Skin-friction drag reduction in turbulent flows

Federica Gattere February 17, 2025

Dipartimento di Scienze e Tecnologie Aerospaziali Politecnico di Milano

- 50% of an aircraft's drag comes from viscous effects
- An efficient drag reduction (*R*) technology would have huge economic and environmental benefits

$$\mathcal{R} = \frac{C_{f,0} - C_f}{C_{f,0}}$$

Roadmap

Part I: Understanding wall-bounded turbulence towards its control

Understanding wall-bounded turbulence towards its control

The linear impulse response function (LIRF)

Relationship between each volume force and each velocity component

How to define and measure the LIRF

Laminar

• ϵ needs to be small enough for the response to be linear

Previous work

- Stability theory: Jovanovic & Bamieh 2005, JFM
- Control theory: Höpffner et al. 2005, JFM

How to define and measure the LIRF

Pseudo-turbulent

• ϵ needs to be small enough for the response to be linear

Previous work

• Resolvent analysis: McKeon & Sharma 2010, JFM

Vararevu et al. 2019, JFM

How to define and measure the LIRF

Turbulent

Previous work

• Luchini et al. 2006, PoF

- ϵ needs to be small enough for the response to be linear
- ϵ too small compared to turbulent fluctuations
- LIRF can be computed as an ensamble average
- LIRF can be computed as an input-output correlation

Result: $\mathcal{H}_{y \to u}$

- transient growth
- $T_{\rm turb}^+ pprox 5$

- buffer layer
- $y_{f,\mathrm{turb}}^+ pprox 10$

• streaks

Understanding wall-bounded turbulence towards its control

The oscillating wall (Jung et al. 1992, PoF)

$$w_w = A\sin(\omega t)$$
 $\omega = \frac{2\pi}{T}$

The Stokes Layer

Optimum oscillation period

$$w(y) = Ae^{y/\sqrt{\nu T/\pi}} \sin\left(\frac{2\pi}{T}t - \frac{y}{\sqrt{\nu T/\pi}}\right)$$

Phase-aware Anisotropic Generalised Kolmogorov Equations (φ AGKE)

• Anisotropic flows (Gatti et al. 2020, JFM)

$$\delta u'_i \delta u'_j =$$

 $(u_i'(X + r/2, t) - u_i'(X - r/2, t))(u_j'(X + r/2, t) - u_j'(X - r/2, t))$

• Periodic/coherent flows

$$u_i = U_i + \underbrace{\widetilde{u}_i + u_i''}_{u_i'}$$

Phase-aware Anisotropic Generalised Kolmogorov Equations (φ AGKE)

• Anisotropic flows (Gatti et al. 2020, JFM)

$$\delta u'_i \delta u'_j =$$

 $(u_i'(X + r/2, t) - u_i'(X - r/2, t))(u_j'(X + r/2, t) - u_j'(X - r/2, t))$

$$\frac{2\pi}{T} \frac{\partial \overline{\delta u_i^r \delta \tilde{u}_j}}{\partial \varphi} + \frac{\partial \phi_{k,ij}^c}{\partial r_k} + \frac{\partial \psi_{k,ij}^c}{\partial X_k} = p_{ij}^{mc} - p_{ij}^{cs} + \pi_{ij}^c + d_{ij}^c + \zeta_{ij}^c$$
$$\frac{2\pi}{T} \frac{\partial \overline{\delta u_i^{\prime\prime} \delta u_j^{\prime\prime}}}{\partial \varphi} + \frac{\partial \phi_{k,ij}^s}{\partial r_k} + \frac{\partial \psi_{k,ij}^s}{\partial X_k} = p_{ij}^{ms} + p_{ij}^{cs} + \pi_{ij}^s + d_{ij}^s$$

$$u_i = U_i + \underbrace{\widetilde{u}_i + u_i''}_{u_i'}$$

$$p_{ww}^{cs} = -2\overline{\delta v^{\prime\prime} \delta w^{\prime\prime}} \frac{d\tilde{w}}{dy}$$

Interaction between the control and the turbulence

Interaction between the control and the turbulence

Maximum \mathcal{R} : $T_{opt}^+ \approx 100$

Possible interpretations:

- Time scale
- Longitudinal length scale
- Lateral displacement
- Penetration depth length scale

Conceptual description: a thought experiment

Oscillating wall: Periodic movement of the wall

$$\tilde{w}_{SL} = A e^{y/\delta_{SL}} \sin\left(\frac{2\pi}{T}t - \frac{y}{\delta_{SL}}\right)$$
$$\delta_{SL} = \sqrt{\frac{\nu T}{\pi}}$$

Extended Stokes Layer: Imposition of velocity profile $w_{ESL}(y, t)$

$$ilde{w}_{ESL} = A e^{y/\delta_{ESL}} \sin\left(rac{2\pi}{T}t - rac{y}{\delta_{ESL}}
ight)$$
 $\delta_{ESL}
eq \sqrt{rac{
u T}{\pi}}$

Control parameters: Drag reduction map

Control parameters: Drag reduction map

Part II: Understanding controlled turbulence towards applications

Understanding controlled turbulence towards applications

• Gatti & Quadrio 2016, JFM: ${\cal R}$ marginally decreases with *Re* • Marusic et al. 2021, Nat. Commun.: *R* increases with *Re* if the control targets large scale structures

Effect of Reynolds number or of the study limitations?

• Gatti & Quadrio 2016, JFM: *R* marginally decreases with *Re*

- Limitations:
- small domain
- small Re

Marusic et al. 2021, Nat. Commun.:
 R increases with *Re* if the control targets large scale structures

Limitations:

- different flows and methods
- LES: small domain
- Experiments: control parameters fixed in outer units

No effect of Reynolds number on drag reduction

- Large-domain DNS
- Open channel flow
- *Re*_{\tau}: 1000-6000

No effect of Reynolds number on drag reduction

- Large-domain DNS
- Open channel flow
- *Re*_{\tau}: 1000-6000

$$A^+=5, \kappa_x^+=0.00078, \omega^+=-0.0105$$

$\mathcal R$ marginally decreases with Re

- Yao & Hussain 2019, JFM
- Oscillating wall
- ${\mathcal R}$ increases with Mach number

- Yao & Hussain 2019, JFM
- Oscillating wall
- \mathcal{R} increases with Mach number

- Present work
- Travelling waves

- Yao & Hussain 2019, JFM
- Oscillating wall
- \mathcal{R} increases with Mach number

- Present work
- Travelling waves

$$Re_{ au} = 400, A^+ = 12, \kappa_x^+ = 0.005$$

Effect of Mach number or thermodynamics?

Zero Bulk Cooling (ZBC)

Bulk temperature is free to evolve in time

- Different thermodynamic state
- T/T_w of an internal flow

Effect of Mach number or thermodynamics?

Zero Bulk Cooling (ZBC)

Bulk temperature is free to evolve in time

- Different thermodynamic state
- T/T_w of an internal flow

Constrained Bulk Cooling (CBC)

Bulk temperature is fixed in time Fixed portion of kinetic energy converted into thermal energy at the wall ($C_{Ogo \ et \ al.}$ 2023, JFM)

- Same control in the buffer layer
- T/T_w of an aeronautical boundary layer

No effect of Mach number on drag reduction

 $\mathcal R$ almost constant with M

Understanding controlled turbulence towards applications

Large-scale modifications of the flat geometry

From flat wall to multi-body geometries

- UAV at $Re = rac{
 ho U_{\infty}c}{\mu} = 5 imes 10^5$
- RANS simulations
- homogenized bc

Partial slip BC:

•
$$u^+(y_0) = u^+(y_{no-slip}) + \Delta h^+ \frac{\partial U^+}{\partial y^+}|_{y_0}$$

• optimal riblets size: $\Delta h^+ = 1$

Exploitation of secondary effects

- Increment of aerodynamic efficiency
 - riblets \rightarrow change P distribution \rightarrow L
 - $L = const \rightarrow \alpha \downarrow \rightarrow E = C_L/C_D \uparrow$
 - $C_L = const$
 - $C_D \downarrow (C_D = C_f \downarrow + C_p \downarrow)$

- Reduced cost-benefit ratio
 - $1-\beta = 1 \rightarrow \mathcal{R} = 3\%$
 - $1-eta=0.28
 ightarrow\mathcal{R}=1.7\%$
 - less than 1/3 of the coverage \rightarrow more than 1/2 of the efficacy

- The information provided by the presented tools can be aggregated to design a more efficient control law
- The search for an actuator should be postponed until finding the optimum control law

- Spanwise forcing retains its utility under realistic flow conditions and its underlying physics ramains unchanged
- Riblets still work on complex configuration but their production and maintanance costs open up the need of designing more efficient passive techniques

Thank you for your attention!

