lower forcing intensities, and amounts to 7% only. The spatially-

distributed StTW are a natural generalization of the wall oscillations, and present

substantial advantages in terms of net savings. Quadrio et al. (2009) have shown

how drag reduction, power input and total saved power vary with the control

parameters. Depending on the (^G , l) value pair, drag increase or drag reduction

can be achieved. The parameters yielding maximum drag reduction and maximum

energy saving are almost coincident, and correspond (at this Reynolds number)

to low frequencies and low wavenumbers. The largest drag reduction of 48% (at

�+ = 12) still yields a positive net power saving of 17%, and smaller forcing

intensities lead to net savings as high as 32%. StTW have been demonstrated in

the lab with a pipe flow experiment (Auteri et al., 2010), who measured up to 33%

drag reduction, and have been proven to work in boundary layers too (Skote et al.,

2015; Bird et al., 2018).

A number of practical aspects that need to be considered before declaring

spanwise forcing as a viable strategy for applications has been recently considered.

Gatti & Quadrio (2013, 2016) showed that the expected performance deterioration

at larger Reynolds numbers, which afflicts all drag reduction strategies acting via

near-wall turbulence manipulation, is only marginal for StTW and linked to the

natural variation of the skin-friction coefficient itself with the Reynolds number.

Once the performance of StTW is measured, as it should be, via the upward shift

of the logarithmic portion of the mean velocity profile in the law-of-the-wall form,

it becomes '4-independent, so that at flight Reynolds number 30%–40% friction

drag reduction could be expected. Marusic et al. (2021) hinted at an even better

scenario for StTW at high '4, thanks to the interaction of the near-wall forcing

with the large-scale outer motions of the turbulent boundary layer, although the

energetic consequences of using a spatially discrete forcing recently brought to

light by Gallorini & Quadrio (2024) were not considered. Banchetti et al. (2020)

demonstrated the beneficial effect of skin-friction drag reduction via StTW on

pressure drag when applied to bluff bodies of complex shape, and Nguyen et al.

(2021) used spanwise forcing for separation control.

One parameter that is crucial in aeronautical applications has received limited

attention so far in drag reduction studies: the Mach number " , a parameter which

quantifies the importance of compressibility effects. A few works, numerical
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(Duan & Choudhari, 2012, 2014; Mele et al., 2016) and experimental, both in

wind tunnel (Gaudet, 1989; Coustols & Cousteix, 1994) and with flight test (Zuniga

et al., 1992), investigated the drag reduction effectiveness of riblets in a turbulent

compressible boundary layer. Fewer studies have been carried out to assess how

compressibility alters the drag reduction capabilities of active techniques: for

example, Chen et al. (2016) examined the uniform blowing or suction in an

hypersonic turbulent boundary layer at free-stream Mach number of 6.

As far as spanwise forcing goes, the large eddy simulation study of Fang

et al. (2009) was the first to consider the spanwise oscillating wall in a turbulent

channel flow at " = 0.5, followed by the direct numerical simulation (DNS) study

of Ni et al. (2016) for a turbulent boundary layer at " = 2.5. However, the first

comprehensive study of compressibility effects in drag reduction via spanwise wall

oscillations was performed by Yao & Hussain (2019). They carried out DNS of a

plane channel flow subjected to spanwise oscillating walls at " = 0.3, 0.8, 1.5, at

'4g = 200, �+ = 12 and )+ in the range 25−300. R was found to be qualitatively

similar to the incompressible case: for a given period )+, R increases with the

amplitude �+, at a rate that saturates when �+ becomes large. For �+ = 12, they

reported R increasing from 34.8% at )+ = 100 for " = 0.3 to an outstanding

value of 47.1% at the largest period investigated )+ = 300 for " = 1.5. For

�+ = 18 and " = 1.5, the flow reached relaminarization. The effect of '4

was also investigated via a few additional cases run at '4g ≈ 500, confirming

the related decline of R. Yao & Hussain (2019) did not consider the impact of

the Mach number on the power budget. Both drag reduction and power budget

performance were later discussed in the recent work by Ruby & Foysi (2022) for

a channel flow at " = 0.3, 1.5, 3 and '4g = 200 − 1000 forced by stationary

waves with �+ = 12 and ^+G = 0.0025 − 0.01. They found the optimum ^G and the

maximum net power saving to increase significantly with Mach, thus confirming

the beneficial effect of compressibility.

When applying flow control for drag reduction in duct flows at various " ,

the thermodynamical properties of the flow change because of the increased bulk

temperature, owing to the combination of the increased Mach number and the

action of the control. To understand whether changes of drag reduction with " di-

rectly depend on compressibility, rather than indirectly deriving from temperature

changes induced by changes of the skin friction drag, the comparison procedure

between uncontrolled and controlled flows should decouple compressibility from

purely thermodynamical effects. Yao & Hussain (2019) examined the effect of "

on R by matching the semi-local Reynolds number (at half-channel height), which

provides a relatively good collapse of R between incompressible and compress-

ible cases. In the present work, we also propose a further, alternative approach:

the value of the bulk temperature is constrained such that the amount of turbu-

lent kinetic energy transformed into thermal energy remains constant, both across
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the variation of " and between uncontrolled and controlled cases. This strategy

presents a significant advantage. The simplified setup of the turbulent channel

flow can be used in configurations where the coupling between the velocity and

thermal fields is closer to that found in external flows, where the application of

the spanwise forcing to reduce drag is more attractive. For example, compressible

boundary layers of practical aeronautical interest are usually characterized by adi-

abatic or moderately cold walls, with a thermal stratification leading to a denser,

colder outer region and a layer of warmer fluid in the near-wall zone.

The present work is the first comprehensive analysis of the StTW technique

in the compressible regime. The only prior work is the single case computed by

Quadrio et al. (2022), who studied by DNS the StTW applied on a portion of a

wing in transonic flight at " = 0.7 and '4 = 3 × 105 (based on the free-stream

velocity and the wing cord), finding that a localized actuation has the potential to

boost the aerodynamic efficiency of the whole aircraft, with an estimate reduction

of 9% of the total drag of the airplane at a negligible energy cost. In this work, we

consider by DNS a compressible turbulent plane channel flow modified by StTW,

and we aim at fully characterizing how R and the power budget depend on the

Mach number.

The paper is organized as follows. After this Introduction, §5.2 describes

the computational framework used to produce the DNS database, presenting the

governing equations in §5.2.1, the DNS solver in §5.2.2, and the simulation pa-

rameters in §5.2.3. The parameters used to quantify drag reduction are defined

in §5.2.4, and §5.2.5 describes two approaches to compare unforced and forced

compressible channel flows at different " . In §5.3 the effects of the Mach number

are discussed, first in terms of drag reduction in §5.3.1, and then in terms of power

budgets in §5.3.2. Lastly, in §5.4 the main conclusions are briefly outlined. The

paper is concluded by a brief Appendix where the raw results of the numerical

study are compactly shown.

5.2 Methods

5.2.1 Governing equations

The compressible Navier–Stokes equations for a perfect and heat-conducting gas

are written in conservative form as:

md

mC
+ mdD8

mG8
= 0 (5.2)

mdD8

mC
+
mdD8D 9

mG 9
= − m?

mG8
+
mf8 9

mG 9
+ 5 X81 (5.3)
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md4

mC
+
md(4 + ?/d)D 9

mG 9
=

mf8 9D8

mG 9
−
m@ 9

mG 9
+ 5 D1 +Φ. (5.4)

Here and throughout the paper, repeated indices imply summation; d is the fluid

density, ? is the pressure, D8 is the velocity component in the 8-Cℎ directions, and

8 = 1, 2, 3 represent the streamwise (G), wall-normal (H) and spanwise (I) direction,

respectively. The total energy per unit mass 4 = 2E) + D8D8/2 is the sum of the

internal energy and the kinetic energy, where 2E is the specific heat at constant

volume and ) the temperature. The viscous stress tensor f8 9 for a Newtonian fluid

subjected to the Stokes hypothesis becomes:

f8 9 = `

(
mD8

mG 9
+
mD 9

mG8
− 2

3

mD:

mG:
X8 9

)
, (5.5)

where ` is the dynamic viscosity and X8 9 is Kronecker delta; the dependence of

viscosity on the temperature is accounted for through the Sutherland’s law. The

heat flux vector @ 9 is modelled after the Fourier law:

@ 9 = −: m)

mG 9
, (5.6)

where : = 2?`/%A is the thermal conductivity, with 2? the specific heat at constant

pressure and %A the Prandtl number, set to %A = 0.72. We consider the turbulent

channel configuration, where the flow between two isothermal walls is driven in the

streamwise direction by the time-dependent body force 5 in Eq.(5.3), evaluated at

each time step to maintain a constant mass flow-rate. The corresponding power is

included in Eq.(5.4), where the additional termΦ represents a uniformly distributed

heat source which controls the value of the bulk flow temperature (Yu et al., 2019).

5.2.2 Solver

The flow solver employed for the analysis is STREAmS (Supersonic TuRbulEnt

Accelerated Navier–Stokes Solver), a high-fidelity code designed for large-scale

simulations of compressible turbulent wall-bounded flows that runs in parallel on

CPU and GPU architectures.

The code, developed by Bernardini et al. (2021), incorporates state-of-the-art

numerical algorithms, specifically designed for the solution of compressible tur-

bulent flows, with a focus on the high-speed regime. The distinctive feature of the

solver is the methodology adopted for the discretization of the convective terms

of the Navier–Stokes equations with hybrid, high-order, energy-consistent/shock-

capturing schemes in locally conservative form. An energy-preserving discretiza-

tion, based on sixth-order central approximations, is applied where the solution is

smooth, and guarantees discrete conservation of the total kinetic energy in the limit
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case of inviscid, low-speed flows. This is the case of interest for all the simula-

tions presented in this study, where shock waves do not occur. The Navier–Stokes

equations are reduced to a semi-discrete system of ordinary differential equations,

integrated in time using a three-stages third-order Runge–Kutta scheme. The solver

is written in Fortran, and uses the MPI paradigm with a double domain decompo-

sition; in its current version (Bernardini et al., 2023), it can be run on modern HPC

architectures based on GPU acceleration. All the computations reported in this

work have been performed using the CUDA Fortran backend, capable of taking

advantage of the Volta NVIDIA GPUs available on Marconi 100 of the Italian

CINECA supercomputing center.

5.2.3 Parameters and computational setup

A wall-bounded turbulent flow in the compressible regime is described by three

independent parameters: the Reynolds number, the Mach number and a third

parameter that specifies the thermal condition of the wall. For the channel flow

configuration, relevant parameters are usually defined using bulk quantities, i.e.

the bulk density d1, the bulk velocity *1 and the bulk temperature )1:

d1 =
1

2ℎ

∫ ℎ

−ℎ
⟨d⟩ 3H, *1 =

1

2ℎd1

∫ ℎ

−ℎ
⟨dD⟩ 3H, )1 =

1

2ℎd1*1

∫ ℎ

−ℎ
⟨dD)⟩ 3H.

(5.7)

The operator ⟨·⟩computes a mean value by averaging over time and homogeneous

directions.

The main goal of this work is to understand the effect of Mach number. Since

the control is wall-based and the control parameters are known (Gatti & Quadrio,

2016) to scale in viscous units, i.e. with the friction and density at the wall, it is

convenient (Coleman et al., 1995) to define the Mach number as "1
F = *1/2F, in

which the superscript and subscript emphasize that the velocity scale is*1 and the

speed of sound 2F =
√
W')F is evaluated at the (reference) wall temperature )F.

Three sets of simulations are performed, at "1
F = 0.3, 0.8, 1.5. These values are

identical to those used by Yao & Hussain (2019) in their study of the oscillating

wall. The simulations are run at a constant flow rate or CFR (Quadrio et al.,

2016a): the pressure gradient evolves in time to keep a constant *1. For all

cases, the bulk Reynolds number '41 = d1*1ℎ/`F is chosen in such a way that

the corresponding friction Reynolds number is fixed to the target value for the

uncontrolled simulations. Although most of the incompressible information on

StTW is available at '4g = 200, in our study the target value is set at the higher

'4g = 400. This choice brings in extra computational costs, but avoids issues

with relaminarization, that is expected to become significant at lower '4g in view

of the expected increased effectiveness of StTW in the compressible regime.
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"1
F '4g '41 ΔC+ #G × #H × #I ΔG+ ΔH+ ΔI+

ZBC 0.3 404 7115 0.007 768 × 258 × 528 9.8 0.51–6.35 4.8

ZBC 0.8 400 6691 0.017 768 × 258 × 528 9.8 0.51–6.28 4.8

ZBC 1.5 394 5751 0.025 1024 × 258 × 512 7.4 0.50–6.19 4.9

CBC 0.3 403 7250 0.007 768 × 258 × 528 9.8 0.51–6.35 4.8

CBC 0.8 399 7602 0.017 768 × 258 × 528 9.8 0.51–6.28 4.8

CBC 1.5 387 8597 0.025 1024 × 258 × 512 7.4 0.50–6.19 4.9

Table 5.1: Parameters of the six uncontrolled simulations: Mach number "1
F,

friction Reynolds number '4g, bulk Reynolds number '41, time step, mesh size

and spatial resolution in each direction.

For each case (defined by a pair of values for "1
F and '4g), two distinct sim-

ulations are carried out, which differ in the way the system is thermally managed.

In one, dubbed Zero Bulk Cooling (ZBC), the bulk heating term Φ in Eq.(5.4) is

set to zero, and the bulk temperature )1 is left free to evolve until the aerodynamic

heating rate and the heat flux at the wall are in balance. In the other, named

Constrained Bulk Cooling (CBC), the heat produced within the flow is balanced

not only by the wall heat flux, but also by a cooling source term Φ (Yu et al., 2019),

which evolves to keep a constant )1. A detailed description of the two strategies

is provided later in §5.2.5, where the different implications of comparing at ZBC

or CBC are discussed.

For each of the three values of "1
F, a single uncontrolled and 42 cases with

spanwise forcing are considered; each case is carried out twice, with ZBC and

CBC. Hence, the computational study consists of 258 simulations. Table 5.1

summarizes the parameters for the 6 uncontrolled simulations.

Periodic boundary conditions in the wall-parallel directions and no-slip and

no-penetration conditions at the solid walls are applied for the velocity vector, and

isothermal boundary conditions are used for the temperature. In the cases with

control, the no-slip condition for the spanwise velocity component is modified to

apply the travelling wave (5.1). The wave amplitude is fixed at �+ = 12, and 42

different combinations of wavelength ^+G and frequency l+ are considered. Here

and throughout the paper, the + superscript denotes quantities expressed in wall

units of the uncontrolled case.

Figure 5.1 plots the incompressible drag reduction map, with dots identifying

the present simulations. The incompressible drag reduction map resembles the

original one computed by Quadrio et al. (2009) at '4g = 200. Since the present

study considers '4g = 400, the map is obtained via interpolation from the two

datasets at '4g = 200 and '4g = 1000 produced by Gatti & Quadrio (2016) (see

§5.3 for details). The simulations sample the parameter space along five lines,
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Figure 5.1: Incompressible drag reduction versus ^+G and l+, at �+ = 12 and

'4g = 400. The map is obtained from Gatti & Quadrio (2016) via interpolation

of their datasets at '4g = 200 and '4g = 1000. The dots on the dashed lines

correspond to the present compressible simulations.

all visible in figure 5.1. In particular, the oscillating-wall case (dashed line 1 in

figure 5.1) at ^+G = 0 is chosen to replicate data by Yao & Hussain (2019), and

sampled with 7 simulations (all with positive frequency, since negative frequencies

at ^G = 0 can be obtained by symmetry). The steady wave at l+ = 0 is scanned by

5 simulations along line 2; line 3 at constant ^+G = 0.005 contains 20 points, crosses

the low-'4 incompressible maximum drag reduction, and also cuts through the

region of drag increase. Five simulations along line 4 explore the area of low drag

reduction at large negative frequencies. Lastly, line 5 with 5 points analyses the

ridge of maximum drag reduction.

The size of the computational domain is (!G , !H, !I) = (6cℎ, 2ℎ, 2cℎ) in the

streamwise, wall-normal and spanwise direction for the uncontrolled cases. For the

controlled cases with ^G ≠ 0, !G is slightly adjusted on a case-by-case basis to fit

the nearest integer multiple of the streamwise wavelength _G . In the case of longest

forcing wavelength, two waves are contained by the computational domains.

Although the discretization parameters have been chosen to replicate or im-

prove upon those used in related studies, we have explicitly checked for the effect

of wall-normal discretization and spanwise size of the computational domain.

One specific case which yielded one of the largest drag reductions (namely the

CBC case at ^+G = 0.005 and l+ = 0.0251) has been repeated by independently

doubling #H and !I. Starting from a baseline value for the friction coefficient of
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� 5 = 3.41402 × 10−3, we have measured � 5 = 3.41347 × 10−3 with doubled #H

and � 5 = 3.41733 × 10−3 with doubled !I. In both cases, the difference is below

0.1%.

Statistics are computed with a temporal average of no less than )0E4 =

700 ℎ/*1, after discarding the initial transient. The statistical time averaging

error on the skin friction coefficient is estimated via the procedure introduced by

Russo & Luchini (2017). After propagating the error on the drag reduction, the

corresponding uncertainties are found to be so small that the error bars are smaller

than the symbols used in the figures in §5.3.

5.2.4 Performance indicators

The control performance is evaluated in terms of the dimensionless indicators

drag reduction rate R%, input power %8=% and net power saving %=4C%. These

definitions, introduced by Kasagi et al. (2009), are suitable for CFR studies. The

drag reduction rate describes the relative reduction of (dimensional) pumping

power %∗ per unit channel area:

R% = 100
%∗

0
− %∗

%∗
0

(5.8)

where the subscript 0 refers to the uncontrolled flow. Since all the simulations

run at CFR, R is equivalent to the reduction of the skin-friction coefficient � 5 =

2gF/(d1*2
1
), and (5.8) can be expressed in terms of � 5 as:

R% = 100

(
1 −

� 5

� 5 ,0

)
. (5.9)

The time-averaged pumping power per unit channel area is computed as:

%∗
=

*1

)0E4!G!I

∫ C 5

C8

∫ !G

0

∫ !I

0

gG 3G 3I 3C (5.10)

where gG is the streamwise component of the instantaneous wall-shear stress, and

)0E4 = C 5 − C8 is the interval for time averaging, defined by the final time C 5 and

the time C8 at which the initial transient is elapsed and a meaningful average can

be taken. The control power %2% is the power required to create the wall forcing

while neglecting the losses of the actuation device, and is expressed as a fraction

of the pumping power %∗
0
. When the CBC strategy is employed, the power %Φ

required to cool the bulk flow should also be accounted for. Hence, the complete

expression for the input power %8= is:
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%8=% =%2% + %Φ% =

=
1

%∗
0

100

)0E4!G!I

∫ C 5

C8

∫ !G

0

∫ !I

0

, gI 3G 3I 3C +
100

)0E4

∫ C 5

C8

Φ

Φ∗
0

3C (5.11)

where gI is the spanwise component of the instantaneous wall-shear stress, , the

enforced spanwise wall velocity, and Φ∗
0

the cooling power of the reference case.

Finally, to compare benefits and costs of the control, the net energy saving rate

%=4C is defined as:

%=4C% = R% − %8=%. (5.12)

5.2.5 On the comparison strategy

As mentioned above in §5.2.3, we consider two strategies to run the compressible

channel flow, once "1
F and '4g are fixed.

The first one, denominated Zero Bulk Cooling (ZBC), sets to zero the bulk

heating/cooling term Φ in Eq.(5.4): the bulk temperature is thus free to increase

until, at equilibrium, the heat produced within the flow is balanced by the heat flux

at the walls. This setup corresponds to the one originally adopted by Coleman et al.

(1995) for the plane channel, and employed in all previous compressible studies of

drag reduction by spanwise wall motion (Fang et al., 2009; Yao & Hussain, 2019;

Ruby & Foysi, 2022). ZBC simulations indicate that compressibility leads to larger

drag reduction achieved by spanwise forcing. However, with ZBC the spanwise

forcing causes)1 to increase above the value of the uncontrolled flow, in a way that

depends on the control parameters; the different heat transfer rates make it difficult

to discern the specific effects of compressibility and wall cooling. Furthermore,

the equilibrium thermal condition achieved when the bulk temperature is free to

evolve corresponds to extremely cold walls; the consequent large heat transfer rates

are not representative of typical external flows, for which active techniques like

spanwise forcing are primarily attractive.

To overcome these issues, a second strategy is considered, that is expected to

provide more insight on the performance of flow control. With this strategy, named

Constrained Bulk Cooling (CBC), the heat produced within the flow is balanced

not only by the heat flux through the walls, but also by a cooling source term Φ,

that is computed at each time step to keep the bulk temperature constant.

Following Zhang et al. (2014), we specify the thermal condition of the system

by using the diabatic parameter Θ, also named dimensionless temperature:

Θ =
)F − )1

)A − )1
, (5.13)
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Figure 5.2: Temperature (top left), density (top right), dynamic viscosity (bottom

left) and semi-local Reynolds number (bottom right) profiles in the wall region of a

canonical compressible channel flow at "1
F = 0.3, 0.8 and 1.5, with ZBC (dashed

lines) and CBC (continuous lines).

where )A is the recovery temperature:

)A =

(
1 + W − 1

2
A
(
"1

F

)2
)
)1, (5.14)

with W = 2?/2E the heat capacity ratio, and A the recovery factor, a coefficient that,

according to Shapiro (1953), for a turbulent flow over a flat surface is A = %A1/3.

Recent studies (Cogo et al., 2023) have shown that a constant diabatic param-

eter, or equivalently a constant Eckert number (Wenzel et al., 2022), is the proper

condition under which compressible flows at different Mach numbers should be

compared. The parameter Θ represents the fraction of the available kinetic energy

transformed into thermal energy at the wall (Modesti et al., 2022), and the impor-

tance of wall cooling increases when Θ decreases. In this study we set Θ = 0.75,

which corresponds to a moderately cold wall.

The main differences arising from the two channel configurations, ZBC and

CBC, can be appreciated in figure 5.2, where temperature, density and dynamic
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viscosity profiles across the channel are shown for the uncontrolled flow cases. In

ZBC, at equilibrium the mean temperature profile monotonically increases from

its minimum at the wall to its maximum at the channel centreline; the same trend

is shared by the viscosity, whereas the opposite trend is observed for the density.

Since )1 grows with "1
F, the profile of )/)F across the channel, shown in the

top left panel of figure 5.2, gets progressively steeper at the wall with increasing

"1
F. While )/)F ≈ 1 for the subsonic " , at the channel centre for "1

F = 1.5 (not

shown) the mean temperature is about 39% higher than at the wall. The significant

changes (especially for "1
F = 1.5) of thermodynamic properties across the buffer

layer imply that the local properties are quite different from the wall properties.

In particular, the friction-velocity based Reynolds number '4g is intended to be

constant across the comparison while "1
F varies. However, in the buffer layer

the semi-local Reynolds number '4∗g = '4g
√
(d`F)/(dF`) (Huang et al., 1995)

is far from constant (see bottom right panel of 5.2), and varies significantly as a

function of "1
F.

With CBC, instead, '4∗g across the channel is such that its value in the buffer

layer is still similar to the one at the wall (with a maximum observed increase of

2% for "1
F = 1.5 at H+ = 10) with a variation of less than 1.5% around the mean

value of '4∗g at H+ = 10, for the three values of "1
F. Moreover, the profile of )/)F

across the channel qualitatively resembles the temperature distribution of a typical

compressible boundary layer. In fact, at supersonic speeds the wall temperature can

be considered for practical purposes to be very close to the recovery temperature of

the flow, implying a very low heat exchange at the wall. Smaller values of Θ imply

a cooler wall, and a local maximum of )/)F further from the wall. For Θ = 0.75,

the local peak is minor and located right within the buffer layer, as shown in the

top left panel of figure 5.2.

The difference between ZBC and CBC can be visually appreciated by looking

at the near-wall turbulent structures in the uncontrolled flow, shown in figure 5.3.

It is known (Coleman et al., 1995) that by increasing "1
F the low-velocity streaks

become longer, less wavy and more widely spaced. This is indeed confirmed in the

top row of figure 5.3, where color contours of an instantaneous field of streamwise

velocity fluctuations computed with ZBC at H+ = 10 is plotted for "1
F = 0.3 (left)

and "1
F = 1.5 (right). However, when switching to CBC (bottom row), the streaks

appear not to differ significantly between the subsonic and the supersonic cases.

This suggests that a matching diabatic parameter allows to discriminate those

changes of the near-wall structures that directly derive from compressibility effects

from those linked to a change in the wall-normal temperature profile. In fact, a non-

uniform temperature across the channel implies changes to other thermodynamic

properties (i.e. density and viscosity), and their wall values become not fully

representative of the physics in the buffer layer. This observation is essential when
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Figure 5.3: Streamwise velocity fluctuations D+ in a wall-parallel portion of the

G − I plane at H+ = 10 for ZBC (top) and CBC (bottom) at "1
F = 0.3 (left) and

"1
F = 1.5 (right) for the uncontrolled case. The blue-to-red colorscale ranges

from −10 to +10; the black line is for the zero contour level.
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Figure 5.4: Frequency l̃+, wavenumber ˜̂+G and amplitude �̃+ of the control forcing

for the travelling waves at ^+G = 0.005 (line 3 of figure 5.1) made dimensionless

with the thermodynamic properties of the actuated flow at H+ = 10.

the purpose of the study is to assess skin-friction drag changes induced by spanwise

forcing, whose physical mechanism is not fully uncovered yet, but certainly resides

within the thin transversal Stokes layer which interacts with the near-wall cycle

occurring in the buffer layer. When the actuation parameters scale in viscous wall

units, their effects in the buffer layer are not easily comparable in the ZBC case.

As an example, figure 5.4 plots the control parameters l̃+, ˜̂+G and �̃+ of the

simulations taken along line 3 of figure 5.1. The parameters are still scaled in

wall units, but the tilde indicates that viscous units are built with density and

viscosity measured in the actuated flow at H+ = 10, for the ZCB (left) and CBC

(right) comparison strategy. Figure 5.4 is effective at showing that with ZBC the

buffer layer experiences a forcing whose set of parameters changes with the Mach

number, whereas with CBC the simulation parameters match at the various "1
F,

and enable the comparison of compressibility effects for a given control.

5.3 Drag reduction and power savings

The database produced in the present work is used for a comprehensive analysis of

the effect of compressibility on the drag reduction and power budget performance

of StTW. The reference Reynolds number of choice is '4g = 400, i.e. higher than

'4g = 200, where most of the incompressible information is available, to avoid full

or partial relaminarization. Data at '4g = 400 are also relatively free from the low-

'4 effects that plague results obtained at '4g = 200. Obviously, the downsides are

a larger computational cost, and a limited number of incompressible data to directly

compare with. Results at "1
F = 0.3 are compared to those of Hurst et al. (2014) for
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Figure 5.5: Drag reduction rate and power budget as a function of the period )+

for the oscillating wall (line 1 of figure 5.1, see inset), for ZBC (left) and CBC

(right).

the oscillating wall, stationary waves and the travelling waves at fixed wavenumber.

For the oscillating wall, a few data points from Ricco & Quadrio (2008) are also

available. For the other control cases, the main incompressible comparison data

are the StTW results of Gatti & Quadrio (2016). Their comprehensive datasets at

'4g = 200 and '4g = 1000, available as Supplementary Material to their paper,

are interpolated to obtain drag reduction for arbitrary combinations of the control

parameters. As suggested in that paper, drag reduction data is expressed in terms

of the vertical shift Δ�+ of the streamwise mean velocity profile in its logarithmic

region, which minimizes the effect of the small computational domain and reduces

the '4 effect on R. In fact, Δ�+ becomes a '4-independent measure of drag

reduction, once '4 is sufficiently large (they tentatively suggested '4g > 2000)

for the mean profile to feature a well-defined logarithmic layer. Since Δ�+ is

still '4-dependent at the present values of '4, we interpolate linearly the Δ�+

data by Gatti & Quadrio (2016) between '4g = 200 and '4g = 1000 to retrieve

Δ�+ at '4g = 400. Note that, owing to the small computational domain, the

'4g = 200 data by Gatti & Quadrio (2016) slightly overestimate drag reduction,

particularly at small frequencies and wavelengths. The incompressible control

power is interpolated at '4g = 400 from data of Gatti & Quadrio (2016), by

assuming a power law dependence with '4g, as stated by Ricco & Quadrio (2008)

and Gatti & Quadrio (2013).

The few available compressible data are from Yao & Hussain (2019), who

considered the oscillating wall only, at the slightly higher '4g = 466 for "1
F = 0.8

and '4g = 506 for "1
F = 1.5. Moreover, the datapoints computed by Ruby & Foysi

(2022) for a stationary wave are at "1
F = 0.3, '4g = 396 and "1

F = 1.5, '4g = 604.
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Figure 5.6: Drag reduction rate versus period )+ for the oscillating wall (line 1

of figure 5.1, see inset), for ZBC (left) and CBC (right). Incompressible data are

in green: solid line without symbols from Gatti & Quadrio (2016), solid symbols

from Hurst et al. (2014), and open symbols from Ricco & Quadrio (2008). The blue

and black open symbols are from Yao & Hussain (2019) at "1
F = 0.8, '4g = 466

and "1
F = 1.5, '4g = 506. Solid lines indicate interpolation. Dashed lines on the

right panel are results for ZBC.

A combined view of the raw results of the simulations, in terms of drag

reduction and power budget, is shown first in figure 5.5 for the oscillating-wall

case (line 1 of figure 5.1). The left panel plots the data collected with ZBC,

and the right panel illustrates CBC. The scaling of the data computed with CBC

appears to improve significantly. Since the different range of variation for drag

and powers makes the details difficult to appreciate, in the following we consider

them separately, providing in §5.3.1 and §5.3.2 a detailed comparison with existing

literature data, and studying the power cost in terms of control power and cooling

power. For completeness, Appendix 1 contains the remaining raw data, computed

on the remaining four lines of figure 5.1, plotted together as in figure 5.5.

5.3.1 Drag reduction

Figure 5.6 shows the drag reduction rate obtained for the temporally oscillating

wall, i.e. along line 1 of figure 5.1, as a function of the oscillating period )+.

We first consider the ZBC case on the left. For "1
F = 0.3, R grows with

)+ up to a maximum at about )+ = 100, and then monotonically shrinks. This

is in agreement with the incompressible results of Hurst et al. (2014), Ricco &

Quadrio (2008) and Gatti & Quadrio (2016), whose interpolated data, as expected,

slightly overpredict R, especially at large periods. This is due to the combined
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effect of low '4 and small computational domain employed in that study, which

– particularly for the oscillating wall, where only one forcing phase is present at a

particular time – leads to partial relaminarization during the cycle. The curves at

higher "1
F are qualitatively similar, but tend to remain below the incompressible

data at small periods, and to go above them at large ones. Near the optimal period,

compressibility makes the maximum R% grow, and shift towards larger periods:

for "1
F = 0.3 the maximum drag reduction is R<

0.3
= 30.3% at )+ = 100, whereas

R<
0.8

= 30.6% at )+ = 100, and for "1
F = 1.5 it becomes R<

1.5
= 35.9% at

)+ = 150. This picture confirms the compressible results at '4g = 200 discussed

by Yao & Hussain (2019), except for the supersonic case, where they reported a

monotonic increase of R% with)+. This is ascribed to the partial relaminarization

occurring at '4g = 200 when drag reduction is large; the present study, owing to its

higher '4g = 400, is able to identify a well definedR% peak even in the supersonic

regime. Figure 5.6 also includes results at higher '4g from Yao & Hussain (2019)

for the transonic and supersonic cases. Again, qualitative agreement is observed;

quantitative differences are due to their slightly different Reynolds number, which

is '4g = 466 for "1
F = 0.8 and '4g = 506 for "1

F = 1.5.

The right panel of figure 5.6 plots the results computed under CBC, and

compares them with those under ZBC. The "1
F = 0.3 cases are almost identical;

at this low "1
F compressibility effects are minor, and the difference between

ZBC and CBC negligible. At larger "1
F, however, with CBC the results show a

much better collapse over the three values of "1
F. The maximum drag reduction

consistently occurs at )+ = 100, and is nearly unchanged across the three cases.

Overall, the favorable effect of compressibility in terms of maximum drag

reduction of the oscillating wall is confirmed. However, the significant increase of

the maximum drag reduction reported by Yao & Hussain (2019) is only confirmed

when the comparison is carried out with ZBC, whereas for CBC this increment is

very limited.

Figure 5.7 shows results for the stationary waves, i.e. along line 2 of figure

5.1, plotted as a function of the streamwise wavenumber ^G . The trend resem-

bles that of the temporal oscillation. Again, at "1
F = 0.3 differences from the

incompressible limit are minor. Once "1
F grows, a significant dependency on the

wavenumber is observed: at large ^G R% slightly decreases, but at small ^G it

increases significantly.

For the ZBC dataset (left), a significant shift of the R% peak towards smaller

wavenumbers is observed, with a peak value of R<
0.3

= 40.4% for ^+G = 0.005,

R<
0.8

= 42.5% for ^+G = 0.005, and R<
1.5

= 47.1% for ^+G = 0.0017. However, once

the CBC comparison is considered (right), the overshoot at small ^+G disappears;

data at "1
F = 0.3 and "1

F = 0.8 collapse, and the supersonic case still presents its

maximum at ^+G = 0.005.
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Figure 5.7: Drag reduction rate versus wavenumber ^+G for the steady waves (line 2

of figure 5.1, see inset), for ZBC (left) and CBC (right). Incompressible data are in

green and dashed lines are for ZBC, as in figure 5.6. Red and black open symbols

are from Ruby & Foysi (2022) at "1
F = 0.3, '4g = 396 and "1

F = 1.5, '4g = 604.

Open symbols in the left panel of figure 5.7 are the results of Ruby & Foysi

(2022), computed with ZBC. One immediately notices their different trend com-

pared to the present data. In fact, in their numerical experiments the value of

the semi-local Reynolds number evaluated at the centreline was kept fixed at

'4∗g,2 = 400: this implies a variation of '4g between 396 and 604 while moving

from the subsonic to the supersonic case. In the present simulations, instead,

'4g ≈ 400 at all " . Additionally, in their study the forcing wavelength was scaled

with semi-local quantities, so that a direct comparison is problematic. Red and

black open symbols represent their results at "1
F = 0.3 and "1

F = 1.5, rescaled in

viscous units: these rescaled data present the same trend observed here with CBC,

with the supersonic case lacking the R% peak at the smallest ^+G , and suggest a

qualitative similarity between a comparison based on a semi-local scaling and the

present CBC strategy.

We now move on to consider a travelling wave, and plot in figure 5.8 how R%

varies as a function of the frequency l+ for a travelling wave at fixed ^+G = 0.005,

i.e. along line 3 of figure 5.1. Once again, data for "1
F = 0.3 do not differ from

the incompressible ones. At higher "1
F, with ZBC the maximum drag reduction

increases above the incompressible value, but, far from the peak, drag reduction

levels are generally lower. The boost in maximum drag reduction grows with "1
F,

and is accompanied by a slight shift towards higher frequencies. At "1
F = 1.5,

the peak is at l+ = 0.025, and reaches the outstanding value of R<
1.5

= 51.6%.

Increasing "1
F also intensifies the drag increase in the range 0.05 ≲ ^+G ≲ 0.1,
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Figure 5.8: Drag reduction rate versus frequency l+ for the streamwise-travelling

waves at ^+G = 0.005 (line 3 of figure 5.1, see inset), for ZBC (left) and CBC

(right). Incompressible data are in green and dashed lines data are for ZBC, as in

figure 5.6.

with a maximum of 12.2% for "1
F = 1.5.

Once again, if the comparison is carried out with the CBC criterion, the

compressibility effects remain generally favourable, but become much smaller.

The extra gain is extremely small, and the curves at varying "1
F nearly collapse.

Figure 5.9 reports the results computed for the points on the vertical line

4 of figure 5.1 at fixed l+ = −0.21, where the incompressible R% is nearly

constant with ^+G . As for lines 1 and 3, compressibility is found to deteriorate the

control performances at large (positive and negative) frequencies. However, this

is emphasized by the ZBC comparisons, whereas CBC results show a much better

collapse.

Finally, results from simulations on line 5 in figure 5.1, drawn along the ridge

of optimal R% in the (l − ^G) plane of parameters, are depicted in figure 5.10.

It is worth recalling that, according to Gatti & Quadrio (2016), this ridge and

in particular its portion near the origin of the plane is where the largest changes

with '4 are expected. Indeed, the subsonic points do not fully overlap with

incompressible data, which inherit the low-'4 nature of the reference through

the interpolation, and show a rather uniform value of R%. The supersonic data

lie below the subsonic ones at large frequencies, but outperform them at small

frequencies. Once CBC is used, the collapse of the curves at different "1
F improves

significantly, while the general changes remain qualitatively the same.
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Figure 5.9: Drag reduction rate versus wavenumber ^+G for the travelling waves

at l+ = −0.21 (line 4 of figure 5.1, see inset), for ZBC (left) and CBC (right).

Incompressible data are in green, and dashed lines are for ZBC, as in figure 5.6.
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Figure 5.10: Drag reduction rate versus frequency l+ for the travelling waves for

the optimal ridge (line 5 of figure 5.1, see inset), for ZBC (left) and CBC (right).

Incompressible data are in green, and dashed lines are for ZBC, as in figure 5.6.
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Figure 5.11: Input power for the travelling waves with ^+G = 0.005 (line 3 of figure

5.1, see inset) for ZBC (left) and CBC (right). For CBC the two contributions

to %8=%, i.e. the control power %2% and the cooling power %Φ% are plotted

separately. Incompressible data are in green, and dashed lines are for ZBC.

5.3.2 Power budgets

Since StTW is an active form of flow control, quantifying the energy consumption

of the control system is key to assess the overall efficiency: one needs to compare

costs, i.e. the control energy, and benefits, i.e. the energy savings made possible

by a reduction of the skin-friction drag.

Figure 5.11 plots, as one example, the input power %8=% on line 3 of figure

5.1. A similar scenario holds in the entire plane. For the ZBC comparison (left

panel), the input power, which depends significantly on the control parameters,

shows a decrease (in absolute value) with "1
F, especially at large frequencies.

With CBC, %8=% features two contributions: the control power and the cooling

power. They turn out to be roughly of the same order of magnitude, and both have

a minor dependence on "1
F, yet the dependence of the latter on control parameters

resembles the one of R%. The extra cost to cool the flow is an effect of the

additional term in the energy equation, which serves the purpose of yielding an

internal flow with a temperature profile that resembles an external flow. In a true

external flow, however, cooling would occur naturally: %8=% would reduce to the

control power %2%. Since the control contribution to %8=% in StTW is a rather

simple quantity that can be analytically predicted under the hypothesis of a laminar

generalized Stokes layer (Quadrio & Ricco, 2011), the perfect collapse of %2%

under CBC witnesses how the controlled cases are being properly compared.

Figure 5.12 plots the net power saving %=4C% for the temporal wall oscillations,

i.e. along line 1 of figure 5.1. The left panel is computed with ZBC; in agreement

196



50 100 150 200 250 300

−150

−100

−50

0

T+

P
n
e
t
%

Mb

= 0.3

Mb

= 0.8

Mb

= 1.5

GQ 2016

50 100 150 200 250 300

−250

−200

−150

−100

−50

0

DR% − PC%

Pnet%

T+

P
n
e
t
%

Figure 5.12: Net power saving for the oscillating wall (line 1 of figure 5.1, see

inset), for ZBC (left) and CBC (right). Incompressible data are in green. The right

panel also plots R% − %2% (top set of curves), where dashed lines are for ZBC.

with the incompressible case, for �+ = 12 no net saving is obtained. However,

the power budget improves with the Mach number, and at "1
F = 1.5 it approaches

zero. This is due to the combined effect of increasing R% (for)+ ≳ 100, see figure

5.6), and decreasing %8=% (especially for small )). The right panel of figure 5.12

plots %=4C% under CBC (lower set of curves), and the net power saving without

accounting for the cooling power, namely R% − %2%. Since %2% and %Φ% are

of the same order of magnitude, %=4C% becomes largely negative: the interesting

outcome of the ZBC case vanishes. However, when only %2% is considered, %=4C%

becomes comparable with the ZBC case (upper set of curves), albeit the positive

compressibility effect decreases substantially.

Examining data along line 2 of figure 5.1 (stationary waves), which passes near

the absolute maximum of drag reduction, is instructive. The plot is shown in figure

5.13. For a ZBC comparison (left), the net saving increases substantially with "1
F

for ^+G < 0.012, such that the maximum shows a 5-fold increase, from 5% in the

incompressible case to 25.8% for "1
F = 1.5 The peak is also observed to shift

towards smaller ^+G . Under CBC, however, much of the improvement disappears,

and the curves almost collapse, with only a small residual effect for the supersonic

curve. When %=4C% takes into account the cooling power, the outcome is negative

regardless of the control parameters.

Results from Ruby & Foysi (2022) at ZBC and at fixed '4∗g,2 are also plotted

in the left panel of figure 5.13. They are computed at rather small wavenumbers,

and overlap to the present data for "1
F = 0.3, but indicate much larger savings at

"1
F = 1.5. Nevertheless, their trend resembles the one obtained here at CBC, and

indicate the presence of a local maximum, and the lack of explosive savings at
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Figure 5.13: Net power saving for the steady waves (line 2 of figure 5.1, see inset),

for ZBC (left) and CBC (right). Incompressible data are in green. The right panel

also plots �'% − %2% (top set of curves) where dashed lines are for ZBC. Red

and black open symbols are from Ruby & Foysi (2022) at "1
F = 0.3, '4g = 396

and "1
F = 1.5, '4g = 604.

vanishing wavenumbers.

Figure 5.14 plots the net power saving for travelling waves at fixed ^+G = 0.005

(line 3 of figure 5.1). The ZBC comparison shows a large increase of %=4C%, up to

31.4 % for the largest "; the peaks shift towards larger positive l. Interestingly,

the peaks of R% and %8=% occur around the same frequency, and they are both

enhanced by compressibility. When the comparison is carried out at CBC, however,

once again the curves show a tendency to overlap, and the maximum saving shrinks

to 17.8% for R% − %8=%, which remains an interesting figure, but in line with the

incompressible case. If both contributions to %8=% are included, %=4C% is largely

negative at every l.

5.4 Concluding discussion

We have studied how spanwise forcing implemented via streamwise-travelling

waves of spanwise velocity at the wall alters the skin-friction drag in compressible

flows. A set of 258 direct numerical simulations for a turbulent plane channel flow

are carried out, for subsonic ("1
F = 0.3), transonic ("1

F = 0.8) and supersonic

("1
F = 1.5) speeds, at the baseline friction Reynolds number of '4g = 400.

The available literature information, which includes only few such studies for

compressible flows, is significantly extended; in particular, travelling waves are

considered here for the first time. The study considers the control performance for
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Figure 5.14: Net power saving for the travelling waves with ^+G = 0.005 (line 3 of

figure 5.1, see inset) for ZBC (left) and CBC (right). Incompressible data are in

green. The right panel also plots �'% − %2% (top set of curves) where dashed

lines are for ZBC.

the temporally oscillating wall (^G = 0), the steady wave (l = 0), travelling waves

at fixed wavenumber ^+G = 0.005 and at fixed frequency l+ = −0.21, and the ridge

of maximum drag reduction corresponding to waves travelling with a slow forward

speed. All the simulations are run by keeping the bulk velocity constant in time as

well as between unforced and forced cases.

In addition to the bulk velocity, in the compressible setting a further quantity

related to the energy equation must be kept constant to enable a proper comparison.

Since its choice impacts the qualitative outcome of the study, we employ and

compare two different strategies. The first, that we indicate with Zero Bulk

Cooling or ZBC, is commonly used for duct flows, and lets the bulk temperature

evolve freely until an asymptotic value is reached at which the heat produced within

the flow is balanced by the heat flux through the isothermal walls. Unfortunately,

ZBC leads to different bulk temperatures for each simulation, and in the present

context it hinders the physical interpretation of results.

In a second approach, named Constrained Bulk Cooling or CBC, the value of

the bulk temperature is kept constant during the simulations, by means of a bulk

cooling term in the energy equation. To do so, the value of the diabatic parameter

Θ is fixed across both the values of the Mach number and the control parameters

of the StTW, implying that a fixed portion of bulk flow kinetic energy is converted

into thermal energy, and that extra energy is spent for the cooling process. Using

the diabatic parameter (or, equivalently, the Eckert number) has been recently

considered by Cogo et al. (2023) as a means to achieve a similar wall cooling

across different values of the Mach number. Extending a Θ-based comparison
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Figure 5.15: Drag reduction for the streamwise-travelling waves at ^+G = 0.005

measured in the compressible regime versus drag reduction of the incompressible

regime when the control parameters are scaled with the thermodynamic properties

of each different case at H+ = 10.

to account for different values of Θ with flow control and drag reduction is an

interesting future development of the present study.

Results of the simulations show that StTW remain fully effective in transonic

and supersonic flows, thus extending available results for the oscillating wall and

the steady waves. In fact, drag reduction can be higher in compressible flows than

in incompressible ones, when frequency and wavenumber of the forcing are small.

However, the improvement appears to be substantial only when the comparison is

carried out at ZBC. When CBC is used, only marginal improvements are detected;

curves at various "1
F tend to collapse and to replicate the incompressible behaviour.

Figure 5.15 shows for the controlled flow at ^+G = 0.005 (line 3 of the map of figure

5.1) the drag reduction measured by the simulations of the present work plotted

against the drag reduction of the incompressible case. The control parameters are

made dimensionless with the thermodynamic properties of each case at H+ = 10

(see §5.2.5). Most points lie on the diagonal line: drag reduction becomes constant

with the Mach number, once the effect of the changed thermodynamics is removed.

The few outliers are points of the map where drag reduction gradients are extremely

large, and the limited number of available incompressible data leads to a poor

interpolation, as already pointed out in §5.3. This picture demonstrates that, once

spurious thermodynamic changes are factored out, compressibility has little to no

effect on the drag reduction performance of the travelling waves.

Similar results hold for the power budget: StTW yield large net energy savings,

even in the compressible regime, but the impressive improvements observed with

200



ZBC against the incompressible reference do not carry over to the CBC compar-

ison, which broadly replicates the incompressible results. The last statement is

only valid as long as the extra cooling power implied by CBC is neglected, on the

basis that it represents an artefact to obtain an internal flow with a temperature

profile that resembles that of an external flow.

Hence, choosing the comparison strategy is key to properly describe how

drag reduction and power savings of an active drag reduction technique change

in the compressible regime. In a way, this reminds of the incompressible case,

where early studies for the oscillating wall claimed “disruption of turbulence” only

because comparing at the same bulk velocity implies an important reduction of

'4g when drag reduction is achieved. While ZBC is certainly apt to describe

internal flows, the observed drag reduction figures are significantly larger than

their incompressible counterpart primarily because the control parameters affect

the terms of the comparison. A CBC comparison, in which the dimensionless

temperature remains constant with " and across the controlled cases, seems more

appropriate, and in fact yields data that overlap well when the Mach number is

varied. With CBC, only a small, albeit non negligible, extra drag reduction and

net power saving are found in comparison to the incompressible case.

5.A A compact representation of the dataset

This Appendix uses the format of figure 5.5 to report, for completeness, the entire

dataset with figures where drag and power changes are plotted together. After line

1 of figure 5.1, already described in figure 5.5, the following figures 5.16, 5.17,

5.18 and 5.19 respectively concern lines 2, 3, 4 and 5.

201



0.005 0.01 0.015 0.02 0.025

−60

−40

−20

0

20

40

DR%

−Pn%

Pnet%

κ+


D
R
%
,
−
P
n
%
,
P
n
e
t
%

Mb

= 0.3

Mb

= 0.8

Mb

= 1.5

0.005 0.01 0.015 0.02 0.025

−150

−100

−50

0

50

DR%

−Pn%

Pnet%

κ+


D
R
%
,
−
P
n
%
,
P
n
e
t
%

Figure 5.16: Drag reduction rate and power budget versus wavenumber ^+G for the

steady waves (line 2 of figure 5.1, see inset), for ZBC (left) and CBC (right).
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Figure 5.17: Drag reduction rate and power budget versus frequency l+
G for the

streamwise-travelling waves (line 3 of figure 5.1, see inset), for ZBC (left) and

CBC (right).
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Figure 5.18: Drag reduction rate and power budget versus wavenumber ^+G for the

travelling waves at l+ = −0.21 (line 4 of figure 5.1, see inset), for ZBC (left) and

CBC (right).
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Figure 5.19: Drag reduction rate and power budget versus frequency l+ for the

optimal ridge (line 5 of figure 5.1, see inset), for ZBC (left) and CBC (right).
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A simple and efficient

immersed-boundary method for the

incompressible Navier–Stokes

equations

Abstract

A novel immersed-boundary method for the incompressible Navier–Stokes equa-

tions is presented. It employs a discrete forcing for a sharp discrimination of the

solid-fluid interface, and achieves a second-order accuracy that is demonstrated

in examples with highly complex three-dimensional geometries. The method is

implicit, meaning that the point in the solid which is nearest to the interface is ac-

counted for implicitly; it is also implicit in time, when applied to time-dependent

problems, which benefits its stability and convergence properties. The method

stands out for its simplicity and efficiency: only the weight of the center point of

the Laplacian stencil in the momentum equation is modified, and no corrections for

the continuity equation and the pressure are required. Its computational efficiency

derives from its tight integration with the underlying second-order finite difference

method. The immersed-boundary method, its performance and its second-order

accuracy are first verified on simple problems, and then tested on two different

flows: the turbulent flow in a channel with a sinusoidal wall, and the flow in a

human nasal cavity, whose extreme anatomical complexity mandates an accurate

treatment of the boundary.
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6.1 Introduction

Immersed-boundary methods (IBMs) have seen their popularity increasing over

the last two decades, and are nowadays often employed in the numerical simulation

of fluid flows around complex geometries. They represent an interesting alternative

to the classic methods which discretize the fluid equations on a body-conforming

grid, and are particularly well suited to situations where the solid bodies have a

complex shape. An IBM relies on a Cartesian grid, where grid points generally

do not coincide with the contours of the bodies. The use of a Cartesian grid

brings along substantial advantages compared to body-conforming grids: easier

generation of a structured mesh, simpler and more efficient solution algorithms and

parallelisation, savings in memory requirements and computing time. IBMs may

render problems affordable in complex and/or moving geometries which would

otherwise be prohibitively expensive from the point of view of the computational

complexity, typical examples being those involving fluid-structure interactions

and/or bio-medical applications (de Tullio & Pascazio, 2016; Griffith & Patankar,

2020), or particles-laden flows (Uhlmann, 2005; Zhu et al., 2024). The obvious

drawback is that the boundary conditions on the body are defined at locations that

in general do not coincide with grid points; they are therefore enforced at grid

points, by either altering the volume forces or interpolating velocity values near

the boundary, which can be thought of as being ”immersed” in the fluid.

IBMs can be traced back to the seminal work of Peskin (1972), and were

extended over the years, in particular starting from Fadlun et al. (2000). Compre-

hensive reviews are provided in Peskin (1972); Iaccarino & Verzicco (2003); Mittal

& Iaccarino (2005); Sotiropoulos & Yang (2014) and in the very recent contribu-

tions of Verzicco (2023); Mittal & Seo (2023). IBMs are generally categorised

into two classes (Mittal & Iaccarino, 2005), depending on whether they are based

on a continuous or discrete forcing. The continuous-forcing (or direct-forcing)

IBM adds a volume forcing term to the continuous Navier–Stokes equations be-

fore discretization. Examples of this class of IBM are described in Peskin (1972);

Goldstein et al. (1993); Saiki & Biringen (1996). Such IBMs have been used in

different biological and engineering applications (Fauci & Peskin, 1988; Zhu & Pe-

skin, 2002; Kim & Peskin, 2007; Kim & Lai, 2010), and various forcing functions

have been proposed. The continuous-forcing IBM, however, unavoidably suffers

from the actual boundary being smeared over several nearby grid points because

of the forcing function, and from the need to derive ad hoc forcing parameters.

Moreover, the governing equations need to be solved in the whole domain, includ-

ing within the solid body, which leads to an aggravation of their computational

cost. The second class of methods, referred to as the discrete-forcing IBM, applies

the forcing (either explicitly or implicitly) to the already discretised Navier–Stokes
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equations; examples can be found in Ye et al. (1999); Fadlun et al. (2000); Balaras

(2004); Orlandi & Leonardi (2006); Chi et al. (2017). A sharp representation of

the boundary, which should lead to the same accuracy as a body-conforming grid

(Mittal & Seo, 2023), becomes possible with the discrete-forcing IBM; however,

since the forcing is only introduced after discretization, such IBMs are tightly

linked to the underlying spatial and temporal discretization of the flow solver.

The present work introduces a discrete-forcing IBM. In early attempts, e.g.

Fadlun et al. (2000), the discrete forcing in the momentum equation was computed

on the body surface and inside the body as well, while an additional explicit source

term needed to restore mass conservation near the boundaries was computed in

a later step. An alternative approach, called ghost-node IBM, was introduced in

Fedkiw (2002) and further extended over the years (Tseng & Ferziger, 2003; Ghias

et al., 2007; Mittal et al., 2008; Li et al., 2023). Ghost nodes are those grid nodes

that lie in the solid but at the same time belong to the stencil used to compute

differential operators appearing in the governing equations at fluid points. With

ghost nodes, the forcing can be introduced implicitly in the momentum equations

by means of the discrete stencil operators. Therefore, the number of ghost node

layers depends on the discretisation. The general idea of a ghost-node IBM is to

enforce the boundary conditions by means of the values of the variables at the

ghost nodes; these are extrapolated from values at the internal points and from

those at the boundary, known from the boundary conditions. Typically, a single

value of each flow variable is associated to each ghost node, and is extrapolated

along the direction normal to the boundary. Over the years several extrapolation

schemes have been proposed. Mittal et al. (2008) and Ghias et al. (2007) used

linear extrapolation to obtain a second-order convergence. The same convergence

was obtained by Tseng & Ferziger (2003), who employed a quadratic extrapolation,

and by Gao et al. Gao et al. (2007) via a second-order Taylor series expansion.

Employing a wider stencil near the boundary leads to a higher order of convergence

(see e.g. Seo & Mittal (2011)). Recently, however, Chi et al. (2020) have observed

that, regardless of the reconstruction method, boundary conditions in the various

directions cannot be accurately and simultaneously represented by a single ghost-

node value; in their IBM they define and compute multiple ghost-node values, one

for each direction.

In a conventional ghost-node IBM, multiple points are used to extrapolate the

ghost-node value (Tseng & Ferziger, 2003; Gao et al., 2007). In Pan & Shen

(2009), Chi et al. (2017) and Chi et al. (2020), a single fluid point is considered;

however, this is chosen as the second fluid point instead of the closest to the

boundary, in order to avoid numerical instability issues arising when the distance

between the first point and the boundary tends to zero. This is because most

existing implementations deal with the forcing term explicitly, and require the

computation of the ghost-node values at each iteration, thereby increasing the
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overall computational cost. The equivalent implicit treatment is typically not

pursued, because it involves a matrix inversion. A further drawback brought about

by a wide interpolation stencil arises when the thickness of the body is locally

less than the size of the local grid spacing, or when two surfaces are separated

by a number of points which is less than the stencil width. Interpolating over a

wider stencil also entails delivering a worse approximation of the solution near the

boundary.

This paper introduces a new, simple and computationally efficient, implicit

in space and time, second-order accurate IBM for the incompressible Navier–

Stokes equations, based upon and tightly integrated with a second-order finite

difference method. Its peculiarity is that implicitness is achieved without any

matrix inversion, because the boundary conditions are enforced implicitly by

modifying only the weight of the midpoint of the Laplacian stencil, under the

assumption that close to the boundaries the viscous term is dominant. Similarly

to what done in Gibou et al. (2002) when solving the variable-coefficients Poisson

equation with Dirichlet boundary conditions on the immersed boundaries, the

ghost-node values are extrapolated via a linear formula that only features the

boundary point and the first fluid point. Different ghost-node values are considered

for each discretisation direction, as also done in Chi et al. (2020) but there in an

explicit way. The present method differs from a classic ghost-node approach since

it dispenses with explicitly computing and storing the solution at the ghost node,

with substantial advantages in terms of simplicity and efficiency. Modifying only

the coefficient of the Laplacian close to the boundary, as well as computing multiple

values of the coefficients, one for each direction, was already suggested by Orlandi

& Leonardi (2006). However, in their approach velocity at the ghost nodes was set

to zero, and the weights of both the centre point and the external point of the stencil

were corrected. Since our IBM treats the forcing term implicitly, numerical issues

associated with a small distance between the first fluid point and the boundary do

not arise. Moreover, differently from several discrete-forcing IBMs, a boundary

condition for pressure is not required.

The paper is organised as follows. After this Introduction, Sec. 6.2 thoroughly

describes our IBM, in its general design and then in its implementation into a

Navier–Stokes finite-difference solver, with a discussion dealing first with the

steady and then with the unsteady case. A critical discussion of the IBM and of

its advantages and drawbacks is offered in Sec. 6.3. Finally, Sec. 8.4 provides

an exhaustive discussion of accuracy and performance of the method as applied

to two examples: the turbulent flow over a non-planar, sinusoidally shaped wall,

and the flow in the complex anatomy of a human nasal cavity. Both examples, and

in particular the latter, involve geometric boundaries of extremely complex shape,

which challenge the accuracy of the IBM. In each and every instance second-order

accuracy is numerically demonstrated through a convergence plot. The paper
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concludes with some final remarks drawn in Sec. 8.5.

6.2 The immersed-boundary method

This Section describes the IBM, starting with elementary, linear flow problems: a

steady flow example is used first to illustrate the spatial accuracy features of the

method, followed by a time-dependent example, where the temporal accuracy of

the method is discussed.

Our IBM starts from a basic “staircase” approximation of the boundary, in

which each point is defined as “internal” (in the fluid region) or “external” (in

the solid region), and improves upon this first-order representation via the IBM

correction, which gets applied only to those stencils of the discretised equations

which cross the solid boundary. In fact, the method can be alternately interpreted as

a deferred correction, a sometimes helpful viewpoint. The correction exploits the

fact that, near the boundary, viscous terms dominate over convective and pressure

terms. Therefore, the presence of the boundary can be properly accounted for

by simply altering the weight of the central point of the star-shaped stencil of the

Laplacian at the first internal point: no additional corrections of the convective

terms are required. In addition, as in some other IBMs, no correction of the pressure

or of the continuity equation needs to be expressly introduced; the absence of such

need can be explained by the lack of a boundary condition for pressure in the

continuous Navier–Stokes problem, since when there is no boundary condition

there is no position where to impose it; while IBMs without an express pressure

boundary correction have been used before, to the best of out knowledge this is

the first time that the validity of such choice is a posteriori confirmed through

convergence tests (see Sec. 8.4).

6.2.1 Equations of motion and discretization

The IBM is implemented inside a solver for the direct numerical simulation of the

incompressible Navier–Stokes equations, written in their primitive variables and

with suitable initial and boundary conditions:




mu

mC
+ (u ·∇) u − 1

Re
∇2u +∇? = g

∇ · u = 0

(6.1)

where C is the time, u is the velocity, ? is the reduced pressure, and g is a possible

body force. '4 = *A4 5 !A4 5 /a is a Reynolds number built with the reference

velocity *A4 5 , the reference length !A4 5 and the kinematic viscosity a of the fluid.
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Figure 6.1: Two-dimensional view of a solid body (gray background) immersed

in a fluid (white background), with an overlaid staggered Cartesian grid. The

collocation points for the velocity components in the G, H and I directions are

drawn in green, red and blue. Dull colors denote the fully internal/external points,

and vivid colors the points where the immersed-boundary correction is applied.

In a Cartesian frame, the spatial directions are denoted as G, H and I, and the

corresponding velocity components as D, E and F.

The Navier–Stokes equations are advanced in time using a standard incremen-

tal pressure-correction scheme coupled with a fully explicit time scheme. The

momentum equation is first advanced in time without accounting for the incom-

pressibility constraint, that is enforced later during the so-called projection step.

The velocity field gets projected onto a solenoidal vector field and the required

pressure increment is found by (exactly or approximately) solving a Poisson equa-

tion and then used to update the pressure field.

The spatial discretization takes place on a Cartesian grid that is staggered in

the three directions, as sketched in figure 6.1. Pressure is defined at the center

of each cell, whereas each velocity component is defined at the relative interface.

Uniform as well as non-uniform spacing is possible in each direction.

The discretisation relies on centered second-order central finite differences in

every direction, with a stencil made of three points. To introduce the notation used

in the rest of the paper, let us consider a two-dimensional case for simplicity. A

generic grid point of coordinates (G, H) is identified by the pair of integers (8, 9),
such that G = G8 and H = H 9 . Taking the first derivative as an example, for a scalar

function 5 the first derivative along the G direction at the (8, 9) position is written

as:

m 5

mG

����
8, 9

= 3
(1)
G; 8, 9

(−1) 58−1, 9 + 3
(1)
G; 8, 9

(0) 58, 9 + 3
(1)
G; 8, 9

(1) 58+1, 9 + O(ΔG2) . (6.2)

In the expression above, the symbols 3
(1)
G; 8, 9

(·) indicate the three finite-differences

coefficients for the centered first derivative along the G direction, evaluated at point
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Figure 6.2: Computational stencil for the F velocity component in the G − H plane.

As in figure 6.1, vivid blue highlights the point where the immersed-boundary

correction is applied. A red dot denotes the actual boundary intersection.

(8, 9).

6.2.2 The steady case

We start by considering the steady case, and in particular the Laplacian operator:

since our IBM relies on the Laplacian being the dominant term near the solid

boundary, this simple example is particularly significant. At a generic (8, 9)
position the Laplacian of, e.g., the I velocity component is discretised by second-

order central finite differences, which in the notation just introduced above read:

∇2F ≈3 (2)
G; 8, 9

(−1)F8−1, 9 + 3
(2)
G; 8, 9

(0)F8, 9 + 3
(2)
G; 8, 9

(1)F8+1, 9+ (6.3)

3
(2)
H; 8, 9

(−1)F8, 9−1 + 3
(2)
H; 8, 9

(0)F8, 9 + 3
(2)
H; 8, 9

(1)F8, 9+1.

Let us assume, as shown in figure 6.2, that point (8, 9) is located close to the

boundary; the solid boundary crosses the left arm of the computational stencil,

and the left neighbor of point (8, 9), i.e. point (8 − 1, 9), lies within the solid.

The simplest description of the boundary is achieved by setting the velocity at the

external point to zero, i.e. F8−1, 9 = 0. This amounts to a staircase, i.e. piecewise

parallel to the axes, approximation of the boundary, whose maximum error in the

position of the contour of the body is proportional to ΔG = G8, 9 − G8−1, 9 , i.e. one of

first-order accuracy.

To increase the accuracy of the description and to avoid deteriorating the overall

second-order accuracy of the underlying numerical method, the representation of

the boundary needs to be improved to a piecewise-linear approximation. To this

aim, instead of setting F8−1, 9 to zero, we set to zero a linear interpolation between

F8−1, 9 and F8, 9 , evaluated at the true boundary whose G position is denoted as
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G1 = G8 − XG . The linear function that fits velocity between the position (8, 9) and

the true boundary at G1 reads:

lin(G1) =
(
1 + G1 − G8

XG

)
F8, 9 . (6.4)

which satisfies lin(G8) = F8, 9 and lin(G8 − XG) = 0.

The same function can be used to linearly extrapolate the non-zero value F8−1, 9 ,

corresponding to the ghost point that falls inside the boundary and that is needed

for building the stencil of the discretised Laplacian (??) in the first fluid point in

the neighborhood of the boundary. The extrapolated value reads:

lin(G8−1) =
(
XG − ΔG

XG

)
F8, 9 . (6.5)

The above would be essentially identical to other implementations of the IBM.

Crucial to ours is the observation that the extrapolated value for F8−1, 9 does not

need to be stored explicitly as a ghost value, but can be substituted back into

equation (??) and accounted for implicitly (and the same will remain true in

unsteady problems). Doing so not only will be seen to eliminate the numerical

instabilities that plague explicit extrapolation, but in addition concentrates the

modification in the coefficient of the central point of the stencil, leading to a single

value to be stored even when this correction needs to be applied along multiple

directions. The updated coefficient 3̃
(2)
G;8, 9

(0) reads:

3̃
(2)
G;8 9

(0) ≡
(
3
(2)
G; 8, 9

(0) − 3
(2)
G; 8, 9

(−1)ΔG − XG

XG

)
(6.6)

where the term

3
(2)
G; 8, 9

(−1)ΔG − XG

XG
(6.7)

embodies the immersed-boundary correction, referred to in the following as _.

It is worth noting that, owing to the opposite signs of 3
(2)
G; 8, 9

(0) and 3
(2)
G; 8, 9

(−1),
the updated coefficient 3̃

(2)
G;8, 9

(0) is always of the same sign; its absolute value

monotonically increases for ΔG > XG > 0, and can not be zero. This leads to an

increased diagonal dominance, more and more so when XG → 0.

The extension to the multi-dimensional case is straightforward, as the correc-

tions to the central point of the stencil ensuing from the derivatives in different

directions are just additive. What changes is that the local linear solution be-

comes a plane in two dimensions, or a hyperplane in three dimensions; for the

three-dimensional case, for example:

lin(G1, H1, I1) =
(
1 + G1 − G8

XG
+
H1 − H 9

XH
+ I1 − I:

XI

)
F8, 9 ,: (6.8)
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Figure 6.3: Laminar Hagen–Poiseuille flow, equation (6.9). Left: value of 5 '41
as computed on an # ×# Cartesian grid (exact value is the horizontal line). Right:

percentage error against the exact value 5 '41 = 64; comparison between the

staircase approximation (black) and the improved approximation yielded by the

IBM (red).

but this is easily seen to be equivalent to an independent linear extrapolation along

each arm of the star-shaped stencil followed by a simple sum of all the contributions

into a global correction that will be denoted in the following as _F;8, 9 ,: .

6.2.3 The steady case: example

The potential of the IBM is illustrated through a simple example. We consider the

laminar parallel flow in a circular pipe in the absence of external volume forces. If

the pipe’s axis (or, generally, the axis of any straight duct with arbitrarily shaped

cross section) is aligned with the I direction of the Cartesian reference system, the

problem is homogeneous along I, and reduces to a two-dimensional and steady

problem in the (G, H) plane, where the only differential operator is a Laplacian.

The governing equations in fact simplify to the following Poisson equation:

1

'41
∇2F =

m?

mI
, (6.9)

where F is the streamwise velocity component, which does not depend on the

streamwise coordinate, '41 is the Reynolds number, and on the right-hand side

the pressure gradient m?/mI = Π is uniform.

We consider in particular the case of a circular pipe of radius ', where the

solution is known analytically, and is given by the Hagen–Poiseuille parabolic

velocity profile: hence, the relationship between the pipe radius ', the bulk

velocity*1, the fluid kinematic viscosity a, and the wall friction is in closed form.
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Namely, the friction factor 5 ≡ 4Π'/d*2
1

is known to depend on the Reynolds

number '41 = *12'/a as 5 = 64/'41. We thus solve numerically equation (6.9)

after discretization on a square domain, of edge length 2.5', where a Cartesian

mesh with # × # grid points is defined. Thanks to the lack of time dependency,

the solution can be computed easily by direct matrix inversion.

The improvement provided by the IBM over the staircase approximation is

shown in figure 6.3, where the product 5 '41 is computed and compared to its

analytical constant value, for the staircase approximation of the contour and for

the IBM. The percentage error for 5 '41 is reported in figure 6.3 as a function

of the number of the grid points # . As expected, the staircase approximation

is confirmed to only be first-order accurate, whereas the IBM is second-order

accurate: with # = 104, the error with respect to the exact solution is still 3% for

the staircase approximation, whereas it drops to 0.01% for the IBM. The Python

code used for this example is available as Additional Material.

6.2.4 The unsteady case

Since the IBM approach described above acts by adding a correcting weight to

the central point of the Laplacian operator, extending it to the Navier–Stokes

equations only requires the additional step of considering the time dependence

of the solution. Let us write the time-dependent, incompressible Navier–Stokes

equations after spatial discretisation via second-order central finite-differences on

a staggered grid; as an example we take again their I component solved on an

(G, H) plane, and emphasize the second derivative coming from the viscous terms,

as:

dF8, 9

dC
= 58, 9 = 3

(2)
G; 8, 9

(−1)F8−1, 9 + 3
(2)
G; 8, 9

(0)F8, 9 + 3
(2)
G; 8, 9

(1)F8+1, 9 + . . . (6.10)

where 58, 9 is a shorthand form for the right-hand side of the discrete equation, which

includes the Laplacian involved in the viscous term, as well as the convective and

pressure terms. All these terms will be treated with an explicit temporal integration

and are thus known from the previous timestep. While the explicit treatment of the

right-hand side is not necessary for introducing the present IBM, it is adopted here

because it will provide the overall numerical method with interesting properties,

which will be discussed in the following. Recall that, even if 58, 9 is treated explicitly

in the momentum predictor equation (6.10), a pressure correction step is still

required. For simplicity, equation (6.10) explicitly shows the second derivatives in

the G-direction, while all other explicitly-treated terms are grouped in the reminder

indicated by . . ..

With reference to the previous example discussed in Sec. 6.2.2, we assume

again that the solid boundary crosses the left arm of the computational stencil,
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with the body surface lying between the central point (8, 9), located within the

fluid, and its left neighbor (8 − 1, 9), located within the solid. The value F8−1, 9 in

equation (6.10) is replaced by its linear extrapolation (6.5), to yield:

dF8, 9

dC
= −_F;8, 9F8, 9 + 3

(2)
G; 8, 9

(0)F8, 9 + 3
(2)
G; 8, 9

(1)F8+1, 9 + . . . , (6.11)

where _F;8, 9 is the IBM corrective coefficient arising from the linear extrapolation.

The IBM correction has thus removed from the Laplacian the terms involving the

neighboring point within the body, by substituting it with the coefficient _F;8, 9 that

multiplies F8, 9 . In practice, as long as F8−1, 9 in the solid is zero and the right-hand

side is evaluated explicitly, there is no need to modify the discrete Laplacian, since

the related term vanishes automatically. In this way the effect of the IBM is to

add a term to the right-hand side of equation (6.10), which can thus be rewritten

compactly as:
dF8, 9

dC
= −_F;8, 9F8, 9 + 58, 9 . (6.12)

If equation (6.12) is discretised in time with a fully explicit approach, for instance

via an explicit Euler scheme, the well-known explicit extrapolation-based IBMs

are obtained. These possess poor stability properties, as they require vanishingly

small timesteps whenever the central point (8, 9) happens to be very close to the

body surface. In this particularly stiff condition, in fact, the ratio (ΔG − XG) /XG
contained in _F;8, 9 , tends to infinity.

Instead, in the following, we keep the explicit treatment of 58, 9 , but allow the

IBM term to be treated differently. The simplest choice, useful for showcasing the

method, is to opt for the implicit Euler method, which leads to:

F
∗,=+1
8, 9

=

F=
8, 9

+ ΔC 5 =
8, 9

1 + ΔC_F;8, 9

(6.13)

where ΔC is the time step, and F
∗,=+1
8, 9

is the intermediate velocity of the frac-

tional step method, which needs to be later corrected by an appropriate projection

scheme. The implicit treatment of the IBM term has the crucial advantage of not

deteriorating (and actually improving) the stability properties of the underlying

temporal scheme. This is easily observed by considering the two limiting cases of

_F;8, 9 = 0, i.e. no IBM correction is applied, and _F;8, 9 → ∞, i.e. the point (8, 9)
is on the body surface. In the first case, we simply recover the unmodified Navier–

Stokes equation; in the second, instead, the exact boundary condition F
∗,=+1
8, 9

= 0

is enforced.

Second-order accuracy in time can be achieved without compromising stability

by integrating the IBM correction term exactly (or more precisely, in a way that

would be exact if the r.h.s. were independent of the solution), as explained in the
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following. Let us first consider equation (6.12): this is an ordinary differential

equation with a particular solution depending on 58, 9 , assumed here to be constant

within a timestep accordingly with the considered explicit temporal scheme, and

a homogeneous solution F̃8, 9 = e−_F;8, 9 C , which can be retrieved by analytical

integration for 58, 9 = 0. In fact, −_F;8, 9 is the eigenvalue of equation (6.12) when

58, 9 is a constant. Without any loss of generality, if we consider a generic explicit

method for temporal integration, we can rewrite equation (6.12) as follows (while

dropping superscript ∗ and the subscripts to simplify the notation):

�F=+1 − �F=
= ��= (6.14)

where �= is typically a linear combination of 58, 9 evaluated at different time levels,

as determined by the temporal scheme of choice. Equation (6.14) reduces to

equation (6.13) for � = (1 + _F;8, 9ΔC), � = 1 and � = ΔC, with �= = 5 =
8, 9

,

for instance, when the underlying scheme is a first-order explicit Euler, or the

corresponding expression for a higher-order (say, Runge–Kutta) scheme.

The coefficients �, � and � can now be chosen by requesting that equation

(6.14) (i) possesses the same eigenvalue as the semi-discrete equation (6.12), and

(ii) reduces to the exact steady problem when dF/dC = 0, and thus F=+1 = F=.

Constraint (i) can be satisfied by observing that equation (6.14) for �= = 0

yields F̃=+1/F̃= = �/�, and by substituting the exact homogenenous solution of

equation (6.12), thereby obtaining �/� = e−_F;8, 9ΔC .

Constraint (ii) can be enforced by plugging F=+1 = F= into equation (6.14),

which yields F= (� − �) /� = �=, and prescribing that this equation shall equal

equation (6.12) for dF/dC = 0. This occurs for (� − �) /� = _F;8, 9 , from which

� = (� − �)/_F;8, 9 . The consistency of the underlying temporal scheme already

provides �= = 5 = at steady state. The three coefficients are now known up to a

multiplicative constant, since the problem is linear. By choosing e.g. � = ΔC, one

obtains

� =
_F;8, 9ΔC

e_F;8, 9ΔC − 1
(6.15)

and � = _F;8, 9ΔC + �. Thus, equation (6.14) becomes

(
_F;8, 9ΔC + �

)
F=+1 − �F=

= ΔC�= . (6.16)

We note that the function �(_F;8, 9ΔC) of equation (6.15) can in practice be

approximated by the reciprocal of a Taylor expansion around _F;8, 9ΔC = 0 to a

desired order, without destroying its essential stability property that 1 ≥ � ≥ 0

for all ΔC; this may be useful to avoid the evaluation of a transcendental function

and a singular limit, and thus improve performance when computing on graphics

accelerators.
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In the following applications, second-order global temporal accuracy is

achieved by adopting the three-stage, third-order Runge–Kutta (RK) method of

Rai & Moin (1991) to express �=, owing to its low memory requirements and

excellent stability properties which are not affected by the IBM. The RK method

is combined with the IBM in the same way it is typically combined with Crank-

Nicolson for the implicit integration of the viscous term, as in Kim et al. (1987).

This choice results in the following scheme:

(
_F;8, 92:ΔC + �

)
F
∗,=+ :

3

8, 9
−�F=+ :−1

3

8, 9
= ΔC

[
0: 5

=+ :−1
3

8, 9
+ 1: 5

=+ :−2
3

8, 9

]
for : = 1, . . . , 3,

(6.17)

where F
=+ :

3

8, 9
is the velocity at the :-th RK stage, whereas 5

=+ :
3

8, 9
is the right-hand

side evaluated with F
=+ :

3

8, 9
and other variables at the same RK stage. We also recall

that the intermediate velocity (denoted via the additional superscript ∗) is not

divergence-free and an additional projection step is required after each substage

to obtain the solenoidal velocity field. According to Rai & Moin (1991), the

coefficients in equation (6.17) are:

0: =

{
64

120
,

50

120
,

90

120

}
; 1: =

{
0,− 34

120
,− 50

120

}
; 2: = 0: + 1: . (6.18)

6.2.5 The unsteady case: example

The simple example of the laminar parallel flow in a circular pipe of radius ',

already considered in Sec. 6.2.3, is extended here to demonstrate the present

IBM in a time-dependent flow. By discretizing the problem on a fine 200 × 200

Cartesian grid, we ensure that the spatial discretization error is not dominant. The

flow is governed by the unsteady version of equation (6.9), i.e.

mF

mC
= −Π + 1

'4
∇2F , (6.19)

where the imposed uniform pressure gradient Π(C) can now vary with time. We

opt for the time dependency Π(C) = sin(2c 5 C), where frequency 5 enables the def-

inition of a Reynolds number '4 = '2 5 /a, i.e. the ratio between the characteristic

diffusion time '2/a and the characteristic time of the forcing 1/ 5 .
For a given temporal integration scheme, such as the Runge–Kutta method

described above, the accuracy of the numerical solution of equation (6.19) depends

on how well the temporal evolution ofΠ and of the diffusive effects are represented.

This is quantified by two nondimensional numbers: the nondimensional timestep

5ΔC, and the grid Péclet number %4 = aΔC/ΔG2. By selecting '4 = 50 we make

sure that even for the lower values of ΔC tested below, the main source of error will
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Figure 6.4: Unsteady laminar pipe flow, equation (6.19), spatially discretized on a

square domain with 200×200 grid points. Left: evolution of the difference&−& (4)

with the temporal resolution, expressed via the Péclet number %4 = aΔC/ΔG2;

the asymptotic flow rate value is obtained via Richardson extrapolation. Right:

percentage error 100|& − & (4) |/& (4) . Black symbols and dashed line refer to the

first-order method; red symbols and dashed line indicate the second-order method

(see text).

not be the temporal evolution of Π but rather the temporal accuracy of the viscous

effects and of the IBM method.

Starting from an initial condition of quiescent flow, equation (6.19) is integrated

in time up to C = 0.5/ 5 , and at that time the flow rate& in the pipe is measured; the

numerical experiment is repeated for several values of 5ΔC ranging between 0.002

and 1.5625×10−5. Note that the largest value of the time step corresponds, for the

employed spatial discretization, to %4 = 0.256, which is less than half the critical

Péclet number for the temporal stability of the underlying RK method. Equation

(6.19) is solved by the second-order method presented in equation (6.17), as well

as by the first-order method obtained from the combination of the RK method

with an implicit Euler scheme for the IBM term, i.e. � = 1 + _2:ΔC, � = 1 and

� = ΔC. Results are displayed in figure 6.4, together with the error with respect to

the estimate of exact flow rate & (4) , obtained via Richardson extrapolation. The

figure shows both that the expected order of temporal convergence is achieved and

that the error is generally extremely low.

As a final remark, it is interesting to note that a classic explicit treatment

of the IBM term yields a stable integration only for the smallest timestep tested

above. The poor stability of the explicit IBM could be even worse if any grid point
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happens to be very close to the body surface, making the method unconditionally

unstable. Crucially, the present implicit treatment removes this issue, and averts

deteriorating the stability properties of the underlying numerical method.

6.3 Discussion

6.3.1 Advantages and drawbacks

The greatest novelty of the approach outlined above consists in the implicit nature,

in both space and time, of the correction introduced to account for the presence of

the boundary; the ability to concentrate the correction in the central point of the

stencil allows such implicitness to be achieved at no cost.

In the stationary case described in Sec. 6.2.2, the term “implicit” refers to

the fact that the value F8−1, 9 in a point within the body is not actually computed

by using equation (6.5), but gets hard-coded instead into the expression of the

discretised Laplacian and in particular into 3̃
(2)
G;8 9

(0) through coefficient _F;8, 9 .

Doing so avoids the numerical stability problems that plague “explicit” methods:

when the boundary point approaches a discretisation node (i.e. XG → 0), such

formulations imply that F8−1, 9 → ∞. If, however, the correction is imposed

implicitly as in the present case, XG → 0 makes the denominator of equation

(6.13) tend to infinity, and the value of F8, 9 is gradually driven towards zero, which

is the desired result. Thanks to this correction, the discretization matrix becomes

more and more diagonally dominant, see equation (6.6), and the convergence of

any iterative method used to solve the discretised equations is improved rather

than reduced. This property becomes apparent when one considers that 3
(2)
G;8 9

(−1)
and 3

(2)
G;8 9

(0) are of opposite signs, and thus 3̃
(2)
G;8 9

(0) monotonically increases for

ΔG ≥ XG ≥ 0 and is prevented from approaching 0.

In the time-dependent case of Sec. 6.2.4, “implicit” additionally means that

the linear extrapolation of equation (6.5) is evaluated at time C +ΔC, as in equation

(6.13), which is again desirable to avoid numerical instabilities. For XG = 0,

equation (6.13) can be shown to equal the exact implicit boundary condition

F
∗,=+1
8, 9

= 0.

In conclusion, the implicit character of the IBM ensures convergence and

stability of the numerical method; moreover, since only the central point of the

Laplacian stencil is modified, this improvement is obtained at no computational

and memory cost, since the velocity F8−1, 9 at the ghost point within the body needs

to be neither explicitly computed nor explicitly stored. This additional advantage

obviates another programming difficulty related to the presence of external points

appearing in more than one equation (for example the Cartesian components of the

momentum equation); in the explicit implementation multiple values extrapolated
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linearly from different directions would have to be stored (or otherwise a higher-

than-linear extrapolation would be required), but no such difficulty arises with the

implicit formulation.

6.3.2 The underlying staircase approximation

As pointed out in Sec. 6.2.2, the simplest (first-order) description of the immersed

boundary is achieved by a staircase (piecewise-constant) approximation of the

body geometry, in which the boundary always coincides with a grid point. Since

the IBM uses a linear extrapolation to improve upon the staircase approximation

of the boundary, and thus restore the original second-order spatial accuracy of the

numerical method, it is essential that the underlying staircase approximation works

properly, before any correction is applied. This involves non-trivial aspects.

To begin with, the equations of motion in their discrete form need to be closed,

i.e. the number of unknowns must equal the number of equations. This property

becomes non-obvious when the geometry is complex and the grid is staggered. To

fulfill the closure requirement, the discretization grid is defined independently for

each velocity component, and each grid is compared with the true boundary to tag

a grid point as either internal or external. For each component, internal points are

chosen as those where the corresponding component of the momentum equation

(6.10) needs to be solved; this ensures the correspondence between equations and

unknowns. The velocity components on the external points are set to zero. This

decision, which is trivial in the one-dimensional case, avoids any trouble with

external points appearing in more than one equation.

The closure of the continuity equation deserves a specific remark. Since a

pressure boundary condition is neither required nor present, only the velocity

grids are compared to the boundary to discriminate external and internal points.

Thereafter, a pressure point is labeled “internal” if it falls on either side of at

least one internal velocity point; it follows that an “internal” pressure point may

occasionally fall (slightly) outside the true boundary, and may also be shared by

different components of the momentum equation in different directions. To match

the number of equations and unknowns, the continuity equation is then in principle

solved everywhere, both in the internal and external pressure collocation points, as

though there was no boundary. In practice, however, only the internal points need

to be considered since, with this definition, external pressure points are surrounded

by all zero velocities, and continuity is trivially satisfied there. In practice, when

the pressure-correction step of the fractional step method is executed, only the

internal pressure collocation points are updated, and these are the only ones that

will appear in the momentum equations at the following time step.
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*

unstable

wall shear stress g1B < 0

I = 1

IF = n (1 + cos(UG))

*

stable

wall shear stress g1B > 0

g = g0 + g12 cos(UG) + g1B sin(UG)

Figure 6.5: Effect of the wall shear stress on the stability of a sand bed. The flow

develops between the wavy wall described by IF and the upper boundary at I = 1.

The wall-shear stress is decomposed into in-phase and quadrature components.

Left: unstable situation (the quadrature component g1B of the stress is negative).

Right: stable situation (g1B is positive). Adapted from Luchini (2016).

6.4 Results

We move on to describe two examples where the present method is applied. Both

involve turbulent flows over non-planar boundaries; they are meant to illustrate

the accuracy of the IBM in cases where the convective terms and the continuity

equation are at play. The first example is relatively simple from the geometric

standpoint, and concerns the turbulent flow in an open channel with a sinusoidally

undulated bottom. The second test case is about the flow within the human nose,

and is instead characterized by an extremely complex geometry.

6.4.1 The turbulent flow in a channel with undulated bottom

The IBM is applied to simulate via DNS the turbulent flow in a channel with

a sinusoidally undulated bottom wall: this is an idealised model of a river or

flume with a sandy bottom, that may bulge up and generate ripples and dunes.The

generation mechanism of these ripples involves fluid inertia (Charru et al., 2013);

a net accrual or depletion of sand particles occurs depending on the relative spatial

phase between the fluid shear stress and the wall undulation. Figure 6.5 sketches a

sinusoidally undulated bottom and the relative wall-shear stress, decomposed into

in-phase (cosine) and quadrature (sine) components, whose sign determines the

generation of ripples (Blondeaux, 1990): they grow whenever an unstable situation

is determined by a negative quadrature component of the wall-shear stress.

Here we replicate with higher accuracy the simulations performed by Luchini
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n U #C>C ΔG ΔH ΔI<8= ΔI<0G #I Δ ΔC

0.05 1/256 ≤ U ≤ 1/2 up to 251657210 0.0654 0.0393 4.0 × 10−3 0.0224 64 0.034245 0.03

0.025 1/128 ≤ U ≤ 1/2 up to 251657210 0.0654 0.0393 2.0 × 10−3 0.0111 128 0.027180 0.008

0.0125 1/32 ≤ U ≤ 1/2 up to 125828605 0.0654 0.0393 9.6 × 10−4 0.0056 256 0.021573 0.0015

0.05 1/2 1966080 0.0654 0.0393 4.0 × 10−3 0.0225 64 0.034245 0.001

0.05 1/2 2799360 0.0582 0.0349 3.6 × 10−3 0.0199 72 0.030442 0.001

0.05 1/2 3840000 0.0524 0.0314 3.2 × 10−3 0.0179 80 0.027398 0.001

0.05 1/2 6635520 0.0436 0.0262 2.6 × 10−3 0.0149 96 0.022830 0.001

0.05 1/2 8436480 0.0403 0.0242 2.4 × 10−3 0.0137 104 0.021088 0.001

0.05 1/2 10536960 0.0374 0.0224 2.2 × 10−3 0.0127 112 0.019557 0.001

0.05 1/2 15728640 0.0327 0.0196 2.2 × 10−3 0.0111 128 0.017108 0.001

0.05 1/2 30720000 0.0262 0.0157 1.6 × 10−3 0.0089 160 0.013699 0.001

Table 6.1: Computational parameters for the numerical simulations of the turbu-

lent flow in a channel with undulated bottom. The equivalent grid spacing Δ is

computed by assuming a uniform grid in all directions.

(2016), aimed at determining how this instability depends on the wavelength and

elevation of the bottom. We consider a channel configuration with a shear-free, flat

upper surface, with lengths and velocities made dimensionless with the channel

height ℎ and the bulk velocity*1. The (dimensionless) expression of the undulated

bottom is:

IF = n (1 + cosUG) .
Here U is the dimensionless wave number of the wavy bottom wall (with wave

length _ = 2c/U), and n is the dimensionless amplitude of the waviness. The

computational domain extends for !G = _, !H = 2c and !I = 1 in the streamwise,

spanwise and wall-normal directions. The wavenumber is varied in the range

1/256 ≤ U ≤ 1/2 (or 12.5 ≤ !G ≤ 1608). Please notice that these very long

computational boxes are required because this flow was shown in Luchini (2016)

to have an interesting response to very long wavelengths of the undulation. While

the shortest extreme is comparable to that employed in low-'4 turbulent channel

flow simulations (Kim et al., 1987), at the other extreme more than two-orders

of magnitude longer domains are considered. Several simulations are run for

the Reynolds number '41 = *1ℎ/a = 2800. Periodic boundary conditions are

used for the streamwise and spanwise directions, free-slip boundary conditions are

applied at I = 1, and no-penetration and no-slip conditions are applied at the wavy

wall. To obtain well converged statistics, simulations are run for at least 1000*1/ℎ
time units after the initial transient. Table 6.1 contains general information about

the set of simulations carried out for the present work. In a first set of simulations,

the grid spacing is kept constant while the size of the computational domain is

varied; a second set of simulations, used for a grid convergence study, has a fixed

domain size, and a spatial resolution that progressively increases uniformly in all

directions. Since the wall-normal distribution of grid points is mildly stretched, an

average wall-normal spacing ΔI = 1/#I is used to provide an equivalent uniform

grid spacing Δ = (ΔGΔHΔI) (1/3) .
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Figure 6.6: In-phase (left) and quadrature (right) components g12 and g1B of the

wall-shear-stress response to a wall modulation of wavenumber U.

#C>C Δ g12 × 104 f12 × 106 g1B × 103 f1B × 106

1966080 0.034245 6.40764 7.18508 -1.18162 6.40058

2799360 0.030442 6.76041 8.67627 -1.25258 7.84068

3840000 0.027398 6.80707 4.46546 -1.29628 3.54087

6635520 0.022830 7.13429 7.65407 -1.37018 6.87870

8436480 0.021088 7.28166 7.05332 -1.38633 6.14717

10536960 0.019557 7.28948 8.31248 -1.40233 6.93155

15728640 0.017108 7.42786 8.55187 -1.42513 7.48778

30720000 0.013699 7.46693 7.73307 -1.45979 7.64443

Table 6.2: Spatial convergence study for the wavy channel test case. The table

lists the number of grid points, the mean grid spacing, the values g12 and g1B of the

mean stresses, and the corresponding root-mean-square values f of the variance

of the estimate of the mean, computed after Russo & Luchini (2017).

The quantities of interest here are the spatial Fourier components g12 and g1B

of the time-averaged wall-shear stress g(G). They are defined as

g12 =
2

!G

∫ !G

0

g(G) cos

(
2cG

!G

)
dG; g1B =

2

!G

∫ !G

0

g(G) sin

(
2cG

!G

)
dG.

(6.20)

Figure 6.6 shows the dependence of g12 and g1B on the wavenumber U of the

wall modulation, for different values of n . The red curve is for n = 0.05 and has

been obtained using the same time step and grid size as in Luchini (2016), whose

results are perfectly reproduced. The plot confirms that the considered values of

n are small enough to be in the linear regime. As already observed by Luchini

(2016), when U is reduced g12 decreases to a local minimum at U ≈ 0.2, and then

increases again. At the smallest U, the quadrature component g1B changes sign,

indicating a change of the stability of the ripples. This is confirmed at different
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Figure 6.7: Convergence of the quadrature component g1B of the wall shear stress

for the wavy channel test case. Left: variation of the time-averaged value of g1B

with the mean spatial resolution Δ; the error bars correspond to ±3f1B, where

the root-mean-square value f1B of the estimate of the mean is computed after

Russo & Luchini (2017). The continuous line is a fit of equation (6.21), yielding

g
(4)
1B

= −0.001518,� = 0.2109 and ? = 1.912. Right: percentage error 100(g(4)
1B

−
g1B)/g(4)1B

of the quadrature stress versus spatial resolution; the dashed line shows

the expected second-order decrease.

amplitudes n . For a discussion of the physical implications of this behaviour, see

Luchini (2016).

To verify the order of accuracy of the IBM, figure 6.7 plots the results of

a spatial convergence study, whose main results are reported in table 6.2. For

U = 0.5 (or !G = 4c) and n = 0.05, different discretizations have been tested,

by progressively reducing the mesh size uniformy in all the three directions. The

coarsest mesh has (#G , #H, #I) = (192, 160, 64), corresponding to a total number

of points #C>C ≈ 2 × 106. The finest mesh has (#G , #H, #I) = (480, 400, 160),
with a total number of ≈ 3 × 107 points. The time step is fixed for all cases at

ΔC = 0.001, a value that is small enough to ensure that the time discretisation error

is not dominant.

Given a numerical method with rate of convergence ?, the difference between

the solution 5 computed on a three-dimensional uniform grid with spacing Δ and

the exact solution 5 (4) must vary according to

| | 5 − 5 (4) | | ≤ �Δ−? (6.21)

where � is a constant. We use equation (6.21) to compute a least-square fit for the

quadrature stress component (equivalent results, not shown, are obtained with the

in-phase component) obtained from the numerical experiments. Since the exact

solution is not known, the value g
(4)
1B

is evaluated with the asymptotic value of the
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fitting curve. In computing the time-averaged value of g1B, we also quantify the

error implied by the finite averaging time; to this purpose the method described

by Russo and Luchini in Russo & Luchini (2017) is used to compute the root-

mean-square value f of the estimate of the mean, and figure 6.7 plots error bars

for ±3f. As expected, figure 6.7 confirms that the present immersed-boundary

method exhibits a second-order convergence, with an exponent ? = 1.912.

6.4.2 The turbulent flow in the human nose

The air flow inside the human nose is an important application, owing to the wide

and obvious implications of a healthy breathing. The physiologically healthy flow

through the nasal cavities is difficult to define, as no single flow feature can be

shown to correlate with the perceived breathing quality. The prevalence of anatom-

ical malformations (like e.g. septal deviations, or hypertrophy of the turbinates)

is huge, with nasal breathing difficulties affecting up to one third of the entire

world population (Li et al., 2020). In recent years the number of numerical studies

dealing with the fluid mechanics of the human nose, built upon the patient-specific

anatomic information provided by CT scans, has increased considerably. While

the majority of such studies consists in simple RANS simulations executed with

commercial, finite-volumes software, the availability of accurate reference solu-

tions remains essential for validating physiology studies of fundamental character,

and becomes clinically important whenever specific and unusual anatomies need

to be evaluated for diagnosing and surgery planning. However, so far very few

studies, (e.g. Calmet et al. (2016); Li et al. (2017)), have described the nose flow

with DNS-like resolution, owing to the combination of its extreme geometrical

complexity and the accompanying significant computational cost; none of them

employed an immersed-boundary approach.

In the context of the present work, the nasal airflow represents an ideal test

bed for the IBM, whose accuracy and computational performance can be assessed

on a geometrically challenging scenario. In this study, we consider therefore one

specific sinonasal anatomy, that has been recently used in a tomo-PIV experiment

described in Tauwald et al. (2024). The anatomy is derived from segmentation

of a CT scan of a healthy patient, composed of 384 DICOM images with sagittal

and coronal resolution of 0.5 << and an axial gap of 0.6 <<. The anatomy is

segmented at constant radiodensity threshold, with the assistance of an experi-

enced surgeon, according to a well established procedure (Quadrio et al., 2016b),

to identify the interface between air and solid tissues. For experimental reasons,

the whole anatomy has been then enlarged by a factor of 2. Figure 6.8 portraits

the anatomy of the internal nose, and demonstrates how the actual geometrical

boundary is extremely complex, with evident three-dimensional features and the

presence of large lateral volumes, the paranasal sinuses, which are only loosely
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Figure 6.8: Anatomy of the human airways, after a patient-specific reconstruction

of a CT scan. The surface represents the boundary of the computational domain,

and is augmented by a spherical volume placed outside the nose tip, whose goal is

to set the computational boundary away from the nostrils. The vertical (coronal)

sections on the right illustrate how the complex cross-sectional shape varies along

the passageways, including the nasal vestibulum, the anterior part of the meati

(a), the intermediate sections shaped by the turbinates (b) and (c), down to the

rhinopharynx (d).

connected to the main airways via small orifices called ostia. Figure 6.8 also high-

lights, by means of coronal sections, how the cross-sectional shape of the airways

varies significantly from the nose tip towards the throat. The computational do-

main also comprises a spherical volume, shown in figure 6.8, which surrounds the

external nose: the sphere is designed to locate the boundary of the computational

domain far from the nostrils, while keeping the computational overhead within

reason.

In this work a simple steady inspiration is considered, where a (constant in

time) pressure drop is imposed between the inlet at the external surface of the

sphere and the outlet at the trachea; the numerical value of 5 %0 and the corre-

sponding volumetric flow rate of approximately 600 2<3/B correspond, after the

factor-of-two geometrical expansion is accounted for with dynamic similarity ar-

guments, to a mild physical activity (Wang et al., 2012). Note that, because we are

replicating an experimental study, dimensional quantities are used in this section.

Regardless of the time-independent boundary conditions, the flow is unsteady, with

three-dimensional shear layers and vortical structures; in some regions the flow

becomes turbulent. Starting from an initial condition of resting flow everywhere,

the simulations are advanced in time until the initial transient has vanished, and

then further integrated for about 1B of physical time to compute time averages.

Some features of the time-averaged flow are illustrated in figure 6.9. The left

panel plots the mean pressure field in a representative sagittal section that cuts
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Figure 6.9: Left: mean pressure field in a sagittal section. Right: mean velocity

magnitude field in the same section.

#C>C Δ [<<] & [2<3/B] f [2<3/B]
3749528 0.9978 598.591 0.3306

6289066 0.8317 608.040 0.3909

10603652 0.6934 615.943 0.3407

17969591 0.5775 620.155 0.2288

30476246 0.4815 624.907 0.5118

51936820 0.4011 628.032 0.6040

91969807 0.3343 628.626 0.9309

157849674 0.2787 630.130 0.6996

273071473 0.2322 631.042 0.5586

Table 6.3: Spatial convergence study for the nose test case. The table lists the

total number of grid points in the fluid volume, the (isotropic) grid spacing in

millimeters, the value & of the temporally averaged flow rate at the trachea, and

the root-mean-square valuef of the variance of the estimate of the mean, computed

after Russo & Luchini (2017).

through the right passageway, and illustrates the pressure decrease from the outer

ambient to the throat. The pressure drop is particularly localized and noticeable at

the nasal valve and at the striction determined by the larynx. The right panel plots

the magnitude of the mean velocity vector in the same section. During inspiration

the external air is first accelerated abruptly in correspondence of the nasal valve,

and quite large velocity values are observed in certain portions of the meati; the

airflow then enters the rhinopharynx with quite definite shear layers, and then

transforms into a laryngeal jet after the narrowing at the larynx, where the largest

velocities are found.

Table 6.3 reports the results of a spatial convergence study, where the time-

averaged value of the flow rate & at the trachea for the fixed pressure drop of 5 %0

is observed as the spatial resolution is changed. The calculations have been carried
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Figure 6.10: Convergence of the flow rate for the nose test case. Left: variation

of the time-average flow rate & with the (isotropic) spatial resolution Δ; the error

bars correspond to ±3f, where the root-mean-square value f of the uncertainty of

the mean is computed after Russo & Luchini (2017). The continuous line is a fit of

equation (6.21), yielding & (4) = 633.1 2<3/B, � = 3.502 × 10−7 and ? = 1.999.

Right: percentage error 100(& (4) − &)/& (4) of the mean flow rate versus spatial

resolution. The dashed line shows the expected second-order decrease.

out for a fixed time step size ΔC = 0.02<B, that is small enough to ensure that the

the time discretization error is not dominant. The geometrical complexity suggests

the use of isotropic spacing, hence cubic cells are used with edge length Δ. The

coarsest mesh consists of about 3.7 millions points within the fluid volume; the

size of its cells is 1<< (which is comparable to the resolution of the CT scan, if the

model scaling is considered) and still allows a decent representation of the smallest

flow structures. The largest employed mesh has about 273 millions points and a

spatial resolution of 230 `<. Fitting the formula (6.21) to the data of table 6.3,

following the same procedure discussed above in Sec. 6.4.1, yields an exponent

? = 1.999: the second-order convergence is fully confirmed, as shown graphically

by figure 6.10.

6.5 Conclusions

We have presented a novel, simple and efficient implicit second-order immersed

boundary method (IBM) for the direct numerical simulation of the incompressible

Navier–Stokes equations.

Our IBM belongs to the class of methods employing a discrete-forcing formu-

lation; its computational efficiency descends from the tight integration with the

underlying numerical discretization, based on second-order accurate central finite

differences computed on a staggered grid. Such integration is possible because
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the boundary-distance information is concentrated in a single point, namely the

centre point of the stencil that discretizes the Laplacian operator. This allows the

IBM correction to be made implicit at no cost: this is perhaps the main novelty of

the present IBM implementation.

This type of correction offers several crucial advantages. On the one hand, since

the correction is applied only to the central point of the stencil, the formulation

enjoys extreme simplicity in terms of implementation: the cobweb of IFs and

ad-hoc coding to handle special cases that would otherwise handle those parts of

the boundary that come close to each other becomes unnecessary. On the other

hand, the computational cost of the IBM correction is brought to a minimum.

In order to estimate it, a simple experiment consists in switching the correction

off, thus reinstating the baseline first-order-accurate staircase approximation of

the boundary; timing the execution of the solver with and without the correction

quantifies the extra cost necessary to achieve second-order accuracy near the

boundary. Such timing experiments led us to the conclusion that hardly any extra

cost is visible at all. The implicit nature of the IBM also has important favorable

consequences on the stability of the numerical method. The explicit IBMs, in fact,

fall into trouble whenever a grid point coincides or even approaches the boundary,

whereas for the implicit IBM the solution monotonically tends to zero as it should.

The IBM has been introduced and described in conjunction with two simple

linear problems, where the spatial and temporal accuracy of the method have

been separately addressed. In the second part of the paper, the method has been

applied to two challenging turbulent flow problems, namely the channel flow over

a wavy bottom and the air flow through the intricate anatomy of the human nose.

A full second-order accuracy has been confirmed even in these examples, which

contain the entire complexity of the Navier–Stokes equations; in particular the nose

flow can be rightfully considered a stress-test for the IBM, owing to the extreme

anatomical intricacy of the nasal cavities. The IBM described in this paper lies

at the heart of a DNS solver, currently under active development, which is aimed

at both CPU and GPU architectures, and promises to achieve very interesting

computational speed.
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Dimples for skin-friction drag

reduction: status and perspectives

Abstract

Dimples are small concavities imprinted on a flat surface, known to affect heat

transfer and also flow separation and aerodynamic drag on bluff bodies when act-

ing as a standard roughness. Recently, dimples have been proposed as a roughness

pattern that is capable to reduce the turbulent drag of a flat plate, by providing a

reduction of skin friction that compensates the dimple-induced pressure drag, and

leads to a global benefit.

The question whether dimples do actually work to reduce friction drag is still

unsettled. In this paper, we provide a comprehensive review of the available in-

formation, touching upon the many parameters that characterize the problem. A

number of reasons that contribute to explaining the contrasting literature informa-

tion are discussed. We also provide guidelines for future studies, by highlighting

key methodological steps required for a meaningful comparison between a flat and

dimpled surface in view of drag reduction.

7.1 Introduction

Reducing the drag generated by a fluid set in relative motion to a solid body is

at the same time a fundamental attempt to learn how to favorably interact with

turbulence, and a technological challenge with immense potential in so many

application fields. The interest for turbulent flow control is steadily increasing,

owing to massive economic and environmental concerns.

Skin-friction drag is perhaps the most essential manifestation of the dissipative

nature of turbulence, and accounts for the total drag in the case of planar walls (as

in a channel flow or a zero-incidence flat plate boundary layer). Several techniques
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are available to reduce friction drag below the level typical of a smooth solid wall;

they can be categorized into active (requiring extra energy) and passive ones. The

former typically provide larger savings, but imply extra complexity and cost, so that

the ideal technique for friction reduction remains a passive one, often embodied

in surface patterns performing better than the planar flat geometry.

The most prominent example of such patterns is riblets (Garcı́a-Mayoral &

Jiménez, 2011). Introduced by NASA in the ’80 of the past century, and intensely

studied over the subsequent years for their potential in aeronautical applications,

riblets consist of streamwise-aligned microgrooves, and have the proved ability

to reduce friction drag. The riblets cross-section can be of several shapes, the

triangular one being perhaps the most popular, but an essential feature is a very

sharp tip. Although new developments (Quadrio et al., 2022; Cacciatori et al.,

2022) hint at a bright future for riblets in aeronautics and suggest lower cost/benefit

ratios, riblets are currently still not deployed in commercial transport aircraft,

owing to their limited savings (McLean et al., 1987; Kurita et al., 2020) and to

critical production and maintainance issues, descending from the microscopic size

of riblets and from the requirement of preserving the sharpness of the tip.

A possible alternative to riblets is emerging recently, easier to manufacture

and lacking any sharp detail. The pattern to impress on the surface consists of

small dimples. Dimples, i.e. small concavities imprinted on a surface, have been

extensively studied in the past for their ability to enhance the heat transfer of a

surface (see e.g. Leontiev et al. (2017) and references therein). The use of dimples

on the surface of bluff bodies (e.g. a golf ball) is well known, and their ability

to influence the turbulent boundary layer and the separation on the body is rather

well understood (Choi et al., 2006); the same concept is also being considered in

sport-car racing (Allarton et al., 2020). In this paper we concern ourselves with

dimples applied to an otherwise flat surface: the goal is to reduce the turbulent

skin-friction drag. We limit our review to passive dimples, although also active

control by dimples has been proposed (Ge et al., 2017).

The ability of dimples to reduce drag is way less intuitive than that to increase

heat exchange, and was considered first at the Kurchatov Institute of Athomic

Energy (Kiknadze et al., 1984) in Russia, where hemispherical dimples were

placed on the surface of a heat exchanger and found to reduce the flow resistance

as well. In subsequent studies by the same group, a drag reduction of about 15–

20% was mentioned (Alekseev et al., 1998), the highest performance reported so

far. In the last two decades, a handful of research groups devoted their efforts

to understanding the drag reduction problem by dimples, attempting to come up

with a recipe for the best shape and size. Unfortunately, to date no consensus has

been reached on the effectiveness of dimples in reducing friction drag, and on their

working mechanism: some authors confirmed drag reduction, others did not.

Measuring – in the lab, or with a numerical simulation – the (very small, if any)
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drag reduction induced by dimples is by no means a trivial task. A reduction of

friction drag would be unavoidably accompanied by an increase of pressure drag,

with a net benefit possible only if the former overwhelms the latter. There are just

so many design variables to be tested, as the geometry of the dimple itself, the

size, the spatial layout and relative arrangement of the dimples on the surface need

to be carefully considered. This is a daunting task as long as no theory, hypothesis

of working mechanism or scaling argument is available to guide the search in such

a vast parameter space. However, it is undeniable that dimples, once proved to

work, would provide substantial advantages over riblets, thanks to their simplicity,

ease of production, lack of sharp corners and easier maintenance.

The goal of the present contribution is to provide the first comprehensive review

of the published information available on dimples for skin-friction drag reduction.

Since the very fact that dimples can actually work is still subject to debate, we

will complement the review with a discussion of important procedural aspects

that in our view are essential, should one embark in a (numerical or laboratory)

experiment to assess the potential for drag reduction. Such procedures (or, more

precisely, their absence) are at the root of the large uncertainty and scatter of the

available data, and have hindered so far the answer to such a simple question as:

Do dimples actually work to reduce turbulent drag?

The present contribution is structured as follows. Section §7.2 provides an

overview of the experimental and numerical studies on the drag reduction prop-

erties of dimples. Section §7.3 describes the geometrical parameters defining the

dimples, whereas §7.4 reports the two main physical explanations for the working

mechanism of drag-reducing dimples. In §7.5 we highlight the problem of prop-

erly measuring drag reduction, and guidelines and recommendations on how to

properly compare results among different studies are provided. This review paper

is closed by brief concluding remarks in §7.6. Appendix 7.A contains details of

the DNS simulations that have been carried out for the present study.

In the next Subsection, the concept of dimples is introduced first, together with

the notation that will be used later to indicate their geometrical parameters.

7.1.1 Characterization of a dimpled surface

A solid wall covered with dimples is described by several geometric parameters:

the dimple shape, the relative spatial arrangement of the dimples and the cover-

age ratio (ratio between non-planar and total surface). Originally, dimples were

conceived as spherical recesses, hence with a circular footprint on the wall. One

particular class of circular dimples, introduced by Chen et al. (2012), has become

quite popular thanks to its parametric nature and represents the starting point of

our description. This design is the union of a spherical indentation and a torus,

meeting tangentially in a regular way that avoids sharp edges. A cross-section of
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Figure 7.1: Cross-section of the parametric dimple geometry introduced by Chen

et al. (2012) (left) and streamwise shift of the deepest point (right).

this dimple, which possesses axial symmetry, is drawn in figure 7.1.

Four parameters define the geometry of this dimple: the diameter � of the

circular section at the wall, the depth 3 of the spherical cap, the curvature radius A

at the edge and the curvature radius ' of the spherical cap. These four parameters

are not independent, but linked by one analytical relation, so that only three degrees

of freedom exist. In fact, geometry dictates that:

�

2
=

√
3 (2' + 2A − 3). (7.1)

Moreover, a handful of studies extended this baseline circular geometry, by

introducing the additional parameter B, which describes the shift along the stream-

wise direction (either downstream for B > or upstream for B < 0) of the point of

maximum depth, which in the baseline geometry lies exactly at the center of the

dimple cavity.

It is difficult to overemphasize the importance of a well-defined parametric

geometry in the quest for the optimally performing dimple. Although the circular

shape is by far the most popular, over the last years a number of alternative dimple

shapes have been studied; sketches for the various shapes are drawn in figure 7.2.

Some of them derive from a deformation of the circular shape: e.g. the elliptical

dimple is the result of a symmetrical stretch of the circular dimple along the

streamwise direction. The teardrop dimple has two segments tangent to the circle,

preserves the spanwise symmetry and exists in two variants depending on whether

the triangle points upstream or downstream. The diamond dimple is the union of

the two variants of teardrop and possesses two vertices. Only the triangular dimple
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Circular Ellipse Teardrop
(downstream)

Teardrop
(upstream) Diamond

Triangular
(downstream)

Triangular
(upstream)

Figure 7.2: Popular variants of the dimple shape.

Staggered

Flow

Flow aligned

Flow

Figure 7.3: Most popular dimples layout: staggered (left) and flow aligned (right).

differs substantially from the circular shape and — as for the teardrop dimple —

can have the streamwise-aligned vertex pointing upstream or downstream.

When a single dimple is identically replicated to fully cover the planar surface,

the relative spatial arrangement of the dimples is important in determining the

overall influence on the flow. A regular spatial layout of a dimpled surface depends

on the distance between two adjacent dimples in both the streamwise and spanwise

directions. Another parameter that is related to the spatial arrangement of dimples

is the coverage ratio, that can be defined as the percentage of recessed surface

compared to the total surface of the wall. (The reader will notice an ambiguity, as

at the denominator of the coverage ratio one could put either the surface area of

the equivalent flat wall, or the wetted area of the dimpled surface. This ambiguity

is often ignored, but it is commented upon e.g. in Praß et al. (2019) ,Tay et al.

(2017) and Ng et al. (2020).) It is doubtful whether coverage, which is affected by

so many parameters, is by itself a useful quantity to describe dimples performance.
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Moreover, dimples can be arranged either irregularly or regularly following a

certain pattern. The two most widespread patterns are the staggered and the flow-

aligned arrangements. Their definition is not unique. Often, the layout is referred

to as staggered when the streamwise projection of one dimple overlaps with the

following one, while it is called flow-aligned otherwise (see figure 7.3). However,

this definition, that corresponds to the most used arrangement, is not universally

accepted. Praß et al. (2019), indeed, define the staggered arrangement as having

the distance in spanwise direction from the centres of two adjacent dimples equal

to half the distance between the centres of two non-adjacent dimples. Several

additional patterns have been tested, e.g. the hexagonal one.

7.2 Do dimples work?

Although in the last two decades a number of dimples-related contributions have

appeared, many works claim that drag reduction is possible for certain geometries

and flow conditions (Veldhuis & Vervoort, 2009; Tay, 2011; Tay et al., 2015;

Van Nesselrooij et al., 2016; Tay et al., 2016; Tay & Lim, 2017, 2018; Spalart et al.,

2019), whereas others only report drag increase (Tay et al., 2017; Van Campenhout

et al., 2018; Praß et al., 2019; Ng et al., 2020). Notably, one work (Spalart

et al., 2019) set out to specifically reproduce the experimental drag reduction

results described in Van Nesselrooij et al. (2016) with a state-of-the-art combined

numerical/experimental study, and failed.

Such uncertain situation can be traced back to the lack of a generally accepted

standard to measure drag and to compare different geometries among themselves

and with the reference flat wall, since there are unavoidable differences when mea-

suring drag in experiments and simulations, and in external (e.g. boundary layer)

and internal (plane channel) flows. An additional reason explaining the scatter of

available results consists in the still limited understanding of how dimples modify

the surrounding flow field. Knowing the physics involved in drag reduction by

dimples would be extremely useful in the optimization of all the several parameters

involved. A description of the effect of the many geometrical parameters involved,

and on the conjectures on the working mechanism of dimples are reported later in

§7.3 and §7.4 respectively.

We start by presenting an overview of the main results available in the literature,

by focusing on the raw drag reduction information. They are reported in Table

7.1 that contains entries for the best drag reduction figure that could be extracted

from each paper; when multiple dimple shapes are present, they are all considered.

Drag change is simply defined here asΔ�A06 = �A0638<?;4B−�A06B<>>Cℎ, where

�A06B<>>Cℎ and �A0638<?;4B are the (measured or computed) friction drag of the

reference flat plate and the total drag of the dimpled plate, respectively. Negative
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values of Δ�A06 thus correspond to drag reduction. Across the several studies,

various definitions of the Reynolds number are used, particularly for internal flows.

These have been all converted, whenever possible, to value of the bulk Reynolds

number '41, by using the empirical Dean’s correlation (Dean, 1978). Several

other entries are also available in the Table, and will be defined and discussed

throughout the text.

7.2.1 Experimental studies

The majority of the experimental studies carry out their tests in a wind tunnel and

compare the drag measured on a flat plate with the drag measured on a dimpled

plate. The flat/dimpled plate lies either on the upper or bottom wall, whereas the

other wall of the wind tunnel is smooth. The plate is installed at a certain distance

from the entrance section for the flow to become fully developed by the time it

reaches the test section. A major difference among the various studies consists in

the internal/external character of the flow.

The largest drag reduction, as observed in Table 7.1, is a whopping 14% found

in the boundary layer experiment by Veldhuis & Vervoort (2009) at the Technical

University of Delft. The free-stream velocity was 7.5 </B and dimples were of

circular shape. They found the staggered configuration to be more efficient in

reducing drag than the flow-aligned one. Other boundary layer experiments car-

ried out later by the same group at TU Delft reported a significantly smaller but

still extremely interesting maximum drag reduction of 4% (Van Nesselrooij et al.,

2016), obtained at a Reynolds number based on the free-stream velocity *∞ and

the dimple diameter � of '4� ≈ 40000, which corresponds to a Reynolds based

on the boundary layer thickness X of '4X = 1500. In this case, dimples are rela-

tively large (in physical dimensions) shallow circular dimples, with a 50% smaller

coverage ratio than Veldhuis & Vervoort (2009). In a later study Van Campen-

hout et al. (2018) also measured a drag increase of 1% for shallow dimples with

different layouts at '4� ≈ 63100. Van Nesselrooij et al. (2016) presented what

is described in Spalart et al. (2019) as a ”very convincing experimental paper”,

studying different dimples configuration and finding that the best one consistently

involves sparse (low coverage) and staggered dimples for the entire range of con-

sidered Reynolds numbers. They also focused on the importance of the depth

of the dimples. When made dimensionless with the dimple diameter, shallower

dimples are found to work better for each flow condition; however, when depth is

compared to the boundary layer thickness, shallow dimples work better at low '4

but deep dimples are better at higher '4.

Another group that provided significant contribution to the dimples research

thread is from the National University of Singapore, with Tay and colleagues. They

performed experimental studies on a channel flow and reported up to 7.5% drag
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reduction in Tay et al. (2019) for diamond-shaped dimples at a Reynolds number

based on the bulk velocity *1 and the channel semi-height ℎ of '41 ≈ 30000

and a layout with full coverage. Large drag reductions are measured also with

other non-conventional dimple shapes (Tay & Lim, 2018), such as the upstream-

pointing teardrop at 6%, or the downstream-pointing teardrop at 5%, in a flow with

'41 ≈ 30140 and '41 ≈ 22270, respectively. Conversely, the triangular shape was

proved to always lead to drag increase (Tay et al., 2016). Circular dimples were

found to be less effective than diamond and teardrop shapes. A reduction of drag

up to 2% (Tay, 2011) and 2.8% (Tay et al., 2015) are found at '41 ≈ 17500 and

'41 ≈ 32100 for different physical geometrical parameters of the dimple but with

an identical layout and coverage ratio of 90%. At '41 ≈ 42850 a drag reduction

of 3.5% is measured in Tay & Lim (2018). In Tay et al. (2015) they compare

the same physical dimples and flow geometry by varying the coverage ratio and

find that a dense layout with 90% coverage performs better than a sparse one with

40% coverage. They also compare two different dimple depths, measuring slightly

higher drag reduction for deeper dimples. Finally, Tay & Lim (2017) experiment

with shifting the point of maximum depth within the dimple along the streamwise

direction, and measure the best performance of 3.7% when the shift is B = 0.1�

in the downstream direction.

7.2.2 Numerical simulations

For drag reduction studies, numerical simulations need to resort to high-fidelity

approaches, like Direct Numerical Simulation (DNS) and highly resolved LES

(Large Eddy Simulation). Obviously, such simulations are not very practical for

large-scale parametric studies, especially when the Reynolds number becomes

large, since their unit computational cost rapidly increases with '4. The need

for high-fidelity methods, the computational cost and the requirement to handle

non-planar geometries are among the reasons why numerical studies for dimples

are fewer than experiments. However, simulations (and DNS in particular, which

avoids the need of turbulence modeling) are perfectly suited for such fundamental

studies and provide us with the full information required to understand the working

mechanism of dimples, by e.g. breaking up the drag changes into friction drag

and pressure drag changes and by yielding a detailed and complete statistical

characterization of the turbulent flow.

Circular dimples in a turbulent channel flow were studied with DNS for the

first time in 2008 by Lienhart et al. (2008), who reported a drag increase of 1.99%

at '41 ≈ 11000. The same work contains also an experimental study of the same

configuration, for which no drag changes were observed.

Ng et al. (2020) at NUS performed one of the most interesting DNS studies,

considering a turbulent channel flow at '41 = 2800 and examining different
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dimple geometries. They found that the classic circular dimple increases drag by

6.4%, an amount that decreases to 4.6% when the point of maximum depth is

shifted downstream by B = 0.1�. They also studied non-circular dimple shapes,

obtaining this time a large drag reduction of 7.4% for the diamond dimple, 4.9%

for the elliptical dimple and 3.1% for the upstream-pointing teardrop dimple; the

downstream-pointing teardrop dimple, instead, gave 0.1% drag increase.

Another recent numerical channel flow study is that by Tay et al. (2017): they

run a Detached Eddy Simulation (in which a baseline LES is complemented with

a RANS model for the near-wall region) to replicate their own experimental study

described in Tay et al. (2015). The DES yielded 1% drag increase at '41 = 2830,

which does not confirm the experimental study and found drag increase for every

case tested, whereas the experiments found smaller drag increase and even a slight

drag reduction for a particular geometry. The suitability of DES for such drag

reduction studies, however, remains dubious.

Praß et al. (2019) published the only work in which an open channel is consid-

ered: with a LES they report a drag reduction of 3.6 % at '41 ≈ 6121. They also

considered two different configurations, finding that flow-aligned dimples perform

better than staggered dimples.

There is only one DNS study for the boundary layer, i.e. the already mentioned

work by Spalart et al. (2019), in which circular dimples at '4X = 30000 were

considered as the baseline geometry. They additionally studied the effect of the

edge radius A, and found that with proper smoothing of this edge a drag reduction

of -1.1% is obtained, which descends from the combination of a -1.7% reduction

of friction drag, counterbalanced by a 0.6% increase of pressure drag.
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7.3 How to design dimples?

Systematic studies which address the influence of each geometric parameter are

lacking, so that the design of the optimal configuration to achieve the maximum

drag reduction has not been identified yet. This Section describes the little we

know, first in terms of the geometrical characteristics of the dimples and then in

terms of their arrangement.

7.3.1 The shape of the dimple

Figure 7.4 plots the drag change data measured by several works which adopted

the baseline circular geometry. The percentage of drag change is shown as a

function of the three independent geometrical parameters 3/�, A/� and '/�,

after extracting from each publication the largest drag reduction (or the smallest

drag increase). It should be noted that, in general, the various points correspond to

simulations or experiments that differ for other, sometimes very important, design

parameters. Dashed lines, instead, connect points for which only the parameter on

the abscissa is changed.

The influence of 3/� on the drag change has been studied by several authors:

previous research from heat exchange enhancement suggests the very reasonable

idea that this is one of the key factors affecting drag. However, while the optimal

3/� is in the range 0.1 − 0.5 for best heat exchange (Kovalenko et al., 2010;

Tay et al., 2014), several authors report that shallower dimples with 3/� < 0.1

should be considered for reducing the overall drag, to avoid excess penalty from

the ensuing pressure drag. Data are extremely scattered and clearly indicate that

the drag change over a dimpled surface does not depend on the 3/� ratio alone.

For example for 3/� = 0.05 Veldhuis & Vervoort (2009) report a drag reduction

of almost 15%, while Tay et al. (2017) report a drag increase of approximately

6%. The experimental measurements from Veldhuis & Vervoort (2009) are for a

turbulent boundary layer over a dimpled surface with coverage ratio of 60% at a

free-stream velocity in the range 0− 29 </B; the results from Tay et al. (2017) are

from a Detached Eddy Simulation of a turbulent channel flow at '41 ≈ 3000 with

a coverage ratio of 90%.

It is reassuring, though, to see — at least in some of the datasets where data

points are connected by dashed lines — a local optimum for intermediate depths,

since it is reasonable to expect zero drag changes for 3 → 0 and an increase of drag

as for standard :-type roughness for 3 → ∞. With the other parameters unchanged,

Tay et al. (2017) and Van Nesselrooij et al. (2016) agree on observing a decrease

of performance with increasing 3/� (in the range 0.015 < 3/� < 0.05), although

at a different rate; within the same 3/� range, Tay et al. (2015) and Veldhuis &
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Figure 7.4: Drag change obtained with circular dimples versus depth (top), edge

curvature radius (bottom left) and radius of the spherical cap (bottom right).

Dashed lines connect points for which only the parameter on the abscissa is

changed.
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Vervoort (2009) measured a slight increase of drag reduction performance with

increasing 3/�. The latter study was extended up to 3/� = 0.12, finding that for

3/� > 0.05 the overall drag increases with 3/�.

The curvature radius A at the edge of the dimple is meant to mitigate the

negative effects of pressure drag, by preventing or decreasing flow separation. The

second panel of figure 7.4 shows that also in this case data are highly scattered: for

0.5 ⪅ A/� ⪅ 1.5 the achieved drag change ranges between -4% (Van Nesselrooij

et al., 2016) and 4.8% (Ng et al., 2020). The experiments of Tay et al. (2015) at

'41 ≈ 32100 show that after a certain value, i.e. A/� > 4, the influence of the edge

curvature on the drag change is minimal. Spalart et al. (2019) performed a DNS

of a turbulent boundary layer, with a Reynolds number (based on the boundary

layer thickness) of '4X = 7.5× 103 and '4X = 3× 104 and considered A/� = 0.5.

Their data points are not plotted in figure 7.4, since their paper does not contain

enough information to quantify A. However, they confirmed that smoothing the

dimple rim is beneficial.

A scattered picture is also obtained when data are plotted against the '/� ratio,

as shown in the third panel of fig.7.4, confirming again that for this configuration

a single geometrical parameter is unable to fully characterize the influence of the

dimples on the flow.

The experiments of Tay & Lim (2017) and the numerical simulations of Ng

et al. (2018, 2020) agree on the indication that the downstream shift B is beneficial,

for a wide range of Reynolds numbers, with the best effect observed when B = 0.1�

in the downstream direction. When instead the shift is in the upstream direction,

i.e. B < 0, drag increases rapidly. It should be mentioned that the Reynolds

number of the simulations ('41 = 2800) is somewhat lower than the lowest

Reynolds number of the experiments ('41 ≈ 4300). Tay & Lim (2017) claim that

a 0.2� downstream shift is equivalent to the axisymmetric case at '41 = 7000

with a drag increase of 1.5%, because the lower drag obtained by the reduced flow

separation at the shallower upstream wall is compensated by the higher drag of

the flow impinging on the steeper downstream wall. Ng et al. (2018, 2020), who

can take advantage of DNS to break down the total drag into friction and pressure

contributions, find that friction drag is almost unaffected by a downstream shift,

since it does not affect the reattachment point.

When it comes to alternative shapes, triangular dimples were considered by

Tay et al. (2016). In their experiment they machined dimples with the bottom

surface sloping up from the deepest point at the triangular vertex towards the base

of the triangular depression to meet the flat channel surface, hence producing

the negative of a wedge. A larger drag was obtained for both upstream- and

downstream-pointing triangles, for the whole range of tested Reynolds numbers,

i.e. 5180 ≤ '41 ≤ 28600. Moreover, for the downstream-pointing triangle the

drag increase is nearly constant with '4, whereas for the upstream-pointing triangle
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the drag increase grows with '4. Tay & Lim (2018) studied the teardrop dimple

and measured drag reduction for both the upstream- and downstream-pointing

teardrops, for 4500 ≤ '41 ≤ 44000, with the former yielding up to 6% drag

reduction and the latter up to 5%. Tay et al. (2019) studied the diamond dimple

and measured drag reduction up to 7.5%. More recently, Ng et al. (2020) compared

in a numerical study the circular, elliptical, teardrop and diamond dimples in a

turbulent channel flow, reporting drag reduction of 4.9% for the elliptical dimple,

3.1% for the upstream-pointing teardrop, and 7.4% for the diamond dimple.

7.3.2 The arrangement of the dimples

When it comes to the spatial arrangement of dimples on the surface, once the other

parameters are fixed, the staggered configuration leads to lower drag compared to

the flow-aligned one (Veldhuis & Vervoort, 2009; Van Nesselrooij et al., 2016;

Van Campenhout et al., 2018; Spalart et al., 2019), a fact that explains why

the staggered configuration is the most adopted one. Van Nesselrooij et al. (2016)

found 3% of drag increase for flow-aligned dimples and up to 4% drag reduction for

staggered dimples with the same geometrical parameters, coverage and Reynolds

number. Spalart et al. (2019) found drag increase for both configurations, but the

drag increase of the flow-aligned dimples was almost twice that of the staggered

dimples.

Lashkov & Samoilova (2002) and Van Campenhout et al. (2018) considered

the drag change also for other, non-standard arrangements. The former study found

a large drag increase (up to 50%) when an hexagonal dimple layout is used. The

latter study showed a constant drag increase of about 1% for each of the several

considered layouts.

The effect of coverage ratio was considered by Tay (2011) and Tay et al. (2015),

who compared in a channel flow circular dimples with 40% and 90% coverage,

and found that higher coverage enhances the (positive or negative) effects of the

dimples. Van Nesselrooij et al. (2016) experimentally studied the effect of coverage

in a boundary layer. They found that a 90% coverage yields drag increase for a

wide range of '4, whereas 33.3% coverage always yields drag reduction within the

same Reynolds number range. Performance of both layouts are found to improve

by increasing '4. Spalart et al. (2019) in their boundary layer DNS compared

the two coverage ratios, and observed about 1% of drag reduction for the lower

coverage, and 2% of drag increase for the higher one.
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7.4 How do dimples work?

The uncertainties on the true effectiveness of dimples in reducing turbulent drag

are accompanied, perhaps unsurprisingly, by a limited understanding of the physics

involved. Thanks to the several experimental and numerical works carried out so

far, some ideas and hypotheses exist, but consensus is lacking. We describe below

two prevailing descriptions of how dimples interact with the overlying turbulent

flow.

7.4.1 Self-organized secondary tornado-like jets

The first attempt at explaining drag reduction by dimples is due to Kiknadze et al.

(2012), who based their explanations uniquely of video records and photographs,

even though similar observations were already put forward in previous numerical

(Veldhuis & Vervoort, 2009) and experimental (Kovalenko et al., 2010) studies.

According to Kiknadze et al. (2012), whose authors are affiliated with the Research

and Production Centre “Tornado-Like Jet Technologies” in Moscow, the action of

dimples can be explained by a so-called tornado-like jet self-organization. In plain

words, this is how the flow organizes itself and develops over the double-curvature

concavity of a dimple. The flow coming from an upstream flat portion accelerates

at the leading edge of a circular dimple, and is lifted off from the surface while

trying to follow the curved wall, leading to a reduction of skin-friction drag in

the fore half of the dimple. After the streamwise midpoint, the flow converges

towards the midline to eventually meet the flat wall past the trailing edge, and

the skin friction increases again. Although the skin friction reduction in the fore

half might outweigh the increase of the aft half, the recessed geometry of the

dimple introduces an additional pressure drag component: hence, to achieve drag

reduction the net reduction of the skin-friction drag needs to be larger than the

increase of pressure drag. It should be observed, though, that this description is

not directly addressing the insurgence of drag reduction, but only constitutes an

attempt to draft a simplified description of the local flow modifications induced by

the dimple.

If dimples are deep enough, their steep walls make the flow prone to separa-

tion on the upstream part of the recess, with creation of spanwise vorticity and

recirculation. The flow reversal has a positive effect on the drag, causing nega-

tive skin friction in the first portion of the dimple. When the flow reattaches, a

strong impingement of the flow on the rear slope of the dimple produces a locally

high skin friction. Moreover, flow separation obviously causes a large increase of

pressure drag which could cancel out the positive effect of the skin friction drag.

To avoid separation and the consequent increase of pressure drag, more efficient
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shapes than the classical circular one are used. Shifting downstream the point of

maximum depth of the dimple alters the wall slopes, and affects the total drag by

changing pressure drag, whereas the friction drag tends to remain unchanged (Ng

et al., 2020). A (moderate) downstream shift minimizes the negative effects of

separation, and offers lower drag than the standard circular geometry. However,

the shift does not significantly affect the location of the reattachment point, except

for very large shifts, for which flow reversal may be entirely suppressed, but at the

cost of an intense impingement onto the steeper rear wall which negatively affects

the drag.

Non-circular dimples induce different drag changes (Ng et al., 2020). Flow

separation and flow reversal are not observed for elliptical, upstream-pointing and

diamond dimples, leading to a lesser drag compared to the smooth wall. This can

be attributed to the gentler upstream slope and to the longer, more streamwise-

aligned leading edge. Other studies which do not report flow reversal even for

the circular shape are Van Nesselrooij et al. (2016) and Spalart et al. (2019); they

measure a maximum drag reduction of 4% and 1.1%, respectively. Tay et al.

(2017) observe flow separation for circular dimples in the whole range of tested

flow conditions for 3/� = 0.05, but not for 3/� = 0.015; however, they measure

drag increase in all the tested cases.

7.4.2 Spanwise forcing

A more recent conjecture on the mechanisms by which dimples attain drag reduc-

tion has been put forward independently by the two groups at TU Delft (Van Nes-

selrooij et al., 2016) and NUS (Tay et al., 2015). Flow visualisations indicate that,

near the wall, streamlines coming in straight from a flat surface bend towards the

dimple centerline in the upstream portion of the recess, then bend away from it

in the downstream portion, thus creating a converging-diverging pattern (see for

example Tay et al. (2014)). Such meandering implies a spanwise velocity distri-

bution with changing sign across the dimple length (Van Nesselrooij et al., 2016;

Van Campenhout et al., 2018), and a consequent alternating streamwise vorticity

(Tay et al., 2017) since the spanwise velocity remains confined very near to the

wall. Van Nesselrooij et al. (2016) reports an average spanwise velocity of about

2–3% of the free-stream velocity for a boundary layer; Tay et al. (2017) measured

a maximum spanwise velocity in the range 3.5–8% of the centerline velocity in the

channel. Spalart et al. (2019) also detected in their DNS study a spanwise motion,

although weaker in intensity.

Figure 7.5 depicts an instantaneous spanwise velocity field over a circular

dimple, taken from one of our DNS simulations of a turbulent channel flow over

circular dimples (see Appendix 7.A for computational and discretization details

of our simulations). An alternating spanwise velocity pattern is clearly visible,
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Figure 7.5: Instantaneous spanwise velocity component F on a wall-parallel plane

at H+ = 1.3 from the flat part of the wall. Lengths and velocities are made

dimensionless with ℎ and Ub. The velocity field is computed by DNS for a circular

dimple, which actually yields drag increase.

supporting the idea that the dimple creates a velocity component in the spanwise

direction and bends the streamlines in a converging-diverging behaviour. The

instantaneous values are very large, up to 40% of the bulk velocity.

The alternate spanwise velocity resembles the spanwise-oscillating wall (Jung

et al., 1992), an active technique for the reduction of turbulent friction drag, where

the wall oscillates in time in the spanwise direction. In the oscillating-wall control,

the spanwise velocity component at the wall FF is prescribed as a function of time

as:

FF (C) = � sin

(
2c

)
C

)
, (7.2)

where � is the amplitude of the oscillation and ) is its period. The oscillating

wall produces very large reductions of friction drag, although at a significant

energy cost. Its detailed performance is determined by the control parameters �

and ) ; Quadrio & Ricco (2004), after a careful DNS study, identified the link

between the value of parameters and the obtained drag reduction. They found an

optimum value for the oscillating period of )+ ≈ 100, whereas drag reduction

monotonically improves with the amplitude (albeit the energy cost of the control

rises faster as �2). Dimples could be considered as a passive implementation

of the spanwise-oscillating wall. Van Campenhout et al. (2018) measured the

analogous parameters and defined a period ) and a maximum spanwise velocity

F<0G of a fluid particle, averaging over a selected region of the domain. In the

oscillating wall, it is known (Quadrio & Sibilla, 2000) that the time-averaged

mean spanwise velocity profile coincides with the laminar solution of the Stokes

second problem. Van Campenhout et al. (2018) assumes the same to hold for the

flow over dimples, thus deriving an analogous value for the amplitude. For their
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dimples with 3/� = 0.025, they found )+ = 135 and �+ = 0.74. Data from

Quadrio & Ricco (2004) do not contain information for such small amplitudes,

but an extrapolation leads to a drag reduction of about 4% for this combination

of parameters: a value that closely resembles the measurement of 3.8% from

Van Nesselrooij et al. (2016).

It should be noted, first, that a closer analogy should be made between this

interpretation of the dimples working mechanism and the spatially modulated

spanwise forcing introduced by Viotti et al. (2009). However, in that paper it

is shown how temporal and spatial oscillations can be easily converted one into

the other by using a suitable convective velocity scale at the wall. There are,

of course, obvious differences between data collected by Quadrio & Ricco for a

turbulent channel flow at '4g = 200 or '41 = 3173 and the dimple experiments

described in refs.Van Nesselrooij et al. (2016) and Van Campenhout et al. (2018)

for a boundary layer at '4X = 1226 (the limited information provided in these

references precludes computing the value of the friction Reynolds number).

Other important concepts to be aware of when trying to draw such a parallel

is that, with the oscillating wall, a minimum spanwise velocity is required for the

active technique to produce its effects: this threshold value �+
Cℎ

, that needs to be of

the order of the natural fluctuations of spanwise velocity in the near-wall region,

is quantified in Quadrio & Ricco (2004) as �+
Cℎ

= 1, i.e. similar or larger than

the dimples-induced spanwise velocity as determined in Van Campenhout et al.

(2018). Finally, and definitely most important, with a flat wall, even in presence of

spanwise forcing, one should be only concerned with friction drag, whereas with

dimples both viscous and pressure drag come into play.

7.5 How to set up a proper comparison?

Measuring (small) changes in aerodynamic drag is not trivial, especially in the

turbulent regime, regardless of the numerical or experimental nature of the analy-

sis. Studies employ a variety of approaches, where simulations and experiments

presents different approaches and different challenges.

Nowadays, whenever we need to compare the drag of a reference flat surface

with that of a rough surface, we are aware of the subtlety of the measurement,

of the importance to carefully define and control the Reynolds number of the

experiment, to discriminate between internal and external flows, and in general

to correctly define the equivalent ”flat wall” flow to compare with. In this final

Section, we will discuss some of these topics, trying to call the reader’s attention to

the logical steps that should be followed when designing a meaningful experimental

or numerical campaign.
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7.5.1 Measurement of the drag (difference)

All the available studies measure the drag difference Δ�A06 by separately mea-

suring the drag forces �A06B<>>Cℎ and �A0638<?;4B. As recently discussed in

Van Nesselrooij et al. (2022) in the context of the description of their novel experi-

mental setup devoted to such measurements, various approaches are available. The

simplest among them measure the local friction, and as such are unable to yield

satisfactory results for the drag, because the friction contribution to the drag force

over a dimpled surface depends on the position, and the same holds for the pressure

component. Hence, in an experiment one has to either resort to measuring the

drag force with a balance, a challenge by itself owing to the small forces involved,

or to deduce the force from the pressure drop across two sections, as done for

example by Gatti et al. (2015). With dimples, both approaches have been used.

Information about the shear stress was extracted from boundary layer momentum

loss in Lienhart et al. (2008). Direct measurement of the drag through a force

sensor was employed in Veldhuis & Vervoort (2009); Van Nesselrooij et al. (2016)

and Van Campenhout et al. (2018). This type of measurement may be affected

by uncertainty and accuracy problems: forces are small, and blurred by spurious

contributions, and the experimental setup must be designed and run with extreme

care.

In the case of numerical experiments, only the DNS approach provides the

required accuracy that is not embedded e.g. in RANS models, constructed and

tuned for canonical flows and hence incapable to deal with drag reduction in

a quantitatively accurate way. Once DNS is used, two equivalent options are

available to compute the drag in internal flows. One possibility is the calculation

of the (time-averaged value of) the friction drag and the pressure drag separately,

employing their definition as surface integrals of the relevant force component.

In alternative, the (time-averaged value of) the pressure drop between inlet and

outlet informs of the total dissipated power, and thus leads to the total drag. This

is feasible both in simulations and experiments. Tay (2011), Tay et al. (2015), Tay

et al. (2016), Tay et al. (2017), Tay & Lim (2017) and Tay & Lim (2018) in fact

compared the mean streamwise pressure gradients of both the two flat sections

upstream and downstream of the dimpled test section with the mean streamwise

pressure gradient within the test section, employing static pressure taps.

Experience accumulated in riblets research, however, tells us that the riblets

community obtained its first fully reliable dataset when D.Bechert in Berlin de-

veloped on purpose a test rig, the Berlin oil channel (Bechert et al., 1992), where

the measured quantity was directly the drag difference: targeting the quantity of

interest, i.e. the drag difference under identical flow conditions, instead of relying

on the difference between two separately measured drag forces was key to improve

accuracy and reliability.
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Figure 7.6: Drag change versus bulk Reynolds number '41.

7.5.2 The Reynolds number

Dynamic similarity is a well known concept in fluid mechanics, and enables

meaningful comparative tests provided the value of the Reynolds number is the

same. The true question is to understand which Reynolds number should be kept

the same. The Reynolds number is defined as the product of a velocity scale *

and a length scale !, divided by the kinematic viscosity a of the fluid. While e.g.

in an experiment the precise measurement of a might be difficult, its meaning is

unequivocal. Choosing * and !, instead, presents more than one option.

For the velocity scale *, dimples do not lead to specific issues. While for

a zero-pressure-gradient boundary layer over a flat plate the use of the external

velocity *∞ sounds reasonable, for internal flows like the plane channel flow one

has to choose among the bulk velocity *1, the centerline velocity *2 and the

friction velocity Dg. The choice of reference velocity has been already discussed

in the context of skin-friction drag reduction (Hasegawa et al., 2014): provided

drag reduction is not too large, and the flow is far enough from laminarity, choosing

* is not critical and should not be regarded as a major obstacle.

For the length scale !, instead, the situation is different, as dimples themselves

contain one or more length scales that could be used in the definition of '4. For

example, to avoid the ambiguity implied by the definition of the origin for the

wall-normal coordinate, Van Nesselrooij et al. (2016) and Van Campenhout et al.

(2018) for their boundary layer experiments decided to define a Reynolds number

based on the diameter of their circular dimple. Naturally, achieving the same '4

based on flow velocity and dimple diameter is not enough to guarantee dynamic

similarity in two different flows.
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Figure 7.7: Present simulations, circular dimples at various sizes and Reynolds

numbers with 2690 ≤ '41 ≤ 10450. Left: drag changes vs dimple depth in inner

units. Right: drag changes vs dimple depth in outer units.

By isolating all the data sets for which a value for the bulk Reynolds number

'41 is given (either explicitly or deduced from equivalent information), and putting

together the reported drag changes, one obtains the picture reported in figure 7.6.

Besides showing both drag reduction and drag increase, drag changes exhibit

every possible trend with '41: increasing, decreasing, constant or nearly constant,

and non-monotonic with either a maximum or a minimum at intermediate '41.

Without excluding additional possible causes, this can be attributed to the host

of parameters that are not kept identical across the dataset, besides the Reynolds

number, and stresses once more the importance of experiments where only one

parameter is changed at a time.

In a turbulent wall flow, the Reynolds number is an essential ingredient to define

the proper scaling of important quantities, say the total drag change. If for example

only the dimple depth 3 is varied, its value can be set in wall units (3+) or in outer

units (3/ℎ), and, if the Reynolds number is also changed, various combinations

for 3+ and 3/ℎ become possible. It is the flow physics which dictates what scaling

works best at collapsing results. We have performed two sets of DNS simulations

(see §7.A for details) to understand the scaling of drag changes induced by circular

dimples when only their dimensions are changed but its shape is preserved. We

have fixed the values of 3/� and A/', the value of the depth 3 (either in inner

3/ℎ or outer 3+ units) has been varied, and all the other parameters did vary

accordingly, as prescribed by equation (7.1).

Figure 7.7 plots the results and shows that drag changes (in this specific case,

drag increases) appear to follow an outer scaling: all the data points collapse onto

a single curve when drag changes are plotted against 3/ℎ. This is an expected

result, as these dimples are rather deep, and thus somehow akin to a large-scale 3-
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Figure 7.8: A dimpled wall and two different, equivalent flat channels. The

red/blue lines indicate the dimple profile. Left: the channel height 2ℎ goes from

the top wall to the dimple tip; right: the channel height 2ℎ goes from the top wall

to the dimple lowest point.

roughness (Jiménez, 2004), where the large cavities basically destroy the near-wall

layer, i.e the only region where inner scaling would make sense.

7.5.3 The equivalent flat wall

The comparison between flat and dimpled wall can be set up for internal or external

flows. The latter, which may be less convenient in numerical simulations owing to

their non-parallel nature, present a sensible advantage in this context, since drag

and its related changes have simply to be computed for the same plate immersed in

the same external velocity, and a reduced drag force is unequivocally advantageous.

For internal flows, however, the non-planar dimpled wall brings up the problem of

properly defining the location of the equivalent flat wall and, in general, of setting

up the comparison properly.

As shown schematically in fig.7.8, for a channel flow, for example, a certain

definition of the reference flat wall impacts the reference length ℎ and, eventually,

changes the value of the Reynolds number of the flow to compare with. The

reference wall might be placed on the flat surface among dimples, on the position

of lowest elevation in the cavity, on the average height of the dimpled surface, etc.,

leading to different flow volumes.

To properly account for this effect, let us start from the usual definition of the

bulk Reynolds number '41 = *1ℎ/a, where ℎ is a reference length (e.g. half the

witdh of the flat channel) and a is the kinematic viscosity. Once the cross-sectional

area �(G) of the dimpled channel changes along the streamwise direction, the bulk

velocity *1, defined as an average velocity across the section, becomes itself a
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streamwise-dependent function:

*1 (G) =
1

�(G)

∫

�(G)
D(x)d�. (7.3)

We thus replace this definition with a volume average, and define a new bulk

velocity Ub as an average over the volume to obtain a streamwise-independent

quantity:

Ub =
1

+

∫

+

D(x)d+. (7.4)

Note that the two quantities *1 and Ub coincide for a flat wall. A comparison at

same flow rate requires that the volumetric flow rate

& =

∫

�(G)
D(x)d� =

1

!G

∫ !G

0

∫

�(G)
D(x)d�dG =

1

!G

∫

+

D(x)3+ =
+

!G

Ub (7.5)

is the same for the flat and dimpled channels, provided the streamwise length !G of

the channel is the same. This implies that+ 5 Ub,f = +3Ub,d, where the subscripts · 5
and ·3 refer to quantities measured in the flat and dimpled channel respectively. In

the end, the bulk velocity in the dimpled channel (and the bulk Reynolds number)

need to be changed by multiplication of a factor given by the volume ratio:

Ub,d =
+ 5

+3

Ub,f; '41,3 =
+ 5

+3

'41, 5 . (7.6)

The numerical value of '41 is thus affected by the choice of the equivalent flat

channel. For example, the equivalent flat channel might go from the top wall to

the lowest point of the dimple, and '41,3 > '41, 5 . In contrast, if the equivalent

channel goes from the top wall to the tip of the dimple, '41,3 < '41, 5 . The two

bulk Reynolds numbers end up being the same only when the volume is preserved

in the reference and dimpled channels (i.e. the equivalent flat channel is located

at the average dimple height).

If the comparison is carried out by DNS, one conveniently measures the time-

averaged value 5 of the spatially uniform volume force 5 required to maintain a

constant flow rate at each time step. This volume force is interpreted as 5 = Δ%/!G ,

where Δ% is the pressure drop along the channel. The proper measure of the drag

change is:

Δ�A06 =
+3 53 −+ 5 5 5

+ 5 5 5
=
+3/+ 5 53 − 5 5

5 5
; (7.7)

Therefore, the change of the fluid volume has to been considered also when

measuring the drag change in the controlled case.
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Figure 7.9: Drag changes, measured by DNS, for circular dimples with 3/ℎ = 0.25

at '41 ≈ 2800. Red/blue bars express drag changes when the equivalent channel

defines 2ℎ as the distance between the top wall and the top/bottom of the dimple

(color code is the same of figure 7.8). Case A: comparison at the same '41,

Δ�A06 computed without accounting for the volume ratio. Case B: as case A, but

Δ�A06 is corrected with the volume ratio. Cases C and D are like cases A and B,

but the comparison is made at the same flow rate.
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Figure 7.9 exemplifies the consequences of neglecting these considerations.

These are certainly exaggerated by the choice of working with a dimple config-

uration that causes a large change of drag. However, the relative differences are

major; neglecting such considerations would most certainly hinder the true ability

of dimples to alter skin-friction drag.

7.5.4 The drag reduction metrics

In closing, we mention a final methodological issue, that affects drag reduction

measurements for dimples, riblets, and roughness at large: the proper metrics to

express it. It is customary to express drag reduction as (percentage) changes in the

skin-friction coefficient at a given '4; unfortunately, the coefficient itself contains

a dependence on the Reynolds number already for the flat wall case, thus making

it impossible to rely on percentage changes for a robust assessment of the drag

change properties of a given surface. The complete information would be the

(Δ�A06, '4) pair. In alternative, the proper metric for expressing drag reduction

is the vertical shift of the logarithmic portion of the mean streamwise velocity

profile expressed in viscous units.

This is a known concept for roughness (Jiménez, 2004) as well as riblets

(Luchini, 1996; Spalart & McLean, 2011), and also extends to some active flow

control strategies (Gatti & Quadrio, 2016). As long as the direct effect of the

roughness remains confined within the buffer layer of the turbulent flow, it can

be translated into an upward shift Δ*+ of the logarithmic velocity profile in the

law of the wall: a positive Δ*+ corresponds to drag reduction, and a negative

Δ*+ implies drag increase, as for the conventional :-type roughness. Part of

the trends seen in figure 7.6 for drag reduction data are due to Reynolds effects;

properly removing them via analytical relations is possible, as done in Gatti &

Quadrio (2016) for active spanwise forcing, and would contribute to clarifying the

situation, by exposing some remaining ”puzzling” trends with '4 (to cite words

used in Spalart et al. (2019)).

7.6 Conclusions

In this review paper we have provided a brief and up-to-date description of what we

know and what we don’t about the potential of dimples for turbulent skin-friction

drag reduction. While we can’t obviously offer an answer to the still-standing

question whether or not dimples are a suitable technique to reduce turbulent skin-

friction drag, it is our hope that this comprehensive overview will at least help

the newcomer to frame the problem, quickly identify the key references, and get a

glimpse at the complexity of the topic.
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While reviewing the state of the art, we have also mentioned some methodolog-

ical issues that bear a critical importance when attempting to measure drag changes

by dimples. Leveraging concepts and procedures (and perhaps facilities altogether)

developed over the years for riblets might yield data that are reliable enough to

begin understanding the physics behind dimple drag reduction, a necessary and

preliminary step to improve their performance.

7.A Computational details

In this review we have also presented results from DNS simulations carried out on

purpose for the present work. They concern a turbulent plane channel flow, with

dimples placed on one wall only. The employed parallel DNS code was intro-

duced by (Luchini, 2016), and solves the incompressible Navier–Stokes equations

in primitive variables on a staggered Cartesian grid. Space discretization is based

on second-order finite differences, and temporal integration uses a fractional time

stepping method based on a third-order Runge–Kutta scheme. The Poisson equa-

tion for the pressure is solved by an iterative successive over-relaxation algorithm.

An implicit immersed-boundary method, implemented in staggered variables, con-

tinuous with respect to boundary crossing and numerically stable at all distances

from the boundary (Luchini, 2013, 2016), describes the geometry of the non-

planar wall. Periodic boundary conditions are enforced in both the streamwise

and spanwise directions, while no slip and no penetration boundary conditions are

enforced at the walls.

The size of the computational domain (and therefore the number of dimples

considered) is chosen to ensure that it is always larger than the minimal flow units

needed to sustain the near-wall turbulence cycle (Jiménez & Moin, 1991). The

smallest domain in our simulations has size !G = 4
√

3ℎ and !I = 4ℎ in external

units and !+
G = 1385 and !+

I = 800 in viscous units. A uniform distribution of

points is used in both the streamwise and spanwise directions, with the selected

grid spacing ensuring that XG+ ⪅ 10 and XI+ ⪅ 5 for all the considered cases. In

the wall-normal direction a non-uniform distribution is used to properly resolve

the dimples and the near wall region. The grid spacing is indeed constant from

the dimple bottom to the dimple tip, from where a hyperbolic tangent distribution

is used. The number of points in the wall-normal direction is chosen to ensure

that at the walls XH+ < 1 for all cases. The number of points for the simulations

in figure 7.9, carried out at about '41 = 2800 (or '4g = 180) is #G = 260,

#H = 260 and #I = 260. For the simulations in figure 7.7, instead, the number of

points increases up to #G = 300, #H = 334 and #I = 300 to deal with the higher

Reynolds numbers, since in this dataset the Reynolds number varies, in the range

2690 ≤ '41 ≤ 10450 (or 160 ≤ '4g ≤ 550).
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Drag Reduction by Riblets on a

Commercial UAV

Abstract

Riblets are micro-grooves capable of decreasing skin-friction drag, but recent

work suggests that additional benefits are possible for other components of the

aerodynamic drag. The effect of riblets on a fixed-wing, low-speed Unmanned

Aerial Vehicle (UAV) on the total aerodynamic drag are assessed here for the

first time by means of RANS simulations. Since the microscopic scale of riblets

precludes their direct representation in the geometric model of the UAV, we model

riblets via a homogenized boundary condition applied on the smooth wall. The

boundary condition consists in a suitably tuned partial slip, which assumes riblets

to be locally aligned with the flow velocity, and to possess optimal size. Several

configurations of riblets coverage are considered to extract the potential for drag

reduction of different parts of the aircraft surface. Installing riblets with optimal

size over the complete surface of the UAV leads to a reduction of 3% for the drag

coefficient of the aircraft. Besides friction reduction, analysis shows a significant

additional form drag reduction localized on the wing. By installing riblets only

on the upper surface of the wing, total drag reduction remains at 1.7%, with a

surface coverage that is only 29%, thus yielding a significant improvement in the

cost-benefit ratio.

8.1 Introduction

The growing concern over energy efficiency and environmental pollution is fur-

thering the appeal of transport vehicles, aircraft in particular, producing less aero-

dynamic drag. One of the most interesting passive drag reduction techniques is

the use of riblets, i.e. streamwise-aligned micro-grooves that are known to reduce
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turbulent skin-friction drag (see for example the review paper of Garcı́a-Mayoral

& Jiménez (2011) and the many references therein), and are approaching usability

in aeronautics.

Early studies, spurred by the oil crisis of the ’70, were performed at NASA

(Walsh & Weinstein, 1979), and important experiments were carried out in the

Berlin oil tunnel by Bechert and coworkers (Bechert et al., 1997; Bechert & Barten-

werfer, 1989). They evidenced the crucial importance of the riblet shape, their

size and – most importantly – the sharpness of their tip; optimal configurations

empirically determined at the time yield up to 6-8% and possibly higher reductions

of skin-friction for low-'4 flat plate boundary layers studied in laboratory condi-

tions. The theoretical understanding of the riblets working mechanism is due to

Luchini et al. (1991), who quantified the different resistance offered by a grooved

wall to the parallel flow and the cross-flow. He also explained (Luchini, 1996)

how skin-friction drag reduction is equivalent to an upward shift of the logarithmic

portion of the turbulent velocity profile. This important argument, later taken up

again by Spalart & McLean (2011), implies that it is incorrect to describe riblets

performance simply as a percentage change of the skin-friction coefficient, as this

simplistic figure depends on the Reynolds number of the flow. However, the value

of the upward shift, once measured in viscous units, is Reynolds-independent and

should be used to characterize the ability of riblets (and other techniques) to re-

duce turbulent friction; in fact, recently this concept has been extended (Gatti &

Quadrio, 2016) to other strategies of skin-friction reduction.

To capture in a numerical simulation the complex physics of the interaction

between turbulence and a solid wall covered by riblets, and to properly measure

friction reduction, direct numerical simulations (DNS) or wall-resolved large eddy

simulations (LES) are required. Such computations are unfeasible for complex

aeronautical configurations at high Reynolds numbers, where numerical simula-

tions based on the Reynolds-Averaged Navier–Stokes equations (RANS) equipped

with a turbulence model are the standard approach. Owing to their microscopic

dimensions, however, riblets on an aircraft cannot be included directly in a RANS

simulation. Even if they could, it is unclear to what extent a standard RANS model

would be able to represent the physics of drag reduction.

Bridging the gap between drag reduction by riblets in turbulent flows and the

need to incorporate it into RANS-type flow solvers has led to the development

of computational models for riblets. Aupoix et al. (2012) modified the Spalart–

Allmaras turbulence model to account for riblets by using a smooth-wall geometry.

Along similar lines, Mele et al. (2016) introduced a modified boundary condition

for the : − l turbulence model, and Koepplin et al. (2017) extended the Aupoix

model to describe riblets locally misaligned with the mean flow, and to account

for mean pressure gradients.

How riblets affect a turbulent boundary layer with non-zero pressure gradient
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is a debated subject (Nieuwstadt et al., 1993; Debisschop & Nieuwstadt, 1996;

Boomsma & Sotiropoulos, 2015). In 2018, Mele & Tognaccini (2018) developed

a new model based on a slip-length concept, whose results provided an interesting

view on the riblets drag reduction mechanism in presence of pressure gradients.

Besides friction reduction, they found that riblets alter the pressure distribution,

and may provide an additional pressure drag reduction. This indirect effect was

also observed for other friction reduction devices: Banchetti et al. (2020) used

spanwise forcing to reduce turbulent friction on a wall with a bump, and found

in their incompressible DNS study that a reduced friction drag is accompanied

by a reduced pressure drag. Similarly, Quadrio et al. (2022) studied by DNS

the compressible flow over a wing, and observed how spanwise forcing affects the

shock wave to yield large reduction of the total drag of the aircraft. The availability

of a boundary condition to faithfully simulate in a RANS the presence of riblets on

the surface of a solid body of complex shape is thus becoming extremely attractive.

The standard no-slip condition at a solid wall can be extended to a partial-

slip one, which is useful to describe specific physical situations (e.g. flow over

superhydrophobic surfaces). Riblets are amenable to such a description; their slip

length is related to the protrusion height concept (Bechert et al., 1997; Bechert

& Bartenwerfer, 1989; Luchini et al., 1991). In particular, Luchini et al. (1991)

defined the longitudinal and transverse protrusion heights, which identify the

virtual origin for the streamwise and spanwise velocity profiles, and realized that

the only meaningful non-arbitrary quantity is their difference. Later, he also

introduced (Luchini, 2013) a linearized boundary condition for generic roughness

and the protrusion heights for various roughness types to be adopted in DNS.

He also demonstrated that the difference Δℎ between the two riblets protrusion

heights corresponds to the slip length _. Gómez-de-Segura et al. (2018) later

discussed how the slip length _+ expressed in viscous units is equivalent to the

upward displacement Δ*+ of the mean velocity profile in the logarithmic region;

here _+ = _Dg/a where a is the kinematic viscosity, Dg =
√
gF/d is the friction

velocity, d is the density and gF is the (local) shear stress.

The value of the slip length _ depends upon shape and size of the riblets cross-

section. Bechert & Bartenwerfer (1989) found that the largest drag reduction for

riblets of different shapes is obtained when B+, the spanwise period of the riblets, is

in the range 10–20. Garcı́a-Mayoral & Jiménez (2011) tested alternative scalings

to find whether drag reduction can be linked to a single geometric parameter

that captures the importance of riblet spacing and their cross-sectional shape as

well. Data for different riblets were found to best collapse when plotted against

a dimensionless length scale ;+6 derived from the cross-sectional area �6 of the

groove, and defined as ;+6 = (�+
6 )1/2. For riblets of various geometries, best

performance was consistently found at ;+6 ≈ 10.5. For optimal triangular riblets,
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;+6 = 10.5 corresponds to a unitary shiftΔ*+ which coincides with the one reported

in previous studies (Walsh, 1980; Mele & Tognaccini, 2018; Mele et al., 2020).

Recently, Zhang et al. (2020) have been able to compute the slip length for other

riblets shapes, i.e. with trapezoidal and blade cross-section.

The goal of this paper is to present the implementation of a slip-length boundary

condition for riblets, and to use it in a set of RANS simulations to assess the drag

reduction capabilities of riblets when installed on a fixed-wing UAV, for which

endurance is of capital importance. Indeed, over the years riblets have been studied

either at low speed over plane walls, or in transonic flow conditions for aeronautical

applications, especially for medium- or long-range commercial passenger aircraft.

Such studies, carried out both numerically (Mele et al., 2016; Catalano et al.,

2020) and experimentally (Walsh et al., 1989; McLean et al., 1987; Szodruch,

1991; Kurita et al., 2018, 2020), provide interesting results for aircraft operating

in a range of chord-based Reynolds numbers up to '4∞ = 3 × 107. In contrast,

the low-speed aircraft considered in the present work has a cruise speed of 22 </B
with '4∞ = 5 × 105.

The paper describes the implementation into an incompressible CFD solver of a

slip-length wall boundary condition, similar to that described in Mele et al. (2020),

to compute the drag reduction achievable with riblets of optimal dimensions. The

computational model is validated against configurations of increasing complexity,

and eventually applied to a realistic use case. We also consider selective deploy-

ment of riblets to different parts of the aircraft, to show that drag reduction is

not trivially proportional to the surface area covered by riblets. The structure of

the work is as follows. After this introduction, §8.2 describes our model and the

computational setup; §8.3 contains results of preliminary simulations intended for

validation; the actual results are described in §8.4, and §8.5 contains a concluding

discussion.

8.2 Methods

8.2.1 Slip length boundary condition

Both theory and experiments (Bechert & Bartenwerfer, 1989; Luchini et al., 1991;

Bechert et al., 1997) suggest that the physics involved in drag reduction by riblets

acts through a local mechanism. Indeed, since riblets are small compared to the

turbulent structures of the near-wall cycle, far enough from the wall the turbulent

flow perceives the presence of riblets only as a homogeneous effect: the upward

shift Δ*+ > 0 of the logarithmic portion of the mean velocity profile:

*+
=

1

^
log(H+) + � + Δ*+ (8.1)
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where ^ = 0.392 is the von Kármán constant, and � = 4.48 is the near wall

intercept for smooth surfaces (these constants are set after Luchini (2017), but

their numerical value does not affect the outcome of the study). The dimensionless

vertical shift Δ*+ equals the virtual shift in wall units of the non-slipping wall

(Bechert & Bartenwerfer, 1989), i.e. the slip length _+. We exploit this shift to

account for the presence of riblets via a slip boundary condition, which linearly

relates the wall value of the longitudinal component of the velocityDF (the subscript

F indicates quantities evaluated at the wall) to the wall shear rate (mD/mH)F through

the slip length _:

DF = _

(
mD

mH

)

F

, (8.2)

thus effectively recovering the no-slip condition when _ = 0. The discrete counter-

part of equation (8.2), where the derivative is approximated with a finite difference,

reads:

DF = _
D1 − DF

3
, (8.3)

where D1 is the longitudinal velocity at the first inner mesh point, and 3 is its

distance from the wall. Hence, the velocity at the wall is:

DF = D1
_

_ + 3
. (8.4)

In this work, we always set the shift of the mean velocity profile at Δ*+ = 1,

which corresponds (Walsh, 1980; Mele & Tognaccini, 2018; Mele et al., 2020)

to the best-performing riblets with triangular cross-section. These riblets have a

square root of the cross-sectional area of ;+6 = 10.5, and provide a drag reduction

of 7% when measured in the lab under controlled conditions and at low '4. Using

Δ*+ = 1 implies setting_+ = 1, whence the physical size of the riblets varies along

the body with the friction velocity of the flow. In other words, riblets are assumed

to be locally optimal everywhere, and the corresponding physical dimensions are

computed as a result of the simulation.

It is worth noticing that the present boundary condition can be used to simulate,

besides riblets, any other drag reduction method whose effect reduces to a shift

in the mean velocity profile. To this purpose, only the slip length value must be

adjusted.

8.2.2 Computational setup

The boundary condition described above has been implemented in OpenFOAM

(Weller et al., 1998), an open-source finite-volumes CFD library widely used in

engineering and science, both in commercial and academic studies. Before con-

sidering the UAV, the boundary condition has been validated on flow cases of
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increasing complexity where at least partial information is available for compari-

son: a flat plate and a NACA 0012 airfoil.

The selected flow solver is SimpleFOAM, which uses the SIMPLE (Semi-

Implicit Method for Pressure Linked Equations) algorithm to solve the incom-

pressible steady RANS equations. The : − l SST turbulence model (Menter,

1994) has been adopted in this work, where standard values for the coefficients

and no transition model have been used. For all the simulations we adopt a

freestream ratio between eddy and laminar viscosity equal to 0.001, together with

free-stream turbulence intensity of )*∞ = 5%, with the only exception of the

flat plate case, for which )*∞ = 0.5%. The spatial discretization used for the

divergence, gradient and Laplacian operators is second-order accurate. All the

results have been checked to be fully converged in integral quantities (drag and

lift) and in the residuals, by ensuring that the !1 norm reduced to 10−8 times the

initial value of the residual.

The study considers three geometries of increasing complexity. The first case

is a two-dimensional flat plate boundary layer of length ! = 2 < is considered,

where '4 = *∞!/a = 106. With air as working fluid, and a free-stream velocity

of *∞ = 5 </B, the computational domain is rectangular and extends for 2.3 <

in length and 1 < in height. The flat plate sits along the lower boundary of the

computational domain. The domain extends 0.3 < upstream of the flat plate, and

a symmetry boundary condition is used to simulate a free stream approaching the

plate in this region. A suitable volume mesh is designed with the BlockMesh utility

available in OpenFoam, and checked to yield mesh-independent results with a mesh

sensitivity study. The final mesh, which provides a local friction coefficient that

does not vary with further refinements, consists of 125000 hexahedral elements,

with 250 cells in the wall-normal direction and 500 cells in the wall-parallel

direction, of which 400 are distributed over the flat plate. Non-uniform grid

spacing is adopted to obtain more resolution in the near-wall and in the leading-

edge regions, to better capture the boundary layer development. Transition is

adequately described, and the distance H1 of the first cell from the wall is always

below unity when expressed in wall units, i.e. H+
1
< 1.

The second case is a two-dimensional NACA 0012 airfoil, at a chord-based

Reynolds number of '4∞ = 106. The airfoil chord 2 is taken of unitary length at

1 <, and the far-field boundary is located approximately 502 away from the airfoil

surface. A mesh sensitivity study is carried out on a number of C-type grids,

by observing changes in the drag coefficient after successive mesh refinements.

The chosen grid consists of 450 hexahedral cells in the chord-normal and 725 in

the chord-tangent directions, and provides a repeatable transition location. The

mesh spacing near the airfoil is sufficient to ensure H+ < 1 over the airfoil surface.

Stretching of the grid is used to improve resolution in the wake region. To further

validate the mesh accuracy, the solution has been checked also as a function of
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Figure 8.1: CAD model of the simplified UAV.

the angle of attack U. Hence, a number of preliminary runs at various values of

U have been performed, without riblets, by replicating the flow conditions used in

Mele & Tognaccini (2012). The outcome in terms of lift and drag coefficients are

in very good agreement with the results reported by Mele & Tognaccini (2012) as

well as with the experimental measurements described in Ladson (1988).

The final and most important case is the UAV, with total length of 2.4 < and

wing span of 3.6 <; its (simplified) geometry is described with some detail in

§8.2.3. Simulations are carried out first on the isolated UAV wing, to understand

to what extent the indirect beneficial effects of riblets noticed for the NACA 0012

carry forward to three dimensions, and the complete UAV is then considered. In

both cases the computational domain is made by a hemisphere, with a radius of

50< that surrounds the wing half-span and the UAV half-span mounted on the G−I
plane, respectively. Symmetry is used to reduce computational cost. In this case,

a commercial mesher is used to create unstructured meshes made by hexahedral

and tetrahedral cells, with refinements boxes to capture the flow development near

the body and in the wake. The grids possess 24 additional layers of hexahedral and

tetrahedral elements aligned to the boundary surface, to guarantee that H+
1
< 1, thus

satisfying the requirements for an accurate computation inside the boundary layer

within a low-'4 formulation that does not resort to wall functions or other models

of the near-wall region. A suitable mesh density is determined by observing

changes in the drag coefficient, and robustness in predicting transition. The final

mesh is designed with 4 millions elements for the wing, and by 9.6 million elements

for the full UAV.

8.2.3 The UAV model

The considered UAV belongs to the family of Mini and Light Tactical UAV, with

a MTOW (maximum take-off weight) ranging from 25 to 50 :6. The UAVs of

this class are designed to integrate multiple payloads with different capabilities,

e.g. EO/IR sensors, multi/hyperspectral cameras, LiDAR, transmitters, radars.
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Flexibility is ensured by the fuselage modularity and by the possibility to change

the onboard systems configuration to achieve an optimized aircraft balance.

In this work, we consider a simplified geometric model of the UAV, as plotted in

figure 8.1, where small-scale geometric details and the propeller are omitted. The

motivation is two-fold: such a simplified geometry, while remaining representative

of the actual aircraft and retaining its essential qualitative features and dimensional

characteristics, is free from intellectual property constraints; moreover, the lack of

small-scale details allows some savings of computational effort. The simplified

UAV is 2.4 < long and it has a span 1 = 3.6 <. It has a swept wing with a

chord length of 0.3 < at the root with winglets at the tips of 0.22 < and dihedral

angle of 21.5◦. The considered reference surface area is ( = 1 <2. The UAV is

characterized by a reverse V tail made by a symmetric four digits NACA airfoil

with a span of 1.05 < and a chord of 0.23 <. The tail is directly connected

to the lower surface of the wing by two booms of 1.05 < with a circular cross-

sectional area of radius 0.015 <. The fuselage is 1.41 < long and its cross-section

originates from a rectangular shape, 0.29 < high and 0.23 < wide, with rounded

edges. The drone cruise speed is 22 </B, leading to a chord-based Reynolds

number '4∞ = 5×105. The UAV weight of 25 :6 and the cruise speed of 22 </B,
together with the geometrical information mentioned above, imply a lift coefficient

in cruise of �! = 0.8322.

8.2.4 Dimensionless force coefficients

In this paper, the aerodynamic coefficients, i.e. the ratio of a force component

and the reference quantity 1/2d*2
∞, are the lift coefficient �! and the total drag

coefficient �� . The latter can be decomposed into friction ��, 5 and pressure

��,? drag coefficients; the former describes the resistance to the relative motion

between the fluid and the solid boundary due to viscous effects, the latter quantifies

the net drag force arising from pressure variation around the body. When a wing of

finite span is considered, the drag coefficient can alternatively be decomposed into

induced and profile drag coefficients. The former, defined as ��,8 = �2
!
/(c12/()

describes the additional drag due the three dimensional effects cause by the lift

and the latter, defined as ��,?A = �� − ��,8 describes the same quantity due to

all the other types of drag except lift-induced one. Profile drag can further be

decomposed in friction drag ��, 5 and form drag ��, 5 >A< = ��,?A −��, 5 . Lastly,

the local skin-friction and pressure coefficients are defined as � 5 = 2gF/d*2
∞

and �? = 2?/d*2
∞ (in the coefficient subscripts, capital letters indicate global

quantities and small letters indicate local quantities).

Changes between clean and riblets configurations are computed as Δ�G =

�G,0 − �G where the subscript 0 refers to the clean configuration and G is the

quantity of interest. The drag reduction rate, i.e. the change in drag normalised
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Figure 8.2: Zero-pressure-gradient boundary layer over a flat plate. Left: evolution

of the skin-friction coefficient with/without riblets, and comparison with data from

Mele & Tognaccini (2018). Right: change along the plate of the slip length (left

H axis) and riblets height (right H axis), in dimensional units.

with the drag of the clean configuration is defined as Δ��/��,0.

8.3 Validation

The boundary condition used to model riblets is first tested on simple two-

dimensional flows, where available information allows a quantitative check of

the outcome.

8.3.1 Flat plate

The first application example is the zero pressure gradient boundary layer devel-

oping over a flat plate. Optimal V-shape riblets, with ;+6 = 10.5 corresponding to

ℎ+ =
√

2;+6 , are placed everywhere along the plate, immersed in a uniform external

flow.

Figure 8.2 (left) shows how riblets influence the streamwise evolution of the

friction coefficient, demonstrating the correct amount of drag reduction. On the

entire plate, the integrated percentage drag reduction is Δ��/��,0 = 6.5%, in

agreement with existing experimental (Bechert et al., 1997) information. Local

changes of � 5 , descending from the imposed slip, are consistent with those by

Mele & Tognaccini (2018). The evolution of the physical dimensions of the

grooves is shown in figure 8.2 (right), together with the analogous evolution of the

slip length. Once the boundary layer becomes fully turbulent, i.e. for '4G > 105,

changes of the slip length with the streamwise coordinate are rather mild: there is a

small increase with '4G to reach the largest value of 50 microns at the downstream
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Figure 8.3: Mean velocity profile with/without riblets over the flat plate, at '4G =

5 × 105 (left) and '4G = 9 × 105 (right). The riblets profile consistently shows the

upward shift of Δ*+ = 1 on the logarithmic region.

end of the plate. By construction, as explained earlier in §8.2, this corresponds

to one viscous length. At the plate end, the predicted size of optimal riblets is

approximately ℎ = 0.8 <<.

The correctness of the model is directly checked in figure 8.3, which provides

graphical evidence that, regardless of the streamwise location, the upward shift of

the mean velocity profile is of unitary value, confirming that Δ*+ = _+ = 1.

8.3.2 NACA 0012 airfoil

Testing progresses to consider the two-dimensional flow around a NACA 0012

airfoil; this test case remains highly simplified, but brings in pressure drag, and thus

lends itself to studying the effect of riblets on this non-frictional drag component.

Unfortunately, little information is available for validation.

Once again, the airfoil is assumed to be fully covered by riblets of locally

optimal size, i.e. ensuring ;+6 = 10.5 everywhere. Figure 8.4 shows the mean

velocity profile on the upper surface of the airfoil at G/2 = 0.5, for two different

angles of attack, namely 0 and 4 degrees. The expected unitary upward shift Δ*+

due to the grooves is consistently observed. At U = 4◦, experimental data are

available from Sundaram et al. (1996), and the present results appear to agree with

them. However, the agreement is less satisfactory at other incidences. It must be

mentioned that experiments were carried out with riblets of constant physical size,

with a size that is about 10 viscous lengths. The percentage total drag reduction

at U = 0◦ is measured to be 7%, which is in agreement with the experimental

data from Sundaram et al. (1996); Viswanath (2002) as well as with CFD results

obtained by Mele & Tognaccini (2012). Our data indicate only a mild variation of

drag reduction with angle of attack, while Viswanath (2002) mentions an increase
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Figure 8.4: Mean velocity profiles (top) and skin-friction coefficient (bottom) for

the NACA0012 airfoil, at an incidence of U = 0◦ (left) and U = 4◦ (right). The

top row shows the mean profile over the suction side in law-of-the-wall form at

G/2 = 0.5, and compares with data from Sundaram et al. (1996). The bottom row

plots the evolution of the friction coefficient along the chord, and compares with

data from Mele & Tognaccini (2012), represented with symbols.
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Figure 8.5: Pressure coefficient on the pressure and suction sides of the NACA0012

airfoil at U = 4◦ for the clean case (black line), and difference with the riblets case

(red dashed line).

beyond 16% at U = 0◦ and a sudden drop to zero at U = 10◦. The lower part of

figure 8.4 compares the evolution of the skin-friction coefficient along the airfoil,

and shows a very good agreement with the same quantity taken from Mele &

Tognaccini (2012) (except for the precise location of the transition region).

The pressure coefficient �? and the difference Δ�? = �?,0 − �? at U = 4◦

are shown in figure 8.5. Changes are visible, to attest once again the effect of

riblets on the pressure distribution along the airfoil. Changes in the expansion

peak at the leading edge and on the pressure recovery at the trailing edge due to

riblets provide a significant additional contribution to drag reduction; form drag

is reduced by 7.7%, adding to the friction reduction of 6.7%. These results agree

with several findings by Mele & Tognaccini (2018), who interpreted the reduced

form drag by observing that riblets change the flow field by making it more similar

to the inviscid solution, where the slip length is infinite, and form drag is exactly

zero. Moreover, the altered pressure distribution leads to a larger lift, at all tested

incidences; this effect, that will be discussed later when discussing the full aircraft,

is important for the reduction of the total drag: since the aircraft in cruise always

needs the same lift, an increased aerodynamic efficiency implies a reduced angle

of attack in cruise, thus bringing in an additional contribution to drag reduction.
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Figure 8.6: Riblets drag reduction vs angle of attack for the UAV wing.

8.4 Results

8.4.1 The isolated UAV wing

The UAV wing is considered first, to focus on the presence of indirect drag

reduction effects in three dimensions, but without the geometrical complexities

implied by the interaction between wing and fuselage. The UAV finite isolated

wing is considered at the cruise flight condition of '4∞ = 5 × 105. As always,

locally optimal riblets with ;+6 = 10.5 are placed over the entire wing surface.

Figure 8.6 shows how drag reduction induced by riblets changes with the angle

of attack. The friction component of the total drag reduction is nearly constant at

6.3%, whereas pressure and total drag change with U. At U = 0◦ the total drag

reduction rate is 3.7%, and diminishes at larger incidences. Clearly the diminished

total drag reduction goes hand in hand with the diminished pressure drag reduction.

As already observed for the NACA 0012 airfoil in §8.3.2, riblets tend to modify

the pressure distribution in such a way that lift is increased; this is confirmed here

for the UAV wing. This phenomenon causes an increase of the lift-induced drag,

that is not seen in two dimensions, and should not be regarded as a negative effect

of riblets, since the aircraft has to achieve the same lift, and increased aerodynamic

efficiency is always beneficial.

In fact, riblets performance should be measured by adjusting U in such a way

that the lift coefficient is unchanged. In Table 8.1 we compare the clean case

and the riblets case at the same angle of attack, and at the same lift coefficient as

well. Two configurations are considered, at a nominal angle of attack of U = 0◦

and U = 4◦. Total drag is split into friction ��, 5 and pressure ��,? drag, as well

as induced ��,8 and profile ��,?A drag. As expected, comparing at the same �!

provides larger drag reduction than comparing at the same U. At the same angle
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Clean Riblets Clean Riblets

U = 0◦ U = 0◦ U = −0.0626◦ U = 4◦ U = 4◦ U = 3.885◦

�! 0.4996 0.5055 (+1.2%) 0.4996 (-) 0.8719 0.8828 (+1.8%) 0.8719 (-)

�� 0.0227 0.0219 (-3.7%) 0.0217 (-4.5%) 0.0386 0.0380 (-1.8%) 0.0374 (-3.3%)

��,? 0.0121 0.0119 (-1.4%) 0.0118 (-2.8%) 0.0280 0.0280 (-) 0.027 (-2.2%)

��, 5 0.0106 0.0099 (-6.4%) 0.0099 (-6.4%) 0.0106 0.0100 (-6.3%) 0.0100 (-6.3%)

��,8 0.0077 0.0079 (+2.4%) 0.0077 (-) 0.0235 0.0241 (+2.5%) 0.0235 (-)

��,?A 0.0150 0.0140 (-6.8%) 0.0140 (-6.8%) 0.0151 0.0138 (-8.4%) 0.0138 (-8.5%)

Table 8.1: Aerodynamic coefficients for the isolated UAV wing. Comparison

between clean and riblets configurations is carried out at the same angle of attack

and at the same lift coefficient, for nominal angle of attack of U = 0◦ and U = 4◦.

Figure 8.7: Drag breakdown for the isolated UAV wing (left), and focus on the

profile drag (right). Solid lines with square markers indicate the clean configura-

tion, dashed lines with triangular markers indicate the configuration with riblets.

of attack, riblets produce a larger lift coefficient and hence a larger induced drag.

It is worth noticing that the decrease of ��,?A is almost the same for the cases at

constant U and constant �! , whereas the induced drag is larger when compared at

the same U.

Drag breakdown is graphically shown at various U in figure 8.7: focus is on

the total, induced and profile drag on the left panel, and on the contributions to

profile drag on the right panel. From the left panel, riblets are seen to mainly act

on the profile drag while the lift induced drag is essentially unchanged. The right

panel of figure 8.7 focuses on the decomposition of profile drag, and shows that,

besides the obvious reduction of friction drag, riblets additionally act upon form

drag in a significant way. Depending on the angle of attack, the benefit of riblets in

reducing ��,?A are in the 5-10% range. This is linked to the modifications on the

pressure distribution on the wing, already observed in the NACA 0012 validation

tests, see figure 8.5. The pressure distribution at 2H/1 = 0.52 for the UAV wing

is shown in figure 8.8, and confirms the larger pressure recovery and the increased

expansion peak induced by riblets that are at the root of form drag reduction.
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Figure 8.8: Pressure coefficient on the pressure and suction sides of the isolated

UAV wing at 2H/1 = 0.52, at U = 4◦, for the clean case (black line) and difference

with the riblets case (red dashed line).

Figure 8.9: Friction coefficient for the isolated UAV wing, at spanwise location

2H/1 = 0.52 and four angles of attack.
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Figure 8.10: �� (U) and polar curves of the UAV, in clean/riblets configurations.

Finally, figure 8.9 plots the skin friction distribution at the spanwise station

2H/1 = 0.52 of the wing, and compares clean and riblets configurations at different

angles of attack. A decrease of the skin friction across the entire chord is observed.

In particular on the suction side friction is mainly reduced in the fore portion; at

large angles of attack, friction reduction vanishes in the aft part. On the lower

surface, the reduction of friction is almost constant when U is varied.

8.4.2 The UAV

The complete UAV is now considered, in the configuration described above and

shown in figure 8.1. Consistently with the rest of this study, riblets are assumed

to be locally optimal, with ;+6 = 10.5 and unitary slip length _+ = 1. The spatial

distribution of the optimal riblet size, i.e. ;6 (which, for a given cross-sectional

shape, leads immediately to the geometric dimensions of the riblets) is retrieved

as a result of the simulations. It should be remarked, however, that previous work

(Mele et al., 2016) indicates how the size of locally optimal riblets does not vary

much, so that the drag reduction obtained adopting riblets with constant physical

size is quite near to the maximum drag reduction.

A series of simulations with/without riblets is carried out to provide data points

to build the polar of the aircraft (figure 8.10). Owing to the already highlighted lift

increase provided by riblets, the angle of attack necessary to provide the required

lift in cruise conditions slightly decreases from U = 2.85◦ to 2.81◦. The drag

reduction obtained for the entire aircraft is an interesting 3%, that derives from

a combination of a (less important) friction drag reduced by 6.1% and a (more

important) pressure drag reduced by 1.5%.

Figure 8.11 helps determining where the largest percentage changes of the

skin friction take place over the surface of the aircraft. Δ� 5 /� 5 ,0 is about 6%

almost everywhere, roughly as expected for a flat plate at this value of '4, except
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Figure 8.11: Percentage of skin friction reduction on the upper (left) and lower

(right) parts of the aircraft in cruise condition.

for the region near the trailing edge and for the aft part of the fuselage: here the

absolute value of � 5 approaches zero, and its percentage variations become less

meaningful.

Figure 8.12 shows the computed height distribution for the locally optimal

riblets, by assuming that the cross-sectional riblet shape is a standard V groove,

for which B+ = ℎ+ =
√

2;+6 . The optimal riblets height is about 0.2 << nearly

everywhere, except for the trailing edge of the wing, and for the aft part of the

fuselage. This provides graphical evidence to the previous statement that riblets

of properly chosen constant physical height would provide a drag reduction that is

very close to the maximum.

Riblets are then tested in off-design situations, i.e. at various incidences

different from the cruise angle of attack, to check for robustness and to verify that

riblets do not cause unwanted effects on the UAV aerodynamics, during maneuvers

or the climb/descent phases of a typical mission. As already noted for the UAV

wing, figure 8.13 shows that, although drag reduction is maximum in cruise,

performance degrades only mildly when the angle of attack differs from the cruise

value. Again, it is confirmed that friction drag reduction remains nearly constant

when U ranges from −2◦ to 5◦.
Finally, the aerodynamic drag is broken down into profile drag and induced

drag in the left plot of figure 8.14, while the right plot decomposes further profile

drag into friction and form drag. The most obvious difference between clean and

riblets configurations is the reduced profile drag, which derives from a sizable

reduction of the friction component, jointly with a comparable contribution from

the form drag.
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Figure 8.12: Spatial distribution of the computed optimal riblets height in physical

units, for symmetric V groove riblets. Left: upper part of the aircraft in cruise

conditions; right: lower part.

Figure 8.13: Drag reduction rate vs angle of attack. The largest drag reduction is

achieved in cruise condition.
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Figure 8.14: Drag breakdown (left) and decomposition of profile drag (right).

Solid lines with square markers refer to clean configuration, dashed lines with

triangular markers refer to riblets configuration.

Riblets deployment V

I full coverage 1.000

II no wing TE 0.953

III no booms 0.935

IV only wing 0.524

V only wing, suction side 0.289

Table 8.2: Coverage configurations

8.4.3 Partial coverage

Perhaps the most interesting consequence of the availability of a simple yet accurate

boundary condition to model riblets within RANS simulations is the ability to carry

out quick numerical studies to address practical problems related to their use. For

example, since riblets produce limited benefits and imply costs and penalties, an

elementary cost/benefit analysis should start from addressing the simple question

of which area of the aircraft surface would yield the largest benefits after riblets

installation. To this aim, we have designed a further set of simulations to explore

partial coverage of the aircraft surface with riblets. The amount of coverage is

quantified by the ratio V between the riblets-covered area and the total area, with

V = 1 indicating total coverage. In these simulations, the full aircraft is considered,

but riblets coverage varies according to Table 8.2, where case I is the full-coverage

case described above. Outcomes of the simulations are shown in Table 8.3 and

graphically represented in figure 8.16. Figure 8.15 schematically illustrates where

riblets are applied on the surface of the UAV.

Since at the trailing edge of the wing riblets do not provide significant reduc-
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II: no wing TE III: no booms IV: only wing V: only wing,

suction side

Figure 8.15: Schematic drawing of various riblets coverage configurations, cases

II-V.

�� Δ��/��,0% ��,? Δ��,?/��,?0% ��, 5 Δ��, 5 /��, 5 0%

Clean 0.0508 - 0.0338 - 0.0170 -

I 0.0493 3.0 0.0333 1.5 0.0160 6.1

II 0.0493 3.0 0.0333 1.5 0.0160 6.1

III 0.0493 2.9 0.0333 1.5 0.0160 5.8

IV 0.0498 2.0 0.0333 1.4 0.0165 3.3

V 0.0499 1.7 0.0333 1.5 0.0167 2.2

Table 8.3: Drag breakdown for the UAV in cruise condition, for different configu-

rations of riblets coverage, and percentage changes with the clean case.

Figure 8.16: Drag reduction contributions for different configurations of riblets

coverage from highest (I-full coverage) to lowest (V-wing only, suction side)

coverage.
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tions in skin friction (figure 8.11) while locally enforcing a substantial change from

the optimal size, in configuration II riblets are removed from the trailing edge of

the entire wing. The reduction of the riblets-covered surface is minimal (less than

5%) but, as expected, there is no appreciable decrease in terms of performance.

Configuration III has riblets removed from the booms that connect the wing to the

tail. Again, the overall drag reduction is essentially unchanged, with 6.5% savings

in covered area: pressure drag reduction remains unchanged since the boom is

not an aerodynamic body, whereas friction reduction decreases but minimally so

because the surface of the boom is small. Together, cases II and III suggest that

removing riblets from both the trailing edge and the booms would avoid difficult

areas, and save over 10% of application surface without incurring in significant

performance degradation.

Configuration IV has riblets applied on the wing only, and is motivated by

the observation that, in this application, pressure drag is approximately 2/3 of the

whole drag, and that riblets placed on the wing produce pressure drag reduction

in addition to friction drag reduction. With configuration IV, performance indeed

degrades from 3% to 2%, but the saving in coverage area is more than proportional,

with riblets surface shrinking down to one half at V = 0.524. As expected,

pressure drag reduction remains almost unchanged at 1.4%, and friction drag

reduction is seen to diminish from 6.1% to 3.3%: indeed, the area of the wing is

approximately one half of the total area. Perhaps the most interesting configuration

is configuration V, where only the suction side of the wing (and the entire winglet)

is equipped with riblets, leading to V = 0.289. In contrast, the riblets-induced

benefit remains more than one half, i.e. 1.7% instead of 3.0%.

8.5 Conclusions

The drag reduction potential of riblets deployed on a fixed-wing, low-speed Un-

manned Air Vehicle (UAV) has been assessed with RANS simulations, with a view

to determining an optimal coverage policy. While riblets are fully characterized

in low-speed flows over plane walls, and studies are available for aeronautical

configurations in transonic flow (commercial mid- or long-range passenger air-

craft), a low-speed aircraft like the present one (for which the cruise speed is only

22 </B) is considered here for the first time. Since the friction component of the

aerodynamic drag of the UAV is modest, the effectiveness of riblets in this specific

application needs to be assessed.

The RANS simulations, which employ a standard OpenFOAM setup, are un-

able to describe riblets directly. Thus, the presence of riblets is accounted for

via a suitable slip condition enforced at the planar wall. The chosen amount of

slip is constant in viscous units, and corresponds to riblets that locally possess
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optimal size in viscous wall units. The slip length model has been validated in the

simple flows over a flat plate and around a subsonic airfoil, where results agree

with available information.

Once applied to the UAV, the simulated riblets have brought out indirect and

favorable effects, which go beyond the local reduction of friction drag, and render

the deployment of a friction-reduction device definitely interesting also in such a

low-speed application. Indeed, riblets significantly change the pressure distribu-

tion across the wing of the aircraft, which translates into an additional reduction

of form drag, and in a lift increment as well. Although the latter obviously causes

an increase of lift-induced drag, the requirement for the aircraft in cruise to fly at

a given lift leads to a reduced angle of attack and thus to a further contribution to

drag reduction. In the end, riblets provide up to 3% of reduction of the total drag

of the aircraft at cruise speed: a noticeable result, especially when the low flight

Reynolds number of the UAV is considered.

Once a cheap computational model is available to reliably compute the global

effect of riblets on the aerodynamic drag, varying the riblets coverage policy

becomes a computationally affordable task; relatively inexpensive simulations can

help determine what drag benefit can be achieved with a given extent and location of

the coverage of the aircraft surface. Thanks to the importance of secondary effects

on pressure drag reduction induced by riblets, as a consequence of the significant

pressure drag component, up to 1.7% of total drag reduction is achieved by placing

riblets on the upper surface of the wing only. In this configuration, the total drag

reduction is almost 2/3 of the maximum obtained with full coverage but it is

obtained with a coverage of less then 1/3 of the total area. Since riblets costs (for

application and maintenance) are directly linked to the amount of riblets-covered

surface, the wing-only configuration offers a reduced cost-benefit ratio, and leaves

untouched the UAV fuselage, where systems (sensors, cameras, transmitters) are

designed to be installed. Further analysis can determine the practicality of riblets

removal from high-wear areas (e.g. the leading edge), which would further add

to the practical appeal of riblets in this application. Such calculations are made

possible by the simplicity of the slip length model, whose validity goes beyond

riblets, since it can be used to simulate a generic drag-reducing device which

locally reduces the skin friction.
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Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence.

Journal of Fluid Mechanics 225, 213–240.

Jovanović, M. R. & Bamieh, B. 2005 Componentwise energy amplification in

channel flows. Journal of Fluid Mechanics 534, 145–183.

Jukes, T.N. & Choi, K.-S. 2012 Dielectric-barrier-discharge vortex generators:

Characterisation and optimisation for flow separation control. Experiments in

Fluids 52, 329–345.

Jung, W.J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in

wall-bounded flows by high-frequency spanwise oscillations. Physics of Fluids

A 4 (8), 1605–1607.

Karban, U., Bugeat, B., Martini, E., Towne, A., Cavalieri, A. V. G.,

Lesshafft, L., Agarwal, A., Jordan, P. & Colonius, T. 2020 Ambiguity

in mean-flow-based linear analysis. Journal of Fluid Mechanics 900, R5.

Kasagi, N., Hasegawa, Y. & Fukagata, K. 2009 Towards cost-effective control

of wall turbulence for skin-friction drag reduction. In Advances in Turbulence

XII (ed. B. Eckhardt), , vol. 132, pp. 189–200. Springer.

Kawata, T. & Alfredsson, P. H. 2018 Inverse interscale transport of the Reynolds

shear stress in plane Couette turbulence. Physical Review Letters 120 (24),

244501.

Kempaiah, K.U., Scarano, F., Elsinga, G.E., van Oudheusden, B.W. &

Bermel, Leon 2020 3-dimensional particle image velocimetry based evalu-

ation of turbulent skin-friction reduction by spanwise wall oscillation. Physics

of Fluids 32 (8), 085111.

Kiknadze, G., Gachechiladze, I. & Barnaveli, T. 2012 The Mechanisms of

the Phenomenon of Tornado-Like Jets Self-Organization in the Flow Along the

Dimples on the Initially Flat Surface. In International Mechanical Engineering

Congress and Exposition, Proceedings (IMECE), , vol. 7.

Kiknadze, G. I., Krasnov, Yu. K. & Chushkin, Yu. V. 1984 Investigation of the

Enhancement of Heat Transfer Due to Self-organization of Ordered Dynamic

Twisted Heat-carrier Structures on a Heat-transfer Surface. Tech. Rep. 50.05/59.

I. V. Kurchatov Institute of Atomic Energy, Moscow (Russia).

293



Kim, J. & Bewley, T.R. 2007 A linear systems approach to flow control. Annual

Review of Fluid Mechanics 39, 383–417.

Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent

channel flow. Physics of Fluids A 5 (3), 695–706.

Kim, J. & Lim, J. 2000 A linear process in wall-bounded turbulent shear flows.

Physics of Fluids 12 (8), 1885–1888.

Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible

Navier-Stokes equations. Journal of Computational Physics 59 (2), 308–323.

Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed

channel flow at low Reynolds number. Journal of Fluid Mechanics 177, 133–

166.

Kim, Y. & Lai, M.-C. 2010 Simulating the dynamics of inextensible vesicles

by the penalty immersed boundary method. Journal of Computational Physics

229 (12), 4840–4853.

Kim, Y. & Peskin, C.S. 2007 Penalty immersed boundary method for an elastic

boundary with mass. Physics of Fluids 19 (5), 053103.

Kiya, M. & Matsumura, M. 1988 Incoherent turbulence structure in the near

wake of a normal plate. Journal of Fluid Mechanics 190, 343–356.

Koepplin, V., Herbst, F. & Seume, J. R. 2017 Correlation-based riblet model for

tubomachinery applications. Journal of Turbomachinery 139.

Koschmieder, E. L. 1979 Turbulent Taylor vortex flow. Journal of Fluid Mechan-

ics 93, 515–527.

Kovalenko, G.V., Terekhov, V.I. & Khalatov, A.A. 2010 Flow regimes in

a single dimple on the channel surface. Journal of Applied Mechanics and

Technical Physics 51 (6), 839–848.

Kraichnan, R. H. 1959 The structure of isotropic turbulence at very high Reynolds

numbers. Journal of Fluid Mechanics 5, 497–543.

Kurita, M., Iijima, H., Koga, S., Nishizawa, A., Kwak, D., Iijima, Y., Taka-

hashi, H. & Abe, H. 2020 Flight Test for Paint Riblets. AIAA Scitech 2020

Forum .

294



Kurita, M., Nishizawa, A., Kwak, D., IIjima, H., IIjima, Y., Takahashi, H.,

Sasamori, M., Abe, H., Koga, S. & Nakakita, K. 2018 Flight Test of a Paint-

Riblet for Reducing Skin Friction. AIAA 2018 Applied Aerodynamics Conference

pp. 1–7.

Laadhari, F., Skandaji, L. & Morel, R. 1994 Turbulence reduction in a boundary

layer by a local spanwise oscillating surface. Physics of Fluids 6 (10), 3218–

3220.

Ladson, C. L. 1988 Effects of independent variation of Mach and Reynolds

numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil

section. NASA TM 4074 .

Lai, C. K., Charonko, J.J. & Prestridge, K. 2018 A Kármán–Howarth–Monin
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